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Abstract In this paper we consider Fourier transform techniques to efficiently compute
the Value-at-Risk and the Conditional Value-at-Risk of an arbitrary loss random variable,
characterized by having a computable generalized characteristic function. We exploit the
property of these risk measures of being the solution of an elementary optimization problem
of convex type in one dimension. An application to univariate loss models driven by Lévy
or stochastic volatility risk factors dynamic is finally reported.

Keywords V@R · CV@R · Fourier transform methods · Stochastic volatility ·
Jump-diffusion models

Mathematics Subject Classifications (2010) 91G60 · 91B30 · 60E10

1 Introduction

Measuring risks is certainly one of the core competence of any financial institution, even
from a regulatory perspective. An efficient and reliable computation of risk measures is
consequently a primary concern of any modern risk management activity, dramatically
highlighted during the recent financial crisis. Value-at-Risk and Conditional (or Average)
Value-at-Risk (henceforth V@R and CV@R) are without doubt among the best known
monetary risk measures. Since its introduction, V@R rapidly has become a benchmark in
the financial industry both for regulatory purposes and in the practice of risk management,
mainly due to its simplicity. On the other side, it is sharply criticized for the lack of sub-
additivity and the inability to quantify the severity of an exposure to rare events. For these
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reasons, alternative risk measures are considered as the CV@R, which turns out to be one
of the well known example of coherent risk measure (see Acerbi and Tasche 2002; Artzner
et al. 1999).

In this paper we present a method for their computation based on a Fourier transform
technique. The Fourier representation of distribution functions and expected values of ran-
dom variables is well-known in the financial and actuarial literature: Lèvy and Gil-Pelaez
inversion formulas and the method introduced by Carr and Madan in their seminal paper
(Carr and Madan 1999) for contingent claim valuation through Fast Fourier transform,
nowadays are standard computational techniques to efficiently solve statistical and pric-
ing problems. Here we consider a parametric framework, thus assuming a probabilistic
description for the quantity we are interested in, namely profit or loss random variables.
Aside the standard definitions for V@R and CV@R, in this paper we exploit an alterna-
tive characterizations of these risk measures in which transform representation can play
an important tool for their efficient calculation. In particular, their property of being the
solution of an elementary optimization problem of convex type in one dimension permits
to evaluate both measures by solving numerically a unique simple univariate minimization
problem, in which the objective function can be efficiently computed by means of Fourier
representation. This is the main contribution of the present work. A “quick and dirty” solu-
tion is then available through (fractional) Fast Fourier Transform algorithms, that may also
be useful to properly select a priori a feasible region in which the minimum could be
located.

Analytical calculation of V@R by using inversion formulas has been considered in
Duffie and Pan (2001) while the use of generalized Fourier transform and the FFT algo-
rithm is more recent, see e.g. Le Courtois and Walter (2009) who applied such a technique
in a Variance Gamma model, Kim et al. (2010) and Scherer et al. (2009) where the class
of tempered stable and infinitely divisible distribution were considered or Bormetti et al.
(2010) for an application to a stochastic volatility model. Even more recently, a Fourier-
based representation approach has been exploited to build a numerical scheme (Fourier
transform methods and deterministic root-finding) for the computation of a class of law-
invariant risk measure, see Drapeau et al. (2014). Moreover, efficient numerical schemes
based on wavelet approximation and Fourier-cosine series expansion have been used to
compute V@R and CV@R for a non-linear portfolio in Ortiz-Gracia and Oosterlee (2014)
by using a delta-gamma approximation in a gaussian framework.

The techniques considered here can be applied to all models having an analytic
(and computable) characteristic function. This is the case of many financial dynamic
models of returns emerged in the literature of the last decades for the analysis and
the management of portfolio risks, such as Lévy finite/infinite activity and stochastic
volatility models; an application to an univariate loss model in such a framework will
be presented in the numerical section. But they can also be applied to that stochastic
models which find their application in actuarial science, such as the compound Pois-
son loss distribution, used to model the aggregate claims of an insurance-risk business
(see Dufresne et al. 2009).

The paper is organized as follows: V@R and CV@R are briefly introduced
in Section 2, where their main characterizations are outlined. The transform technique is
reviewed in Section 3 together with the use of fast and fractional Fourier transform algo-
rithms and finally a set of numerical experiment is reported in Section 4 to show the
effectiveness of the proposed procedures. In particular, the Fourier based techniques are
applied to a univariate loss model of portfolio returns characterized by dynamical risk
factors with jumps and stochastic volatility.
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2 V@R and Conditional V@R

Let (�, F,P) be a probability space, L a real-valued random variable and FL(x) = P(L ≤
x) its distribution function. In the following we suppose that E[|L|] < ∞. To measure the
risk of a financial position characterized by an uncertain future value over a given time hori-
zon, the quantiles of its distribution function are commonly used. Given a confidence level
α ∈ (0, 1), the set of α-quantiles of the random variable L is the interval [q−

α (L), q+
α (L)]

where

q−
α (L) = inf{q ∈ R|P(L ≤ q) ≥ α}, q+

α (L) = inf{q ∈ R|P(L ≤ q) > α}.
In this paper the random variable L describes the loss of a financial position. Given L,

V@R is defined as the lower α-quantile, q−
α (L):

V@Rα(L) := inf{q ∈ R|P(L ≤ q) ≥ α}.
In financial terms, V@R is “the maximum possible loss which is not exceeded with

probability α”, or “the smallest amount of capital which, if added to the current position,
keeps the probability of a non-negative outcome below the level 1 − α”. For a random
variable having continuous and strictly increasing distributions function, q−

α (L) = q+
α (L) ≡

qα(L) = F−1
L (α), the ordinary inverse of F , i.e. V@R solves the equation

P(L ≤ V@Rα(L)) = α (or equivalently P(L ≥ V@Rα(L)) = 1 − α).

Although widely used, it is well known that V@R is not a coherent risk measure (see
Acerbi and Tasche 2002; Artzner et al. 1999), in particular for being not sub-additive. To
overcome the weakness of V@R, several alternative risk measures have been proposed in
literature, among which the Conditional, or Average, Value-at-Risk, which does satisfy the
axioms of coherence (see e.g. Acerbi and Tasche 2002; Artzner et al. 1999). Several equiv-
alent definitions have been proposed in the literature: given the confidence level α ∈ (0, 1),
the basic idea is to average all the possible losses exceeding V@Rα(L), that is

CV@Rα(L) := 1

1 − α

∫ 1

α

V@Ru(L) du.

Alternatively, it may be convenient to define the CV@R as the expectation of L under
the (scaled) distribution function (see Rockafellar and Uryasev 2002)

FL,α(x) =
{

0 for x < q−
α (L)

(FL(x) − α)/(1 − α) for x ≥ q−
α (L).

When F is continuous and strictly increasing then V@Rα(L) = F−1
L (α) and

∫ 1

α

V@Ru(L) du =
∫ +∞

F−1
L (α)

x dFL(x) = E[XI
X≥F−1

L (α)
];

therefore CV@Rα(L) = E[L|L ≥ V@Rα(L)]1. Furthermore, since xIx≥q = (x − q)+ +
qIx≥q we get

CV@Rα(L) = V@Rα(L) + 1

1 − α
E[(X − V@Rα(L))+]. (1)

1For general distribution functions this is not true: see Rockafellar and Uryasev (2002) and Hürlimann (2002)
for a detailed discussion about alternative definitions.
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More generally, it is possible to prove that Eq. 1 is still valid for any α-quantile of L: that
is

CV@Rα(L) = q + 1

1 − α
E[(L − q)+]

for any q ∈ [q−
α (L), q+

α (L)], which evaluated for q = V@Rα(L), clearly gives (1). The
quantity SLL(q) ≡ E[(L − q)+] is known as the stop-loss transform of L. The following
approach can therefore be considered for computing V@R and CV@R:

The approximation error of V@R and CV@R through ALGORITHM 1 and the related
speed of computation are due to the properties of the zero-finding algorithm and the
numerical quadrature implemented.

An alternative characterization of V@R and CV@R for an arbitrary loss L, due to Rock-
afellar and Uryasev (2000) and Rockafellar and Uryasev (2002), is obtained as follows. For
a given value α ∈ (0, 1) let us introduce the real function

GL,α(x) = x + 1

1 − α
E[(L − x)+], x ∈ R (2)

and let � = argminxGL,α(x) be the set of x for which the minimum value of GL,α is
attained, with �− and �+ respectively equal to the lower and the upper endpoint of �. The
proof of the following Theorem can be found in Rockafellar and Uryasev (2002) (but see
also Föllmer and Schied (2011), where an alternative proof based on the Fenchel-Legendre
transform is proposed (Lemma 4.6)):

Theorem 1 For any random variable L with E[|L|] < +∞, the function GL,α(·) is finite
and convex with

CV@Rα(L) = min
x∈R GL,α(x).

Moreover � is a nonempty, closed, bounded interval with q−
α (L) = �− and q+

α (L) =
�+. In particular, one always has

qα(L) ∈ �, CV@Rα(L) = GL,α(qα(L)).

This theorem suggests to compute V@R and CV@R by solving a unique optimization
problem:

It is worth noting that for ALGORITHM 2 speed and approximation error in the computa-
tion of V@R and CV@R are due to the speed and precision of the univariate minimization
algorithm used other than the numerical quadrature for the evaluation of the expectations.

In both the algorithms, the expectations required to compute V@R and CV@R must
be evaluated for different values of a parameter q, namely P(L ≤ q) = E[I{L≤q}]
and E[(L − q)+]. This can be efficiently done by means of the Fourier transform
techniques, which prove to be particularly useful also when the loss variable has
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an exponential, form L ∝ exp(X): in such a case, if E[eX] < +∞, we define
the function G as

G
(e)
L,α(x) = x+ 1

1 − α
E[(eX−ex)+] or G

(e)
L,α(x) = x+ 1

1 − α
E[(ex−eX)+], x ∈ R. (3)

Before recalling the basic properties of this class of computational methods, we now
briefly introduce a simple loss model which will be used to test the computational
procedures in the final Section.

An Univariate Loss Model Let us consider on a filtered probability space (�,F ,Ft ,P)

a stochastic process of the form Vt = V0eXt , V0 > 0, modeling the value of a risky position
for t ∈ [0, T ]. The loss random variable we consider is

L = V0erT − VT = V0erT − V0eXT

where r is the risk-free interest rate, that we can assume as a deterministic constant
in the reference period for easiness of notation. In such a case the function GL,α

becomes

GL,α ≡ G
(e)
L,α(x) = x + 1

1 − α
E[(V0erT − V0eXT − x)+]

= V0

(
x

V0
+ 1

1 − α
E

[((
erT − x

V0

)
− eXT

)+])

=

⎧⎪⎨
⎪⎩

x x ≥ V0erT

V0

(
x
V0

+ 1
1−α

E

[(
ek(x/V0) − eXT

)+])
x < V0erT

(4)

where k(v) = log(erT − v). Theorem (1) still applies.

Example 2.1 Let us consider the classical log-normal model, where XT = (μ − σ 2/2)T +
σWT , Wt being the Brownian process, μ ∈ R and σ > 0 two given parameters. In such a
case, standard calculations yield

V @Rα(X) = V0erT − V0e(μ−σ 2/2)T +σ
√

T z1−α

and

Gα(x) = x + 1

1 − α
[(V0erT − x)N [−d2(x)] − V0eμT N [−d1(x)]]

d1(x) = 1

σ
√

T

(
log

(
V0

V0erT − x

)
+ (μ + σ 2/2)T

)
,

d2(x) = 1

σ
√

T

(
log

(
V0

V0erT − x

)
+ (μ − σ 2/2)T

)

where N [d] is the standard normal cumulative distribution function and z1−α is the
corresponding (1 − α)-quantile (or critical value). Finally,

CV @Rα(X) =V0(e
rT−e(μ−σ 2/2)T +σ

√
T z1−α )+V0eμT

1 − α

(
e−σ 2T/2+σ

√
T z1−α N [z1−α] −N [z1−α − σ

√
T ]

)
.
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3 The Fourier Transform Method

Fourier transform methods are efficient techniques emerged in the last decades in the finan-
cial practice as one of the main methodology for the evaluation of derivatives. In fact, the
no-arbitrage price of an European style contingent claim can be represented as the (con-
ditional) expectation of the derivative payoff under a proper risk-neutral measure (see e.g.
(Bjork 2004)). These methods essentially consist on the representation of such an expec-
tation as the convolution of two Fourier transforms. Since the value of most derivatives
depends on a trigger parameter, two main variants have been developed depending on
which variable of the payoff is transformed into the Fourier space. In our setting, due to
the functional (exponential) form of the transformed functions we consider, the formulas
we get by applying the two approaches are essentially the same: we can pass from one
to the other by simply changing the integration contour (see (Ramponi 2012)). In the fol-
lowing we choose to work with the generalized Fourier transform (GFT) w.r.t. the trigger
parameter v. In essence, given a function H(y, v), the quantity that we want to compute is
h(v) = E[H(Y, v)], where the expectation is taken over a given probability measure P. Let
us consider the GFT with respect to v: formally we have for z = u + iν ∈ C ⊂ C

ĥ(z) =
∫
R

eizvh(v)dv =
∫
R

eizv
(∫

R

H(y, v)P(dy)

)
dv =

∫
R

Ĥ (v)(z, y)P(dy)= E[Ĥ (v)(z, Y )]

where we have defined

Ĥ (v)(z, y) =
∫
R

eizvH(y, v)dv.

Notice that ĥ corresponds to the classical Fourier transform of the ν-damped expectation,
as introduced in Carr and Madan (1999): Fourier inversion gives

h(v) = 1

2π

∫ iν+∞

iν−∞
e−izvĥ(z)dz = 1

2π

∫ iν+∞

iν−∞
e−izv

E[Ĥ (v)(z, Y )] dz

for ν in some strip of C. The previous equalities must be justified under the appropriate
conditions on the function H , its transform and the characteristic function of the underlying
random variables (see e.g. (Lee 2004) for a thorough discussion on the subject). For our
application we consider the following functions:

H1(y, v) = (y − v)+, H2(y, v) = I{y≤v},

H3(x, k) = (ex − ek)+, H̄3(x, k) = (ek − ex)+.

The reason for considering an exponential transformation of the basic risk factor is the
fact that many financial models are usually introduced in the form exp(X), as in Exam-
ple (2.1). Their GFT are readily obtained by means of standard (complex) integration: we
summarize such results in the following

Proposition 1 Let z = u + iν ∈ C, then

Ĥ
(v)
1 (z, y) = e(iu−ν)y

(iu − ν)2
= −eizy

z2
, ν < 0 (5)

Ĥ
(v)
2 (z, y) = e(iu−ν)y

iu − ν
= − i

z
eizy, ν > 0 (6)
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Ĥ
(k)
3 (z, x) = e(iu−ν+1)x

(iu − ν)(iu − ν + 1)
= ei(z−i)x

iz − z2
, ν < 0, (7)

̂̄H(k)

3 (z, x) = e(iu−ν+1)x

(iu − ν)(iu − ν + 1)
= ei(z−i)x

iz − z2
, ν > 1. (8)

Let φY (z) = E[eizY ], z ∈ C be the (generalized) characteristic function of the r.v. Y .
The following result can be proved as in Lee (2004).

Theorem 2 (a) If E[e−νY ] < ∞, ν < 0, then

H1 = E[(Y − v)+] = − 1

2π

∫ iν+∞

iν−∞
e−izv φY (z)

z2
dz = − 1

π

∫ iν+∞

iν−0



{
e−izv φY (z)

z2

}
dz; (9)

(b) Let H̄2 = 1
2 (P(Y ≤ v) + P(Y < v)). If E[e−νY ] < ∞, ν > 0, then

H̄2 = 1

2π
lim

M→+∞

∫ iν+M

iν−M

e−izv i

z
φY (z) dz = 1

π

∫ iν+∞

iν−0



{
e−izv i

z
φY (z)

}
dz; (10)

(c) If E[e(−ν+1)X] < ∞, ν < 0, then

H3 =E[(eX − ek)+] = 1

2π

∫ iν+∞

iν−∞
e−izk φX(z − i)

iz − z2
dz = 1

π

∫ iν+∞

iν−0



{
e−izk φX(z − i)

iz − z2

}
dz;
(11)

(d) If E[e(−ν+1)X] < ∞, ν > 1, then

H̄3 = E[(ek − eX)+] = 1

2π

∫ iν+∞

iν−∞
e−izk φX(z − i)

iz − z2
dz = 1

π

∫ iν+∞

iν−0



{
e−izk φX(z − i)

iz − z2

}
dz.

(12)

Remark 3.1 It is worth noting that formula (10) is a slight generalization of the well-known
Lévy’s Inversion (and Gil-Pelaez) formulas, that can be obtained by using the Residue The-
orem. Furthermore, in the framework of the univariate loss model discussed in Example
(21), we clearly have P(L ≤ q) = 1 − P(eXT < ek), where k = log((V0erT − q)/V0) for
q < V0erT , and we notice that the probability of the events {eX ≤ ek} has the same integral
representation as (10).

We may finally put together the previous results to obtain an integral representation for
the functions GL,α and G

(e)
L,α:

Proposition 2 Let L be a loss random variable with E[|L|] < +∞, GL,α and G
(e)
L,α the

functions defined in (2) and (3). Then, under the hypothesis of Proposition (1) and Theorem
(2), we have

GL,α(x) = x − 1

(1 − α)2π

∫ iν+∞

iν−∞
e−izx φY (z)

z2
dz

= x − eνx

(1 − α)π

∫ +∞

0



(
e−iux φY (u + iν)

(u + iν)2

)
du, ν < 0 (13)
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or, in the case of exponential models,

G
(e)
L,α(x) = x + 1

(1 − α)2π

∫ iν+∞

iν−∞
e−izx φX(z − i)

iz − z2
dz

=x + eνx

(1 − α)π

∫ +∞

0



(
e−iux φX(u + i(ν − 1))

ν2 − ν − u2 + iu(1 − 2ν)

)
du, ν > 1, or ν < 0. (14)

The computation of the functions GL,α and G
(e)
L,α requires the use of quadrature algo-

rithms, see Fusai and Roncoroni (2008) for a review of standard techniques in a financial
framework. The development and the analysis of numerical methods to efficiently evalu-
ate Fourier integrals have been an active field of research during the last years: the choices
of the proper integral representation formula of the stop-loss transform of L through the
Residue Theorem and the related integration contour (i.e. the damping parameter ν) and
the quadrature algorithm permit to compute accurately the value of our target functions.
Transformation of the integration domain, the use of adaptive quadrature algorithms, the
optimal choice of the damping parameter have been studied in several papers (see e.g.
Schmelzle 2010 and the reference therein). Even more recently, methods based on wavelets
approximation and Fourier-cosine expansion have been exploited to efficiently implement
Fourier inversion, see Ortiz-Gracia and Oosterlee (2014). These kind of methods permits to
compute the value of the integral (or equivalently the stop-loss transform), for each value of
the parameter x. On the other hand, the standard technique for fast pricing of options relies
on the FFT as firstly introduced in the seminal paper by Carr and Madan (1999): essentially
it permits to approximately compute a whole range of values in a unique run: in our appli-
cation this implies to compute the values of the function GL,α or G

(e)
L,α for a proper range of

the variable x at the same time. We briefly review here the main steps of such techniques.

Fast and Fractional Fourier Transforms The FFT technique involves two steps:

• a numerical quadrature scheme to approximate through a N -point sum the integral

I (x) = 1

π

∫ +∞

0



[
e−iuxF (u)

]
du.

By using an equi-spaced grid {un}n=1,...,N of the line {z = u+iv ∈ C : u ∈ R
+, v =

ν} with spacing 	, we have

I (x) ≈ 
N(x) = 	

π

N−1∑
n=0



[
e−iunxF (un)wn

]
,

where wn are the integration weights2;
• given a grid xm = x1 +γm, m = 0, . . . N −1, denoted by x, the sum 
N(xm) is written

as a discrete Fourier transform (DFT) when

	 · γ = 2π

N
(15)

that is


N(xm) = 	

π

N−1∑
n=0

e−inm	γ e−in	x1F(n	)wn = 	

π

N−1∑
n=0

e−inm 2π
N hn

where
hn = e−in	x1F(n	)wn. (16)
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The integral I (x) is therefore approximated over the grid x as I (xm) ≈ 
N(xm) that
can be efficiently computed by means of the Fast Fourier Transform algorithm, I (x) ≈
FFT (x, h). The required values are computed with O(N log(N)) operations. A thorough
discussion on sampling and truncation errors is found in Lee (2004).

The condition 	 · γ = 2π/N imposes that if we refine the integration grid (	 small),
the range for the variable x becomes larger, thus including values which cannot be useful
in our valuation procedure. Fractional Fourier transform (FRFT) permits on the contrary
to decouple the two steps: it is therefore possible to choose properly the integration range
and the x-spacing grid. The resulting algorithm, introduced in the financial literature in
Chourdakis (2005), involves the use of standard FFT: in terms of the number of elementary
operations, the computational cost of a FRFT procedure with N -point, N -FRFT, is about
the same as a 4N -FFT. The advantage of running a FRFT with smaller N is that it may
achieve the same accuracy than a FFT with much larger N .

The m-th component of the η-fractional discrete Fourier transform of the vector h is
defined as

FRFT (h, η)m =
N−1∑
n=0

e−i2πnmηhn, k = 0, . . . , N − 1

with η = 	γ/2π . The algorithm works as follows: firstly define two 2N-point vectors

y = (y0, . . . , yn−1, yn, . . . , y2n), yj = hj e−iπj2η, 0 ≤ j < n − 1, yj = 0, n ≤ j < 2n,

z = (z0, . . . , zn−1, z̄n, . . . , z̄2n), zj = eiπj2η, 0 ≤ j < n − 1, z̄j = eiπ(n−j)2η, 0 ≤ j < n − 1.

The m-th component of FRFT (h, η)k is then computed as

FRFT (h, η)m = eiπm2η  FFT −1
m (FFT (y)m  FFT (z)m), m = 1, . . . , n,

where FFT−1 is the inverse fast Fourier transform and  is the component-wise vector
multiplication. As before, the integral I (x) can be approximated over the grid x by means
of the Fractional Fourier Transform algorithm, I (x) ≈ FRFT (x, h, η)

4 Implementation and Results

The numerical procedures outlined in Section 2 for the computation of V@R and CV@R
both require to evaluate the distribution function and/or the stop-loss expectation of the
random variable L. ALGORITHM 1 firstly calls for a zero-finding routine that needs to com-
pute (a sequence of) values of FL(·) and then SL(L) must be evaluated. ALGORITHM 2
must solve iteratively a univariate minimization problem requiring at each step to compute
an expectation. Efficient numerical quadratures for computing Fourier integrals suffice for
implementing the two algorithms without the need of calling for fast Fourier transforms.
Error bounds on the approximation obtained clearly depends on the computational meth-
ods chosen for numerical integration, zero-finding and minimization routines. A general
result on the behavior of the error can be simply outlined by exploiting the properties of the

2Different spacing rules can be implemented, e.g. the midpoint rule.
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Fig. 1 RMSE between the functions GL,α(x) and Ge
L,α(x) and their approximation evaluated on a finite

grid, as a function of the damping parameter ν for the three toy models. The squared-blue lines refer to
the adaptive Lobatto quadrature, the star-red and the diamond-magenta to the FRFT and FFT algorithms,
respectively

convex function GL,α . As a matter of fact, let x̄ and x∗ be given points: since it can be
proved that (see Rockafellar and Uryasev 2002, Theorem 10)

E[(L − x̄)+ − (L − x∗)+]
x̄ − x∗ = −(1 − FL(x̄)) − ρ(x̄, x∗)(FL(x̄) − FL(x∗))

Table 1 Comparison between the Fourier-based numerical procedures for the gaussian model (upper table),
X ∼ N(μ, σ 2) and the binomial model (lower table), X ∼ B(n, p), with α = 0.99

V@R Abs Err CV@R Abs Err Relative Time

ALG 1 0.53 × 10−14 0 1

ALG 2 0.33 × 10−07 0 0.3

212-FFT 0.15 × 10−02 0.32 × 10−05 0.7 × 10−05

210-FRFT 0.14 × 10−03 0.27 × 10−07 0.2 × 10−05

n = 5, p = 0.1 V@R Abs Err CV@R Abs Err Relative Time

ALG 2 0.0092 0.0027 1

212-FFT 0.0106 0.0025 0.0092

210-FRFT 0.0176 0.0047 0.0014

The second and third columns report absolute errors for the V@R and CV@R with respect to the true
values, as obtained by applying zero-finding, univariate minimization (golden section search) and quadrature
(adaptive Lobatto algorithm) build-in functions of MatLab. In view of the inversion results for discontinuous
distribution functions, we did not apply Alg 1 to the binomial case. In these experiments, the zero-finding
algorithm had starting point equal to mean of the r.v.; the univariate minimization requires a starting interval
set to [0, n] and [0, μ + 3σ ], respectively. The FFT and FRFT algorithms have input vectors of length 2N ;
the integral was approximated between 0 and 100 in the gaussian case and 0 and 200 in the binomial case;
the x-grid was started at x1 = 0, with γ = 0.004 for FRFT. In the last column the relative CPU times are
shown, normalized to the slowest algorithm (Alg 1)
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Fig. 2 Integrand of function (13) for the Gaussian and the binomial model

with ρ(x̄, x∗) ∈ (0, 1), then

|GL,α(x̄) − GL,α(x∗)| = |x̄ − x∗| |(FL(x̄) − α) − ρ(x̄, x∗)(FL(x̄) − FL(x∗))|
1 − α

.

If we choose x∗ = V@Rα(L) (i.e. the true minimizer of GL,α), which implies that
FL(x∗) = α and GL,α(x∗) = CV@Rα(L), and x̄ as an approximated minimizer, then

|GL,α(x̄) − CV@Rα(L)| ≤ |x̄ − V@Rα(L)| |FL(x̄) − α|
1 − α

< |x̄ − V@Rα(L)|.
More generally the function GL,α too is approximately evaluated through an N -point

sum defined over a given grid, that is GL,α(x̄) ≈ G̃L,α(x̄): therefore

|G̃L,α(x̄) − CV@Rα(L)| ≤ |G̃L,α(x̄) − GL,α(x̄)| + |GL,α(x̄)

−CV@Rα(L)| ≤ |G̃L,α(x̄) − GL,α(x̄)| + |x̄ − V@Rα(L)|.
The error term |G̃L,α(x̄) − GL,α(x̄)| depends of course on the numerical quadrature

scheme applied: as it has been discussed in details in Lee (2004) in the Fourier inversion
framework, it may be further decomposed in sampling error (due to the discrete evalua-
tion of the integrand in a finite grid) and truncation error (due the finiteness of the upper
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Fig. 3 Binomial model, X ∼ Binomial(N, p). In the upper plot, the functions G and the cor-
responding solutions of the minimization problem, for α ∈ [0.01, 0.99]. In the lower plots, true
V@R and CV@R (continuous lines) and the corresponding values (‘o’) computed by solving the
minimization problem

integration limit). For both errors bounds are available depending on the payoff and the
characteristic function of the random variable L.

A third algorithm can be outlined, providing a “quick-and-dirty” solution, based on
FFT/FRFT. Since we want to minimize w.r.t. x the functions GL,α(x) or G

(e)
L,α(x) we can

approximate them for a whole range of values x by applying once FFT/FRFT: from the
integral representation (13) and (14), we get

GL,α(x) ≈ Ĝα(x) ≡
{
x − eνx

(1−α)π
 FFT (x, h)

x − eνx

(1−α)π
 FRFT (x,h, η)

and

G
(e)
L,α(x) ≈ Ĝ(e)

α (x) ≡
{
x + eνx

(1−α)π
 FFT (x,h)

x + eνx

(1−α)π
 FRFT (x, h, η)

where h is the vector defined in (16), evaluated according to the functions in (13) or (14).
Hence, the minimum and the corresponding minimizer of the vector ĜL,α will provide
approximated values for CV@R and V@R, respectively.
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Fig. 4 Gaussian model, X ∼ N(μ, σ 2). In the upper plot, the functions G and the correspond-
ing solutions of the minimization problem, for α ∈ [0.01, 0.99]. In the other plots, true V@R
and CV@R (continuous lines) and the corresponding values (‘o’) computed by solving the
minimization problem

Efficiency and reliability of each procedure depend on an appropriate choice of the
integration contour, i.e. the damping parameter ν: this is a well recognized need in the quan-
titative finance literature, since by changing ν the integrand can become highly peaked or
strongly oscillatory. The hypothesis on the integral representation for the function G require
the finiteness of certain moments which implies the existence of a range of possible values
of the form (ν−, ν+). Once these bounds have been determined for the considered model, an
optimization problem can be setup taking into account for error bounds: see Lee (2004) and
Lord and Kahl (2007) where the bounds for most of the models we used in the following
experimental results have been derived. Furthermore, for our problem we need to select a
“good value” of ν for every point x. We noticed in our numerical experiments that a prelim-
inary study of the behavior of the functions GL,α(x) and Ge

L,α(x) permits to select a proper
range in which the minimum is located: hence the integrands can be analyzed for each value
of x and a suitable value of ν may be selected according to a given criterion. In particular we
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Table 2 Comparison between the numerical procedures for the benchmark univariate loss model - Example
(21) - with α = 0.99

μ = 0, σ = 0.2, T = 1
4 V@R Abs Err CV@R Abs Err Relative Time

ALG 1 0.11 × 10−15 0.26 × 10−14 1

ALG 2 0.37 × 10−08 0.22 × 10−15 0.4628

212-FFT 0.0011 0.0017 0.44 × 10−03

210-FRFT 0.14 × 10−03 0.22 × 10−05 0.58 × 10−03

μ = −0.8, σ = 0.35, T = 1
12 V@R Abs Err CV@R Abs Err Relative Time

ALG 1 0 0.55 × 10−15 1

ALG 2 0.36 × 10−08 0 0.3583

212-FFT 0.005 0.0004 0.0011

210-FRFT 0.88 × 10−04 0.23 × 10−05 0.0013

The second and third columns report absolute errors with respect to the true values for the V@R and CV@R.
In these experiments, the zero-finding algorithm had starting point equal to the mid point of the interval
[0, V0erT ], while for the univariate minimization the starting interval was set to [0, erT ]. The FFT and FRFT
algorithms have input vectors of length 2N ; the integrals were approximated between 0 and 100; the x-grid
has right end point at log(V0 ∗ exp(rT )), with γ = 6.7 × 10−04 for FRFT. In the last column the relative
CPU times are shown, normalized to the slowest algorithm (Alg 1)

implemented the procedure suggested in Lord and Kahl (2007) consisting in the minimiza-
tion of the damped integrand w.r.t. ν, but we didn’t observe a substantial improvement in
our minimization results over an empirical ad-hoc selection of ν, at least for the considered
models (see Fig. 1). Of course precision and speed depend on the algorithms implemented,
the programming language and on the computer available. In our experiment we used Mat-
Lab R2012a on a Intel Core i5 CPU with 2.40 GHz. The accuracy in double precision is
2.2204e-16. The basic steps of the algorithms (quadrature, univariate minimization, zero-
finding and FFT) are those available as MatLab build-in functions. In particular we used an
adaptive Lobatto quadrature and a minimization routine based on golden section search and
parabolic interpolation.

4.1 Toy Models Results

In this section we report some results obtained by applying the computational procedures
outlined above, that is Algorithm 1, 2 and 3, in three simple models. We considered a
Gaussian and a binomial variates (Table 1 and Figs. 1, 2, 3, 4) the univariate loss model
framework of Example (2.1) (Table 2). In this case, due to the analytical form of the func-
tion to be minimized (4), we applied integral representation w.r.t. the scaled variable x/V0.
In order to keep a sensible number of figures and tables, we show only few cases, but the
behavior of the procedures is almost the same for a wide range of parameters and also for
different choices of the random variables. Exact results are readily available in all these
models. Pros and cons of each algorithm may be easily summarized: Algorithm 1 is the
slowest and the most accurate but it cannot be safely applied in the discontinuous case, at
least by using standard numerical inversion of the Fourier representation of the cdf. As a
matter of fact the Gibbs phenomenon can seriously affect the computations (see Remark
3.1): more sophisticated techniques should be applied in this case, such that (the filtered-
COS method) proposed in Ortiz-Gracia and Oosterlee (2014). Algorithm 2 proves to be a
bit faster and accurate enough in all the cases while Algorithms 3 are certainly the fastest
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Fig. 5 Integrand of function (14) for the univariate loss model with μ = 0 and σ = 0.2

but the less precise. In our implementation the slowest algorithm computes the two quanti-
ties in about 1.5 seconds. Finally, we observe that the choice of the damping parameter for
these models is less critical in the case of continuous random variables, as it can be seen in
Figs. 1, 2 and 5.

Remark 3.1 It is worth noting that the reconstruction of a discrete cdf (in particular its
generalized inverse) in our numerical examples through the minimization of the function
G does not suffer the well-known Gibbs phenomenon (see Fig. 3), which on the contrary
affects the direct use of Fourier representation for discontinuous functions. In fact, in our
approach, F−1

X (α) is characterized as the minimum of a continuous function (see Theorem
1) and the Fourier representation is only used to represent such a function. This phenomenon
in turn may have a serious impact on the estimation of quantiles: for this reason we didn’t
apply Algorithm 1 to the binomial random variable.

4.2 Loss Models with Jumps and Stochastic Volatility

In the second set of experiments, we show the effectiveness of the considered computational
procedures in the univariate loss model by assuming different dynamics for XT and evalu-
ating the impact of the relevant parameters on the computation of V@R and CV@R. The
instances we consider are Lévy models with finite activity (Merton Jump-Diffusion) and
infinite activity (Variance Gamma), and stochastic volatility models (Heston model) with
jumps (Regime Switching Jump-Diffusion). But our procedure applies to all models char-
acterized by having a computable (generalized) characteristic function. The bounds for the
damping parameter ν can be found in Lord and Kahl (2007). In such a cases, we used a
hybrid approach consisting in two steps:

1. FRFT approximation of the function G
(e)
L,α for determining a proper interval in which

the minimum is located and for automatically finding a feasible starting point x0;
2. refinement of the previous estimate by starting from x0 a local minimization routine.

In the following we simply report the GCF of the considered dynamics. Details can be
found e.g. in Cont and Tankov (2003).
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Merton Jump-Diffusion Model We consider a jump-diffusion setting in which the jump
process is described as a marked point process (MPP). Let μ : S → R, σ : S → R and
γ : E × S → R be given functions, (E, E) being the measurable mark space. Without loss
of generality, we can assume in the following E ⊆ R. In the given interval 0 ≤ t ≤ T , we
consider therefore the dynamic

X(t) =
(

μ − 1

2
σ 2

)
t + σW(t) +

∫ t

0

∫
E

γ (y)p(dy, ds), (17)

where W(t) is a standard Brownian motion and p(dy, dt) is a MPP characterized by the
intensity

λt (dy) ≡ λm(dy).

Here λ represents the intensity of the Poisson process Nt , while m(dy) is a probability
measures on E which specifies the jump variable Y . We assume that W(·) and p(dy, dt)

are independent and that E[eγ (Y )] = ∫
E

eγ (y)m(dy) is finite. The function γ (y) represents
the jump amplitude relative to the mark y: without loss of generality, we set γ (y) = y in
the following. The GCF for XT is then given by

φXT
(z) = ei(μ−σ 2/2)T z−σ 2T z2/2+λT (φY (z)−1)

where φY (z) = E[eizY ]. In the numerical example, we consider jumps characterized by a
Normal distribution, Y ∼ N(a, b) so that

φY (z) = eiaz−b2z2/2.
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Fig. 6 V@R (triangle) and CV@R (circle) for varying parameters of the Merton jump-diffusion model with
V0 = 100, r = 0, T = 1/12, μ = 0, σ = 0.25, a = −0.01, b = 0.1 and λ = 1
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V@R and CV@R obtained by varying the diffusion volatility σ , the jump intensity λ

and the jump parameters a and b are reported in Fig. 6.

VG Model The Variance Gamma model was introduced in Madan and Seneta (1990) and
represents one of the simpler example of infinite activity Lèvy model for describing an asset
value dynamic. It can be defined as a Brownian motion with drift, where time is changed by
an independent gamma process with mean rate unity and variance rate ν, G(t; 1, ν):

Xt = θG(t; 1, ν) + σWG(t;1,ν).

It has three parameters θ , σ , ν and the characteristic function is given by

φXT
(z) =

(
1

1 − iθνz + σ 2νz2/2

)T/ν

.

In Fig. 7 the behavior of V@R and CV@R are compared for different values of the
parameters.

Regime-Switching Jump-Diffusion Model We consider a jump-diffusion model the
parameters of which are driven by a finite state and continuous time Markov chain. To
be definite, let ω(t) be a continuous time, homogeneous and stationary Markov chain on
the state space S = {1, 2, . . . , M} with a generator Q ∈ R

M×M : the elements qij of the
matrix Q are positive numbers such that

∑M
j �=i,j=1 qij = −qii , for i = 1, . . . , M . The

jump-diffusion dynamic is then modified as

X(t) =
∫ t

0
(μ(ω(s))−1

2
σ 2(ω(s))ds+

∫ t

0
σ(ω(s))dW(s)+

∫ t

0

∫
E

γ (y, ω(t−))pω(dy, ds),

(18)
where pω(dy, dt) is a MPP characterized by the regime-switching intensity λω

t (dy) ≡
λ(ω)m(ω, dy), m(·, dy) being a set of probability measures on E, one for each state
(regime) i ∈ S . The function γ (y, ω) represents the jump amplitude relative to the
mark y in regime ω. We assume that the processes ω(·) and W(·) are independent,
W(·) and pω(dy, dt) are conditionally independent given ω(t) and that E[eγ (Y,ω)] =∫
E

eγ (y,ω)m(ω, dy) is finite for each regime ω.
In Ramponi (2012) (see also Chourdakis 2005) it was proved the following

Proposition 3 Let φj (z) = E[eizγ (Y (j),j)] be the generalized Fourier transform of the jump
magnitude under the historical measure. Then, by letting

ϑj (z) = z(μ(j) − 1

2
σ 2(j)) + 1

2
iz2σ 2(j) − iλ(j)(φj (z) − 1) (19)

and ϑ̃i (z) = ϑj (z) − ϑM(z), we have

ϕXT
(z) = eiϑM(z)T

(
1′ · e(Q′+i diag(ϑ̃1(z),...,ϑ̃M−1(z),0))T · I(0)

)

= 1′ · e(Q′+i diag(ϑ1(z),...,ϑM(z)))T · I(0),

(20)

where 1 = (1, . . . , 1)′ ∈ R
M×1, I(0) = (Iω(0)=1, . . . , Iω(0)=M)′ ∈ R

M×1 and Q is the
transpose of Q.

Simple linear constraints on the full parameter set of RSJD dynamic (18) permit to spec-
ify different models: from a regime-switching without jumps (the Naik model (Naik 1993)
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Fig. 7 V@R (triangle) and CV@R (circle) for varying parameters of the Variance Gamma model with V0 =
100, r = 0, T = 1/12, θ = 0, σ = 0.3, ν = 0.1

- RSGBM) to a unique regime jump-diffusion model (JDM), which includes the standard
geometrical Brownian motion (GBM).

The evaluation of the characteristic function requires to compute matrix exponentials
for which efficient numerical techniques are available (Higham 2009); conversely, the case
M = 2 can be considered explicitly. The following can be proved (see Ramponi (2012) and
the references therein).

Proposition 4 Let y1,2 be the solutions of the quadratic equation y2 + (q1 + q2 − iθ)y −
iθq2 = 0 and

qT
1 (θ) = 1

y1−y2

(
ey1T (y1 + q1 + q2) − ey2T (y2 + q1 + q2)

)

qT
2 (θ) = 1

y1−y2

(
ey1T (y1 + q1 + q2 − iθ) − ey2T (y2 + q1 + q2 − iθ)

)
.

Then

et [eiθT1] = Iω(t)=1qT
1 (θ) + Iω(t)=2qT

2 (θ)

and therefore

ϕXT
(z) = eiϑ2(z)T

(
Iω(t)=1qT

1 (θ(z)) + Iω(t)=2qT
2 (θ(z))

)

Numerical tests are reported in Figs. 8, 9 for a two-state model. In order to single out the
effects of the switching parameters, we firstly consider the RSGMB model, thus discarding
the jump component (λ1 = λ2 = 0) - Fig. 8; then we fix the diffusive dynamic (μ1 = μ2 =
μ, σ1 = σ2 = σ ) and vary the jump parameters according to the switching model - Fig. 9.
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Fig. 8 V@R (triangle) and CV@R (circle) for varying parameters of the RSGBM model with V0 = 100,
r = 0, T = 1/12. In this model we consider a varying gap for the drift and volatility, μ2 = 0.5 + 	μ,
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Fig. 9 V@R (triangle) and CV@R (circle) for varying parameters of the RSJD model with V0 = 100, r = 0,
T = 1/12. In this model we consider a fixed drift and volatility, μ = 0, σ = 0.25 and vary the jump
parameters with λ1 = 1, a1 = 0.1, b1 = 0.1, and q1 = 0.5, q2 = 0.5
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Fig. 10 V@R (triangle) and CV@R (circle) for varying parameters of the Heston model with V0 = 100,
r = 0, T = 1/12, μ = 0, θ = 0.1, σ = 0.3, κ = 1 and ρ = −0.9

Heston Stochastic volatility model Heston model (Heston 1993) is certainly one of the
most famous stochastic volatility dynamic for an asset price: it is defined as

Vt = V0 +
∫ t

0
Vsμds +

∫ t

0

√
vsdW 1

s (21)

vt = v0 +
∫ t

0
κ(θ − vs)ds + σ

∫ t

0

√
vs(ρdW 1

s +
√

1 − ρ2dW 2
s ). (22)

where V0 > 0, μ is the rate of return and vt , the volatility process, satisfies a CIR mean
reverting dynamic with parameters κ (the mean reversion speed), θ (the long term volatility)
and σ (the vol-vol). Furthermore, the two process are ρ-correlated, with −1 < ρ ≤ 0. The
Feller condition 2κθ > σ 2 ensures the strict positivity of vt . The (generalized) characteristic
function of the log-price is

φXT
(z) = eC(T ,z)+D(T ,z)v0+iz(μ+log(V0))

where

C(T , z) = κθ

σ 2

(
(κ − ρσzi + d(z))T − 2 log

(
c(z)ed(z)T − 1

c(z) − 1

))

D(T , z) = κ − ρσzi + d(z)

σ 2

(
ed(z)T − 1

c(z)ed(z)T − 1

)
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and

c(z) = κ − ρσzi + d(z)

κ − ρσzi − d(z)
, d(z) =

√
(ρσzi − κ)2 + iσ 2z + σ 2z2.

For the numerical implementation, we used the procedure outlined in Lord and Kahl
(2010). The corresponding results are plotted in Fig. 10.

5 Conclusions

In this paper we consider the problem of efficiently computing CV@R and V@R of an
arbitrary loss function, characterized by having a computable generalized characteristic
function. We compare different numerical procedures to compute the risk measures based
on the integral representation of the distribution function and the stop/loss expectation of the
target loss random variable. In particular, the main contribution of the paper is to exploit the
characterization of CV@R and V@R as the solution of an univariate minimization problem,
as obtained by Rockafellar and Uryasev in Rockafellar and Uryasev (2002). The function to
be minimized admits an integral representation as an inverse Fourier transform, under some
hypothesis on the finiteness of the exponential moments of the loss distribution. Fast and
reliable numerical procedures can be designed to compute the quantities of interest based
on the fast Fourier transform algorithm. We finally notice that the basic characterization
by Rockafellar and Uryasev is more general, since decision variables can be considered in
the minimization problem: our procedure can therefore be included as part of more general
optimization problem, like portfolio risk management, where the computation of V@R and
CV@R plays a central role as objective functionals and/or constraints to be satisfied.
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