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In this paper we obtain a type III
�

factor by using the free product construction
from [Vo1,Vo2] and show that its core ([Co]) is L(F1)⌦ B(H). We will prove that

M2(C) ⇤ L1([0, 1], ⌫)

is a type III
�

factor ifM2(C) is endowed with a nontracial state. Moreover we will show
that the core ([Co]) of this type III

�

factor (when tensorized by B(H)) is L(F1)⌦B(H)
and we will give an explicit model for the associated (trace scaling) action of Z on the
core (cf. [Co], [Ta]). Here B(H) is the space of all linear bounded operators on a
separable, infinite dimensional Hilbert space H.

Recall from [Vo1], that a family (A
i

)
i2I of subalgebras in a von Neumann algebra

M with state �, is free with respect to � if �(a1a2...ak) = 0 whenever

�(a
i

) = 0, a
i

2 A
j

i

, i = 1, 2, ...k, j1 6= j2, ...jk�1 6= j
k

.

Reciprocally given a family (A
i

,�
i

), i 2 I of von Neumann algebras with faithful
normal states �

i

, one may construct (see[Vo1]) the (reduced) free product von Neumann
algebra ⇤A

i

, which contains A
i

, i 2 I and has a faithful normal state � so that �|
A

i

= �
i

and so that the algebras (A
i

)
i2I are free with respect to �.
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The aim of this paper is to show the following result.

Theorem Let E = M2(C) ⇤L1([0, 1]), ⌫) be endowed with the free product state �
where M2(C) is endowed with the state �0 which is subject to the condition

�0(e11)/�0(e22) = � 2 (0, 1) and �(e12) = �(e21) = 0,

while L1([0, 1], ⌫) has the state given by Lebesgue measure on [0,1]. With these hy-
pothesis, M2(C) ⇤ L1([0, 1], ⌫) is a type III

�

factor and its core is isomorphic to
L(F1)⌦ B(H).

In the proof of the theorem we will also obtain a model for the core of E ⌦ B(H)
and for the corresponding (dual) action on the core, of the modular group of the weight
�⌦ tr (tr is the canonical semifinite trace on B(H) ). This model will be a submodel
of the one parameter action of R+/{0} on L(F1)⌦ B(H) ,that we have constructed
in [Ra].

The model Model for the core of ( M2(C) ⇤ L1([0, 1], ⌫)) ⌦ B(H) and of the
corresponding dual action on the core for the modular group of automorphism for the
weight �⌦ tr:

Let A0 be the subalgebra in the algebraic free product

L1( R) ⇤ ( C[X] ⇤ C[Y ])

generated by {pXp, pY p, p| p finite projection in L1( R)} where L1( R) is endowed
with the Lebesgue measure.

Let ⌧ be the unique trace on A0 defined by the requirement that the restriction
⌧
p

to the algebra generated in p Ap by pXp, pY p, pL1( R) is subject to the following
conditions:

(i) The three algebras generated respectively by pXp, pY p, pL1( R) are free with
respect to ⌧

p

(ii) ⌧(p)�1/2pXp, ⌧(p)�1/2pY p are semicircular (with respect ⌧
p

)(see [Vo1] for the
definition of a semicircular element).

Such a construction is possible because of the Theorem 1 in [Ra].
Assume that pXp, pY p are selfadjoint and let A be the weak completion of A0 in

the G.N.S. representation for ⌧ . Then (cf. [Ra]), A is a type II1 factor isomorphic to
L(F1) ⌦ B(H) and the trace ⌧ extends to a semifinite normal trace on A (which we
also denote by ⌧).

Recall (by [Ra]) that in this case, there exists a one parameter group of automor-
phism (↵

t

)
t2 R+\{0} on A, scaling trace by t, for each t 2 R+ \ {0}, which is induced

by d
t

⇤ M
t

on L1( R) ⇤ ( C[X] ⇤ [Y ]) where d
t

is dilation by t on L1( R), while
M

t

(X) = t�1/2X;M
t

(Y ) = t�1/2Y , t > 0.
Let B the von Neumann subalgebra of A generated by

q
n

= �[�n�1
,�

n], n 2 Z,

the characteristic functions of the intervals [�n�1,�n] and by the following subsets of
A:

X̃ = {q
n

Xq
m

|n,m 2 Z, |n�m|  1},
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Ỹ = {q
n

Y q
n

|n 2 Z}.

Clearly B is invariant under {↵
�

n}
n2 Z

and by Lemma 3 in [Ra], B is isomorphic to
L(F1)⌦ B(H). Let �

n

= ↵
�

n | B.
Let D = B ⇥

�

Z be the cross product of B by the action Z given by �. Then
by [Co], D is a type III

�

factor. Let u 2 D be the unitary implementing the cross
product. Moreover let  be the normal semifinite faithful weight on D obtained as the
composition expectation from D onto B.

We will prove that B, with the action of Z given by (�
n

)
n2 Z

is isomorphic to
the core of E ⌦ B(H), with the dual action (on the core) for the modular group of
automorphisms of the weight �⌦tr on E⌦B(H). Our main result will be a consequence
of the following statement.

Proposition. Let E be the von Neumann algebra free product M2(C)⇤L1([0, 1], ⌫),
with the free product state � = �0 ⇤ ⌫, where M2(C) = (e

ij

)2
i,j=1 is endowed with the

normalized state �0 with �(e11)/�(e22) = � and �(e12) = �(e21) = 0. Then, with the
above notation E is isomorphic to (q

o

+ q1) D(q0 + q1).
Moreover the state � on E is (via this identification) the (normalized) restriction

of  to (q
o

+ q1) D(q0 + q1).
(Here D = B ⇥

�

Z, where B is the von Neumann subalgebra in A generated
by X̃ = {q

n

Xq
m

|n,m 2 Z, |n �m|  1}, Ỹ = {q
n

Y q
n

|n 2 Z} and the characteristic
functions q

n

= �[�n�1
,�

n], n 2 Z, q
n

2 L1( R) ✓ A. Moreover �
n

= ↵
�

n , n 2 Z.)

Recall from above that the von Neumann algebra A is a type II1 factor isomorphic
to L(F1)⌦ B(H) and A is generated by

{pXp, pY p, p| p finite projection in L1( R)}.

Here ↵
t

, t > 0 acts as dilation by t on L1( R) and multiplies X, Y by t�1/2. The trace
on A is subject to the above conditions (i), (ii) and it is scaled by the automorphisms
↵
t

, t > 0.

This proposition will be a consequence of the following two lemmas.
Lemma 1. With A, B, D, , ⌧ and u as before let

e11 = q1u = uq0; e11 = q0; e22 = q1

Let a = x+ y, where
x = (q0 + q1)X(q0 + q1)� q0Xq0

y = q0Y q0.

Then M2(C) = (e
ij

)2
i,j=1 is free with respect to

 1 = ( (q0 + q1))
�1 |(q

o

+q1) D(q0+q1),

to the semicircular element a, in the algebra (q0 + q1) D(q0 + q1) with unit q0 + q1.

Proof. We have to check freeness, which means that the value of  1 on certain
monomials in a, u, e11, e22 is null. Since by definition ,  1 vanishes the monomials
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containing a di↵erent number of u ’s and u⇤ ’s, we have only to check this if the number
of occurrences for u is equal to the one for u⇤.

Let p
n

= q
n

+ q
n+1 = �[�n�1

,�

n+1].
Using the fact that u implements �1 on D it follows that we only have to check

 1(m) = 0 if
m = p0f1qi1f2qi2f3...qinfn+1p0

where the following conditions are fulfilled:
(a) i

j+1 is either i
j

or i
j

± 1.
(b) Card {s|i

j

= s, j = 1, 2, ..., n} is even for every s.
(c) f

k

is a product
fk

1 a
k

1...f
k

n

k

�1a
k

n

k

�1f
k

n

k

, n
k

� 1

where fk

s

, s = 1, 2, 3...n
k

, is an element of null value under the state  1 in the algebra
generated by ↵

j

(a) while ak
s

is an element of null trace in the algebra generated by
q
j

, q
j+1. Here j is an integer which is completely determined, for each k. If i

k

6= i
k+1

then j is the minimum of the i
k

and i
k+1. If ik = i

k+1 then j is either i
k

if i
k�1  i

k

or
either i

k

� 1 if i
k�1 > i

k

.
To see that those are all the monomials of null state that may appear in the algebra

generated by M2(C) and a it is su�cient to note that any string

f1e21f2e21...fpe21fp+1e12fp+2e12...e12f2p+1 =

= f1(q1u)f2q1u...fpq1ufp+1(u
⇤q1)...(u

⇤q1)f2p+1,

after cancelation, is equal to

f1(q1u)f2...q1ufpq1�1(fp+1)q1fp+2(u
⇤q1)...(u

⇤q1)f2p+1 =

= f1(q1u)f2...q1�1(fp)q2�2(fp+1)q2↵1(fp+2)q1...(u
⇤q1)f2p+1 =

= f1q1↵1(f2)q2...�p�1(fp)qp�p(fp+1)qp�p�1(fp+2)...q1f2p+1

and similarly for a string in which each q1u is replaced by u⇤q1 and conversely.
Here the f

i

’s are products of the form f i

1a
i

1f
i

2a
i

2...f
i

n

where f i

j

are elements of null
trace in the algebra generated by a = (q0 + q1)a(q0 + q1), while ai

j

are elements of null
trace in the algebra generated by q0, q1.

The monomials in the algebra generated by M2(C) and a that are to be checked for
having zero value under  1 are obtained by replacing certain f

j

by other strings of this
form, or by putting together such strings.

To show that the value of  1(m) is zero we will use the following observation which
is a consequence of Lemma 3.1 in [Vo2]. This observation will be used to replace the
elements f1, ..., fn+1 in the monomial m by elements of null trace.

Observation.Let B be a W ⇤-algebra with trace ⌧ , let X be a semicircular element
and p a nontrivial projection that is free with X. Then any element of null trace in
the algebra (with unit p) generated by pXp is a sum of monomials which are products
either of elements of null trace in the algebra generated by pXp or either of the form
p� ⌧(p), but no such monomial is p� ⌧(p) itself.
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Proof. Indeed if x is such an element then pxp = x, and moreover any other
such monomial, which is di↵erent from p� ⌧(p), when multiplied with p, preserves the
property of having null trace.

On the other hand
⌧(p(p� ⌧(p))) = 1� ⌧(p) 6= 0.

This ends the proof of the observation.

To conclude the proof of Lemma 1 we let p a projection which is greater than the
supremum of all the projections {q

i

|i 2 I
m

} that are involved in m.
We may then assume by construction that we are given a finite family of semicircular

elements zj so that zj = pzjp and so that (modulo a multiplicative constant) ↵
j

(a) =
(q

j

+ q
j+1)zj(qj + q

j+1) for j in I
m

.
Using the above observation we may express f

k

= fk

1 a
k

1...f
k

n

k

�1a
k

n

k

�1f
k

n

k

as a sum of
products of null trace in the algebras generated by {q

j

} and {z
j

} (adjacent elements
are allways in di↵erent algebras).

(Note that (q
j

+ q
j+1)(qj � ⌧(q

j

)(⌧(q
j

+ q
j+1))�1(q

j

+ q
j+1) has always null trace).

Again the above observation shows that each of these monomials must contain at
least on term in zj. Since consecutive f i involve di↵erent elements in the set {zj} it
follows that  1(m) = 0.

This ends the proof of Lemma 1.
Lemma 2 With B, D as before we have that (q0+ q1)B(q0+ q1) coincides with the

von Neumann subalgebra C ✓ (q
o

+ q1) D(q0 + q1) (with unit q0 + q1) that is generated
by the monomials with an equal number of e12 ’s and e21 ’s.

Proof. We have to show that the subalgebra (q0 + q1)B(q0 + q1) coincides with the
subalgebra C ✓ (q0+ q1)(B⇥

�

Z)(q0+ q1) = (q0+ q1){B, u}00(q0+ q1) that is generated
by monomials in a and (e

ij

)2
i,j=1 containing an equal number of e12 ’s and e21 ’s.

Clearly C is invariant under the action of R (or T ) on D given by the modular
group of  which acts by � 

t

(u) = �itu, � 
t

|
B

= Id
B

so that C ✓ (q0+q1)D R(q0+q1) =
(q0 + q1)B(q0 + q1).

Hence we have to only prove the reverse inclusion. But due to the specific form of
the generators in B, we obtain that B is generated by elements of the form

m = f 1q
i1f

2q
i2 ...f

nq
i

n

fn+1

where the conditions on i1, ..., in are

a) i
j+1 2 {i

j

, i
j

� 1, i
j

+ 1}, j = 1, 2, ..., n, i0, in 2 {0, 1}

b) card {j|i
j

= s} is even ,

while f is one of the elements

↵
s

(q0Xq0); ↵s

(q0Xq1);↵(q1Xq0) or ↵s

(q1Y q1),

where s is either i
j

or i
j+1 if ij 6= i

j+1. If ij = i
j+1, then either s = i

j

and f j = ↵
s

(q0Xq0)
or either s = i

j�1 and f j = ↵
s

(q1Y q1).
The assumptions we made are su�cient to show that in such a monomial we have

some symbols corresponding to ↵
s

(a) which are then necessary followed by symbols
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corresponding to ↵
s+1(a) (or to ↵

s�1(a)). Moreover in m this sets of symbols are
always separated by one of the projections q

p

(p 2 {s, s± 1}).
If we replace in m any such q

p

by q1u (or respectively by u⇤q1) and we replace the
symbols from ↵

s

(a) by the corresponding symbols in a we get the same m, but this time
expressed as an element in the subalgebra of C, generated by monomials with equal
occurrence number of e12 ’s and e21 ’s. This ends the proof of Lemma 2.

To conclude the proof, we note the following observation:

Remark. Let B,D = B⇥
�

Z and u, {q
i

}
i2 Z

be as before . Then (q0+q1)D(q0+q1)
coincides with the algebra generated by (q0 + q1)B(q0 + q1) and e12 = q1u = uq0.

Proof. With q0, q1 as before we have to show that q0(u⇤)nbq0 = q0(u⇤)nq
n

bq0 is
contained in the algebra generated by (q0 + q1)B(q0 + q1). Assume n > 1; we may
express q

n

bq0 as
q
n

b
n

q
n�1bn�1qn�2...q1b1q0.

Then
q0(u

⇤)nbq0 = q0(u
⇤)nq

n

b
n

q
n�1...q1b1q0 =

= q0u
⇤↵

n�1(bn)q0u
⇤↵

n�2(bn�1)q0...q0u
⇤b1q0

which is an element in the algebra generated by (q0 + q1)B(q0 + q1) and uq0.

Proof of the theorem
Clearly the subalgebra generated by e12 and all the elements in

M2(C) ⇤ L1([0, 1], ⌫)

with equal occurrence number of e12 ’s and e21 ’s coincides with the algebra itself. Thus
M2(C) ⇤L1([0, 1], ⌫) with the free product state � is identified with (q0+ q1)D(q0+ q1)
with the restriction of  (which is generated by uq0 = q1u , and a). In particular the
modular group of � is ��

t

(e
ij

) = �ite
ij

and ��
t

is the identity on L1([0, 1], ⌫).
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[Ra] F. Rădulescu, A one parameter group of automorphisms of L(F1) ⌦B(H)
scaling the trace by t, C. R. Acad. Sci. Paris, t.314, Serie I, p.1027-1032,1992.

[Ta] , M. Takesaki , Duality in cross products and the structure of von Neumann
algebras of type III, Acta Math. 1312 (1973), p. 249-310.

This work was elaborated during the time the author was a Miller Research Fellow
at U.C. Berkeley.

6


