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Abstract

1 In this note I fix a mistake in my previous paper [5]: namely, the result concerning
the uniqueness (up to isomorphisms) of such supergroups needs a new formulation
and proof. By the same occasion, I explain more in detail the existence result which
comes out of the construction of Chevalley supergroups.
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1 Algebraic supergroups of Cartan type: existence

All notation and terminology throughout this note will be as in [5]. In particular, every
supergroup G we shall consider will be fine, which means that its tangent Lie algebra
functor Lie (G) is of the form A 7→ Lie (G)(A) =

(
A⊗k g

)
0̄

(where A ranges among
all commutative superalgebras) for some Lie superalgebra g over k , with the additional
requirement that g1̄ (as k–module) be free of finite rank.

The main result in [5] was the construction of the “Chevalley supergroups” of Cartan
type, denoted GV as their construction depends on some suitable g–module V : these are
connected algebraic k–supergroups, defined over Z , such that the complexification of their
tangent Lie superalgebra be (finite dimensional) simple of Cartan type. In particular, this
proves that supergroups with such properties do exist. However, the presentation in [5]
might be obscure on this point, since the construction of GV is based upon the choice of
V and of a suitable lattice inside it, and the existence of such data might be unclear. This
point deserves to be made clear, which is what I am doing in this section.

Let g be a complex Lie superalgebra which is simple of Cartan type; let then Lr and Lw

be its root lattice and (integral) weight lattice, respectively. As explained in [5], Subsec.
4.5, for any Chevalley supergroup GV associated with g and a suitable g–module V its
group of characters is a lattice Λ := ΛV that lies between Lr and Lw ; indeed, it is the
lattice of weights spanned by the weights (for the action of a Cartan subalgebra of g ) of
V itself. In addition, this V has to be finite dimensional, faithful and rational, and also
has to contain an admissible lattice, say M . Thus what we need to show is the following:
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Lemma 1.1. For any choice of an intermediate lattice Λ lying between Lr and Lw , there
exists a finite dimensional, rational, faithful g–module which contains an admissible lattice
M and whose set of weights spans Λ .

Proof. We start recalling that the even part of g is of the form g0̄ = g0 ⊕ g0̄↑ where g0 is
a reductive Lie subalgebra and g0̄↑ is a nilpotent ideal (cf. [5], Subsec. 2.3).

First, by classical theory of reductive Lie algebras, for any Λ as before there is a
faithful, finite dimensional, rational g0–module W whose weights span Λ ; moreover, such
a W contains a lattice N that is “admissible”, which means stable for the Kostant form
KZ(g0) of U(g0) — cf. [1], Ch. VIII, §12.7 (taking into account that g0 is always simple
but when g is of type W (n), for then it has a one-dimensional center, and Theorem 2 in
[loc. cit.] applies again). Since g0̄↑ is an ideal in g0̄ and g0̄

/
g0̄↑

∼= g0 , the same W is also
a g0̄–module (by scalar extension), the lattice N being again “admissible”, i.e. stable for
KZ(g0̄↑) ; of course W is still rational and finite dimensional.

Second, consider V := Ind g
g0̄
(W ) = U(g) ⊗U(g0̄)

W : this is a g–module which is
still finite dimensional and rational; moreover, it contains the admissible lattice M :=
KZ(g) ⊗KZ(g0̄)

N , and by construction the lattice ΛV spanned by the weights of V is
exactly Λ (since we initially assumed that Λ ⊇ Lr , i.e. Λ contains all roots of g ). Finally,
as g is simple and its action on V is non-trivial, V itself is also faithful, as required.

Remarks 1.2. (a) Every Cartan type simple Lie superalgebra g can be realized (or
defined, if you wish) as a Lie subsuperalgebra of some gl(V ) for a suitable V — more
precisely, as a suitable Lie superalgebra of superderivations of a Grassmann algebra, say
k
[
ξ1, . . . , ξn

]
, which stands for V (the “standard representation”). It so happens that

such a g–module V := k
[
ξ1, . . . , ξn

]
is finite dimensional, faithful and rational, and in

addition it contains an admissible lattice, namely M := Z
[
ξ1, . . . , ξn

]
: so everything is

in place to construct the corresponding Chevalley supergroup GV . In Sec. 5 of [5] this
construction is explicitly carried out for type W (n) ; in this case, the associated lattice of
weights is Lw , the full lattice of weights of g . One can clearly do the same, along the same
lines, for types S , S̃ and H still using the standard representation V := k

[
ξ1, . . . , ξn

]
.

More generally, the weight lattices Λ between Lr and Lw are in bijections with the
sublattices of the quotient Lw

/
Lr : but then — see §4.27 in [5] — there are very few

possibilities for Λ , namely four cases for type H(2r) , two cases for type H(2r + 1) , and
just one case for types W , S and S̃ . In particular, for the last three cases the construction
of Chevalley supergroups GV with V the standard representation exhausts all possibilities.

(b) The arguments used to prove Lemma 1.1 above also apply to give a similar result
for the case when g is simple of classical type: one only needs minimal adaptations,
actually simplifications, because g0̄ is reductive (there is no “extra nilpotent part” such
as g0̄↑ , say). As a consequence, one has a proof of the fact that “Chevalley supergroups
of classical type” as considered in [2], [3], [4] and [6] actually do exist.

(c) It is proved in [5], Proposition 4.26, that, under mild assumptions, every Chevalley
supergroup of Cartan type GV is a closed supersubgroup of GL(V ) . Actually, these
conditions are slightly ill settled in the statement of that Proposition: indeed, instead of

“Assume that g1̄ as a k–submodule of gl(V )1̄ is a direct summand”

one should read
“Assume that g1̄ as a k–submodule of gl(V )1̄

is a direct summand with a k–free complement”

2



or (what amounts to be the same)

“Assume that the k–module gl(V )1̄

/
g1̄ is free”.

In fact, the extra condition of “having a k–free complement” was actually used in the
proof of the Proposition, but it was not mentioned in the statement itself. By the way,
when k is local this extra condition automatically holds true, by Kaplansky’s theorem.

2 Splittings for supergroups and Hopf superalgebras

In what follows we need the notion of “splitting” for both supergroups and Hopf
superalgebras. We take it from [7], where further details may be found. Hereafter, we will
think of k as being a totally even superalgebra.

2.1. Strongly split Hopf superalgebras. Let H be any commutative Hopf k–
superalgebra. Then JH := H 2

1̄
⊕H1̄ is in fact a Hopf ideal of H , hence H := H

/
JH is a

classical (i.e. super but with trivial odd component) commutative Hopf algebra. Moreover,
the coproduct of H induces a structure of super left H–comodule on H (via the projection
H −� H ), such that H is a counital super left H–comodule k–algebra.

Let ϵ : H −→ k be the counit map, let H+ := Ker (ϵ) , H+
0̄

:= H0̄ ∩ H+ , WH :=

H1̄

/
H+

0̄
H1̄ and consider

∧
WH . Then H ⊗

∧
WH has a natural structure of a commu-

tative superalgebra, endowed with a natural “augmentation” map (i.e. a k–valued mor-
phism of k–superalgebras); moreover, the coproduct of H induces on H ⊗

∧
WH a super

left H–comodule structure, so H ⊗
∧

WH is a super counital left H–comodule k–algebra.
The notion of “strongly split” (commutative) Hopf superalgebra, essentially due to

Masuoka — as the core idea was already in his papers [8] and [9], but the present ter-
minology is borrowed from [7] — reads as follows: a commutative Hopf superalgebra
H as above is said to be strongly split if WH is k–free and there is an isomorphism

ζ : H
∼=

↪−−�H ⊗k
∧
WH of super counital left H–comodule k–algebras. In particular, Ma-

suoka proved that any commutative Hopf superalgebra over k is automatically strongly
split when k is a field whose characteristic is not 2 : cf. [8], Theorem 4.5.

2.2. Global splittings for supergroups. Let G be an (affine) supergroup over k ,
H := O(G) the Hopf k–superalgebra representing it, and H := H

/
JH = H0̄

/
H1̄

2 , which

is a (classical) commutative Hopf k–algebra. The affine group-scheme Gev represented by
H = O(G) — so that O

(
Gev

)
= O(G) — is called the classical supersubgroup(-scheme)

associated with G . The projection π : H := O(G)−� O
(
Gev

)
= H yields an embedding

j : Gev ↪−→ G , so Gev identifies with a closed (super)subgroup of G . Moreover, every
closed supersubgroup of G which is classical is a closed subgroup of Gev .

Here is now the definition of “globally split supergroups”. Let G be an affine k–
supergroup for which there exists a closed subsupercheme G− of G , stable by the adjoint
Gev–action, such that

(a) 1G ∈ G− , hence we look at G− as a pointed superscheme,

(b) the product in G restricts to an isomorphism Gev ×G−
∼=

↪−−� G of pointed left
Gev–superschemes (which will be called a (global) splitting of G ),

(c) G− is isomorphic to a totally odd affine superscheme A0|d−
k , as a pointed super-

scheme.
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When all this holds, we say that G is globally strongly split, or in short that it is gs-split.
As the referee kindly suggested, a very inspiring (and suggestive) alternative terminol-

ogy might be that of “equivariantly split” supergroup, which stresses the fact the splitting
of such a supergroup G is Gev–equivariant; nevertheless, we have adopted here the termi-
nology of [7] as we quote results from there.

The link with “splittability” of (commutative) Hopf superalgebras is the one we could
expect (cf. Theorem 4.5 in [8], as well as Theorem 3.2.8 and Corollary 3.2.9 in [7]):

Theorem 2.3. Let G be an affine supergroup, defined over a ring k , and let H := O(G)
be its representing (commutative Hopf) k–superalgebra. Then G is globally strongly split
if and only if the Hopf superalgebra O(G) is strongly split. In particular, if k is a field
whose characteristic is not 2, then G is automatically globally strongly split.

Finally, by Corollary 4.22(c) and Proposition 4.23 in [5] one gets the following:

Theorem 2.4. All Chevalley supergroups of Cartan type GV as in [5] are gs-split.

3 Algebraic supergroups of Cartan type: uniqueness

As recalled in Sec. 1, the main result in [5] was the construction of the “Chevalley
supergroups” of Cartan type: this proved the existence of any possible type of connected al-
gebraic Z–supergroup whose complexified tangent Lie superalgebra is (finite dimensional)
simple of Cartan type. On the other hand, the uniqueness question was addressed in
Subsection 4.8 of [5], devoted to proving that any algebraic supergroup with the above
mentioned properties (in particular for its tangent Lie superalgebra) is necessarily iso-
morphic to some Chevalley supergroup of Cartan type. However, the result and proof
presented there were wrong: hereafter I provide a correct (modified) statement and proof,
with changes that affect everything from §4.38 through Theorem 4.42 in Sec. 4.8 of [5].

3.1. Gs-split, k–split supergroups of Cartan type and the Uniqueness Theo-
rem. Let G be a connected, gs-split k–supergroup; we assume for it that its tangent
Lie superalgebra g := Lie(G) be a k–form of a complex Lie superalgebra gC — i.e., there
exists a Lie superalgebra gZ over Z such that g = k⊗ZgZ and gC = C⊗ZgZ — and this gC
is simple of Cartan type. Moreover, we assume that the classical subgroup Gev of G has a
k–split maximal torus. In short, we say that G is a gs-split, k–split supergroup of Cartan
type. The group of characters of any k–split maximal torus in Gev , call it Λ , contains the
root lattice, since Gev acts on g by the adjoint action: hence Λ is an intermediate lattice
lying between Lr and Lw (notation of Sec. 1).

Now, for any pair
(
gC ,Λ

)
as above there exists a Chevalley k–supergroup GV of

Cartan type whose associated pair is exactly
(
gC ,Λ

)
— cf. Sec. 1 above. This yields an

“Existence Theorem” for gs-split, k–split supergroups of Cartan type.
A related “Uniqueness Theorem” was presented in Subsec. 4.8 of [5]. However, it was

based on a wrong analysis, so it requires crucial amendments. In fact, I shall present a
double version of such a result, one holding true for any ring — but requiring a stronger
assumption than that concerning Lie(G) — and one that applies only for fields of zero
characteristic – for which the above requirement on Lie(G) is enough.

Here comes the first result:
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Theorem 3.2. Let G be a connected gs-split, k–split supergroup of Cartan type, let(
gC ,Λ

)
be its associated pair and let GV be the Chevalley supergroup of Cartan type

whose group is associated with the same pair
(
gC ,Λ

)
. Assume in addition that Gev is

isomorphic to
(
GV

)
ev
. Then G is isomorphic to GV .

Proof. To begin with, recall that the classical subgroup (GV )ev of the supergroupGV splits
into a semidirect product GV = GV

0 nGV
0̄↑
, where GV

0 is a connected k–split subgroup

with Lie
(
GV

0

)
= g0 and group of characters Λ , and GV

0̄↑
is a connected, unipotent normal

subgroup with Lie
(
GV

0̄↑

)
= g0̄↑ . In addition, by constructionGV

0 is obtained via a classical
procedure “à la Chevalley” — cf. Proposition 4.9 in [5] — based on V thought of as a g0–
module, the Kostant form of U(g0) , etc. Similarly, GV

0̄↑
too is realized via a construction “à

la Chevalley”, which roughly speaking “integrates” the nilpotent Lie algebra g0̄↑ (linearized
through V ). These Chevalley constructions for GV

0 and GV
0̄↑

are realized simultaneously
as parts of the overarching procedure which constructs all of GV . In addition (as a
consequence), the adjoint action of (GV )ev onto Lie

(
GV

)
= g is uniquely determined by

the adjoint action of Lie
(
(GV )ev

)
= g0̄ onto Lie

(
GV

)
= g as well as by Λ .

From the isomorphism ϕ : Gev
∼=

(
GV

)
ev

we get a corresponding decomposition of

Gev as a semidirect product, and also that the adjoint action of Gev onto Lie
(
G
)
= g is

uniquely determined by the action of Lie
(
Gev

)
= g0̄ onto Lie

(
G
)
= g and by Λ .

Putting all this together we get, in the language of [7], that one can express this by
saying that the “super Harish-Chandra pairs” of GV and G , namely

((
GV

)
ev
, g
)

and(
Gev , g

)
, are isomorphic. Now, the main result in [7] is exactly — cf. Theorem 4.3.14

therein — that the (suitably defined) category of “super Harish-Chandra pairs” is equiva-
lent to the category of (fine) gs-split supergroups. But the latter category contains both our
supergroups G and GV (by assumption for the former, and by the remark at the beginning
of the proof for the latter): therefore, we can conclude that G is isomorphic to GV .

The second result is a direct consequence:

Theorem 3.3. Let G be a connected gs-split, k–split supergroup of Cartan type, let(
gC ,Λ

)
be its associated pair and let GV be the Chevalley supergroup of Cartan type

associated with
(
gC ,Λ

)
. Moreover, assume that k is a field of characteristic zero.

Then G is isomorphic to GV .

Proof. From the proof of Theorem 3.2 above we know that the subgroup (GV )ev of GV

splits as GV = GV
0 nGV

0̄↑
, where GV

0 is connected, k–split reductive with Lie
(
GV

0

)
= g0

and group of characters Λ , andGV
0̄↑

is connected, unipotent, normal with Lie
(
GV

0̄↑

)
= g0̄↑ .

Moreover, the (conjugacy) action of GV
0 onto GV

0̄↑
is entirely encoded by the adjoint action

of g0 onto g0̄↑ and by the lattice Λ .
On the other hand, the classical subgroupGev ofG has tangent Lie algebra Lie

(
Gev

)
=

g0̄ = g0 ⊕ g0̄↑ , where g0 is a reductive Lie subalgebra and g0̄↑ is a nilpotent ideal of g0̄
(see the proof of Lemma 1.1). Since k is a field of characteristic zero, we have a Chevalley
decomposition of Gev into a semidirect product Gev = G0 n Ru

(
G0̄

)
, where Ru

(
G0̄

)
is

the unipotent radical of G0̄ ; then this Ru

(
G0̄

)
is a connected, unipotent normal subgroup

with Lie
(
Ru

(
G0̄

))
= g0̄↑ , while G0

(∼= G
/
Ru

(
G0̄

) )
is a connected, k–split reductive

subgroup with Lie
(
G0

)
= g0 and group of characters the lattice Λ .

By classification theory of k–split reductive groups, G0 corresponds to the pair
(
g0 ,Λ

)
;

butGV
0 , which also is k–split reductive, corresponds to the same pair as well, whence there

exists an isomorphism G0
∼= GV

0 . Similarly, in the classification of connected unipotent
(algebraic) group-schemes over fields of characteristic zero both GV

0̄↑
and Ru

(
G0̄

)
corre-

spond to the same nilpotent Lie algebra (namely g0̄↑ ), hence there exists an isomorphism
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between them. In addition, the (conjugacy) action of G0 onto Ru

(
G0̄

)
is again entirely

encoded by the adjoint action of g0 onto g0̄↑ and by the lattice Λ .
Comparing now (GV )ev and Gev we conclude that both are semidirect products, with

pairwise isomorphic factors, and the action of the reductive factor onto the unipotent
(normal) one is ruled in the same way; so these semidirect products are isomorphic, i.e.
Gev

∼= (GV )ev . Then Theorem 3.2 applies, and we find that G is isomorphic to GV .

Remark 3.4. The same statements as in Theorems 3.2 and 3.3 above also hold true in
the case when g is simple of classical type and GV is a “Chevalley supergroup” as in
[3]; indeed, one proves them via the same arguments, and in the second case the proof is
even simpler, as g0̄ is reductive. This yields another, more general proof of the fact that
“Chevalley supergroups of classical type” are unique up to isomorphism (cf. [4]).
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