
Computer-aided Ontology Development:

an integrated environment

Manuel Fiorelli, Maria Teresa Pazienza, Steve Petruzza, Armando Stellato, Andrea Turbati

ART Research Group, Dept. of Computer Science,

Systems and Production (DISP) University of Rome, Tor Vergata

Via del Politecnico 1, 00133 Rome, Italy

{pazienza, stellato, turbati}@info.uniroma2.it

{manuel.fiorelli, steve.petruzza}@gmail.com

Abstract

In this paper we introduce CODA (Computer-aided Ontology Development Architecture), an Architecture and a Framework for semi-
automatic development of ontologies through analysis of heterogeneous information sources. We have been motivated in its design by
observing that several fields of research provided interesting contributions towards the objective of augmenting/enriching ontology
content, but that they lack a common perspective and a systematic approach.
While in the context of Natural Language Processing specific architectures and frameworks have been defined, time is not yet
completely mature for systems able to reuse extracted information for ontology enrichment purposes: several examples do exist,
though they do not comply with any model nor architecture. Objective of CODA is to acknowledge and improve existing frameworks
to cover these gaps, by providing: a conceptual systematization of data extracted from unstructured information to enrich ontology
content, an architecture defining the components which take part in such scenario, and a framework supporting all of the above.
This paper provides an overview of the whole picture, and introduces UIMAST, an extension for the Knowledge Management and
Acquisition Platform Semantic Turkey, that implements CODA principles by allowing reuse of components developed inside UIMA
framework to drive semi-automatic Acquisition of Knowledge from Web Content.

1. Introduction

A number of tasks focused on ontology development as
well as on augmentation or refinement of their content
through reuse of external information has been defined in
the last decade. The nature of these tasks is manifold:
from the automation of ontology development processes
to their facilitation through innovative and effective
solutions for human-computer interaction. In some cases
their assessment has produced a plethora of (often
contrasting) methodologies and approaches (as in the case
of ontology and lexicon integration (Buitelaar, et al.,
2006; Cimiano, Haase, Herold, Mantel, & Buitelaar,
2007; Pazienza & Stellato, 2006; Pazienza & Stellato,
Linguistic Enrichment of Ontologies: a methodological
framework, 2006)); in other ones, such as ontology
learning, it has lead to founding entire new branches of
research (Cimiano, 2006)
The “external information” we are interested in, mostly
refers to diverse forms of “narrative information sources”,
such as text documents (or other kind of media, such as
audio and video) or to more structured knowledge content,
like the one provided by machine readable linguistic
resources. These latter comprise lexical resources (e.g.
rich lexical databases such as WordNet (Miller, Beckwith,
Fellbaum, Gross, & Miller, 1993), bilingual translation
dictionaries or domain thesauri), text corpora (from pure
domain-oriented text collections to annotated corpora of
documents), or other kind of structured or semi-structured
information sources, such as frame-based resources
(Baker, Fillmore, & Lowe, 1998; Shi & Mihalcea, 2005).
With the intent of providing a definition covering all of
the previously cited tasks and addressing the interaction
they have with the above resources, we coined the
expression COD (Computer-aided Ontology
Development), with this acronym covering all processes

for enriching ontology content through exploitation of
external resources, by using (semi)automatic approaches.
In this paper, we lay the basis for an architecture (CODA:
COD Architecture), supporting Computer-aided Ontology
Development, then introduce UIMAST, an extension for
the Knowledge Management and Acquisition Platform
Semantic Turkey, implementing CODA principles by
allowing reuse of components developed inside the UIMA
framework to drive semi-automatic Acquisition of
Knowledge from Web Content.

2. State-of-the-art and Motivation

Motivations and ideas for supporting fulfillment of the
above tasks’ objectives, have been often supported
through proof-of-concept systems, tools and in some cases
open platforms (Cimiano & Völker, 2005) developed
inside the research community, laying the path and
showing the way for future industrial follow-up.
Until now basic architectural definitions and interaction
modalities have been defined in detail fulfilling industry-
standard level for processes such as:

– ontology development with most recent ontology
development tools following the path laid by Protégé
(Gennari, et al., 2003)

– text analysis starting from the TIPSTER architecture
(Harman, 1992), its most notable implementation
GATE (Cunningham, Maynard, Bontcheva, &
Tablan, 2002) and the recently approved OASIS
standard UIMA (Ferrucci & Lally, 2004).

On the contrary a comprehensive study and synthesis of
an architecture for supporting ontology development
driven by knowledge acquired from external resources,
has not been formalized until now.
What lacks in all current approaches is an overall
perspective on the task and a proposal for an architecture
providing instruments for supporting the entire flow of

information (from acquisition of knowledge from external
resources to its exploitation) to enrich and augment
ontology content. Just scoping to ontology learning,
OntoLearn (Velardi, Navigli, Cucchiarelli, & Neri, 2005)
provides a methodology, algorithms and a system for
performing different ontology learning tasks, OntoLT
(Buitelaar, Olejnik, & Sintek, 2004) provides a ready-to-
use Protégé plugin for adding new ontology resources
extracted from text, while the sole Text2Onto (Cimiano &
Völker, 2005) embodies a first attempt to realize an open
architecture for management of ontology learning
processes.
If we consider ontology-lexicon integration, previous
studies dealt with how to represent this integrated
information (Peters, Montiel-Ponsoda, Aguado de Cea, &
Gómez-Pérez, 2007; Buitelaar, et al., 2006; Cimiano,
Haase, Herold, Mantel, & Buitelaar, 2007), other have
shown useful applications exploiting onto-lexical
resources (Basili, Vindigni, & Zanzotto, 2003; Peter,
Sack, & Beckstein, 2006) though only few works
(Pazienza, Stellato, & Turbati, 2008) dealt with
comprehensive framework for classifying, supporting,
testing and evaluating processes for integration of content
from lexical resources with ontological knowledge.

3. Objectives

Considering these expectations, we worked with the
objective of acknowledging and improving existing
frameworks for Unstructured Information Management,
thus providing:

– a conceptual systematization of the tasks covering
reuse of data extracted from unstructured information
to improve ontology content

– an architecture defining the components which take
part in such a scenario

– a framework supporting all of the above through
standard implementations

We provide here requirements and objectives which
characterize COD tasks, the COD Architecture, and a
CODA Framework

3.1. COD Tasks

Given the definition of COD provided at the beginning,
we sketch here major related tasks:

1. (Traditional) Ontology Learning tasks, devoted to
augmentation of ontology content through discovery
of new resources and axioms. They include discovery
of new concepts, concept inheritance relations,
concept instantiation, properties/relations, domain
and range restrictions, mereological relations or
equivalence relations etc…

2. Population of ontologies with new data: a rib of the
above, this focuses on the extraction of new ground
data for a given (ontology) model (or even for
specific concepts belonging to it)

3. Linguistic enrichment of ontologies: enrichment of
ontological content with linguistic information
coming from external resources (eg. text, linguistic
resources etc…)

3.2. CODA Architecture

COD Architecture (CODA, from now on) defines the
components (together with their interaction) which are
needed to support tasks above. This architecture builds on
top of existing standard for Unstructured Information
Management UIMA (UIM Architecture) (tasks 1&2) and,
for task 3, on the Linguistic Watermark (Pazienza,
Stellato, & Turbati, 2008) suite of ontology vocabularies
and software libraries for describing linguistic resources

Analysis Engines

Aggregate Analysis Engine

A

E
 D

e
s
c
ri
p

ti
o

n
s

Collection

Reader Analysis Engine

Analysis Engine

Analysis Engine

CODA Cas Consumer

Smart Suggestion

Identity Resolution

Projection disambiguation
Projections

Component

T
S

Ontology

CAS

RDF Semantic Repository

P
ro

je
c
ti
o

n

R
u

le
s

External

Repository

Figure 1. CODA Architecture (overview of components related to tasks 1 and 2)

and the linguistic aspects of ontologies. Figure 1 depicts
the part of the architecture supporting tasks 1 and 2. Tiny
arrows represent the use/depends on relationship, so that
the Semantic Repository owl:imports the reference
ontologies, the projection component invokes services
from the other three components in the CODA CAS
Consumer as well as is driven by the projection document
and TS and reference ontology. Large arrows represent
instead the flow of information.
While UIMA already foresees the presence of CAS
Consumers

1
 for projecting collected data over any kind of

repository (ontologies, databases, indices etc…), COD
Architecture expands this concept by providing ground
anchors for engineering ontology enrichment tasks,
decoupling the several processing steps which
characterize development and evolution of ontologies.
This is our main original contribution to the framework.
Here follows a description of the presented components.

Projection Component

This is the main component which realizes the projection
of information extracted through traditional UIM
components (i.e. UIMA Annotations).
The Unstructured Information Management (UIM)
standard foresees data structures stored in a CAS
(Common Analysis System). CAS data comprises a type
system, i.e. a description – represented through feature
structures (Carpenter, 1992) – of the kind of entities that
can be manipulated in the CAS, and the data (modeled
after the above type system) which is produced over
processed information stream.
This component thus takes as input:

– A Type System (TS)

– A reference ontology (we assume the ontology to be
written in the RDFS or OWL W3C standard)

– A projection document containing projection rules
from the TS to the ontology

– A CAS containing annotation data represented
according to the above TS

and uses all the above in order to project UIMA
annotations as data over a given Ontology Repository.

The language for defining projections allows for:

– Projecting CAS feature structures (FS) as instances
of a given class. FeaturePaths can be used to project
arbitrary feature values as instance names

– Projecting FSs as values of datatype properties. Note
that this requires ontology instances to be elected as
subjects for each occurrence of this property
annotation. The domain class which will be used to
look for instance can be specified in the projection
rule. Note that, by default, the domain of the property
is inherited from the ontology, though it may be
further restricted for the specific rule. So, for
example, if property date has owl:Thing as its domain
(i.e. no domain restriction), the outcome of a specific
Analysis Engine, which is able to capture dates for

1 UIMA terminology is widely adopted along the paper: though

some explanations are provided here, we refer non-proficient

readers to the UIMA Glossary inside the UIMA Overview &

SDK Setup document, which is available at:

http://incubator.apache.org/uima/documentation.html

conference events (or which is being used in a given
setting for this purpose), can be restricted in the
projection rule to automatically search for instances
of the restricted domain. The use that is made of the
above information is partially demanded to the
application context, in order to properly select the
right instances to be associated to the valued
property.

– Projecting complex FSs as custom graph patterns.
Some TS provide complex extraction patters which
contains much more than plain text annotations; they
possibly provide facts with explicit semantics which
only need to be properly imported into the ontology.
In this case, custom RDF graph patterns can be
defined to create new complex relations inside the
ontology. GRAPH Patterns are sets of RDF triples, in
this case enriched by the presence of bindings to TS
elements (again, in the form of FeaturePaths). When
this projection is being applied, the feature path
bindings are resolved and the ground pattern is used
in a SPARQL CONSTRUCT query to generate new
RDF triples in the Semantic Repository).

The Projection Component can be used in different
scenarios (from massively automated ontology
learning/population scenarios, to support in human
centered processes for ontology modeling/data entry) and
its projection processes can be supported by the following
components.

Identity Resolution Component

Whenever an annotation is projected towards ontology
data, the services of this component are invoked to
identify potential matches between the annotated info
which is being reified into the semantic repository, and
previously recognized resources already present inside it.
If the Identity Resolution (IR) component discovers a
match, then the new entry is merged into the existing one;
that is, any new data is added to the resource description
while duplicated information (probably the one which
helped in finding the match) is discarded.
The IR component may look up on the same repository
which is being fed by CODA though also external
repositories of LOD (linked open data) can be accessed.
Eventually, entity naming resolution provided by external
services – such as the Entity Naming System (ENS)
OKKAM (Bouquet, Stoermer, & Bazzanella, 2008) – may
be combined with internal lookup on the local repository.
Input for this component are:

– External RDF repositories (providing at least indexed
approximate search over their resources)

– Entity Naming Systems access methods

– Other parameters needed by specific implementation
of the component

Projection Disambiguation Component(s)

These components may be invoked by the Projection
Component to disambiguate between different possible
projections. Projection documents may in fact describe
more than one projection rule which can be applied to
given types in the TS. These components are thus, by
definition, associated to entries in Projection Documents
and are automatically invoked when more than a rule is
matched on the incoming CAS data.

This component has access by default to the current
Semantic Repository (and any reference ontology for the
Projection rules), to obtain a picture of the ongoing
process which can contribute to the disambiguation
process.

Smart Suggestion Component(s)

These components help in proposing suggestions on how
to fill empty slots in projection rules (such as subject
instances in datatype property projections or free variables
in complex FS to graph-pattern projections). As for
Disambiguation Components, these components can be
written for specific Projection Documents and associated
to the rules described inside them, as supporting
computational objects.

3.3. CODA Framework Objectives

CODA Framework is an effort to facilitate development
of systems implementing the COD Architecture, by
providing a core platform and highly reusable components
for realization of COD tasks.
Main objectives of this architectural framework are:

1. Orchestration of all processes supporting COD tasks

2. Interface-driven development of COD components

3. Maximizing reuse of components and code

4. Tight integration with available environments, such
as UIMA for management of unstructured
information from external resources (e.g. text
documents) and Linguistic Watermark (Pazienza,
Stellato, & Turbati, 2008) for management of
linguistic resources

5. Minimizing required LOCs (lines of code) and effort
for specific COD component development, by
providing high level languages for matching/mapping
components I/O specifications instead of developing
software adapters for their interconnection

6. Providing standard implementations for components
realizing typical support steps for COD tasks, such as
management of corpora, user interaction, validation,
evaluation, production of reference data (oracles, gold
standards) for evaluation, identity discoverers etc…

In the specific, with respect to components described in
section 3.2, CODA Framework will provide the main
Projection Component (and its associated projection
language), a basic implementation of an Identity
Resolution Component, and all the required business logic
to fulfill COD tasks through orchestration of COD
components.

4. Possible application scenarios

Willing to fulfill these objectives, we envision several
application scenarios for CODA. We provide here a
description of a few of them.

Fast Integration of existing UIMA components for
ontology population

By providing projections from CAS type systems to
ontology vocabularies, one could easily embed standard
UIMA AEs (Analysis Engines) and make them able to
populate ontology concepts pointed by the projections,
without requiring developing any new software
component. These projections, which are part of objective

5 above, will be modeled through a dedicated language
which will be part of the CODA framework. Moreover
(objective 6 above), standard or customized identity
discoverers will try to suggest potential matches between
entities annotated by the AE and already existing
resources in the target ontology, to keep identity of
individual resources and add further description to them.
In this scenario, given an ontology and a AE, only the
projection from the CAS type system of the AE to the
ontology is needed (and optionally, a customized identity
discoverer). Everything else is assumed to be
automatically embedded and coordinated by the
framework.

Rapid prototyping of Ontology Learning Algorithms

This is the opposite situation of the scenario above.
CODA, by reusing the same chaining of UIMA
components, ontologies, CAS-to-Ontology projections,
identity discoverers etc… , will provide:

– a preconfigured CAS type system (Ontology
Learning CAS Type System) for representing
information to be extracted under the scope of
standard ontology learning tasks (i.e. the ones
discussed in section 3.1)

– preconfigured projections from above CAS type
system to learned ontology triples

– extended interface definitions for UIMA analysis
engines dedicated to ontology learning tasks:
available abstract adapter classes will implement the
standard UIMA AnalysisComponent interface,
interacting with the above Ontology Learning CAS
type system and exposing specific interface methods
for the different learning tasks

In this scenario, developers willing to rapidly deploy
prototypes for new ontology learning algorithms, will be
able to focus on algorithm implementation and benefit of
the whole framework, disburdening them from corpora
management and generation of ontology data. This level
of abstraction far overtakes the Modeling Primitive
Library of Text2Onto (i.e. a set of generic modeling
primitives abstracting from specific ontology model
adopted and being based on the assumption that the
ontology exposes at least a traditional object oriented
design, such as that of OKBC (Chaudhri, Farquhar, Fikes,
Karp, & Rice, 1998)). In fact CODA does not even leaves
to the developer the task of generating new ontology data,
while just asks for specific objects to be associated and
thus produced for given ontology learning tasks. For
example, pairs of terms could be produced by taxonomy
learners, which need then to be projected as IS-A or
type-of relationships by the framework.

Plugging of algorithms for automatic linguistic
enrichment of ontologies

In such a scenario, the user is interested in enriching
ontologies with linguistic content originated from external
lexical resources. The Linguistic Watermark library -
which is already been used in tools for (multilingual)
linguistic enrichment of ontologies (Pazienza, Stellato, &
Turbati, 2010) and which constitutes a fundamental
module of CODA - supports uniform access to
heterogeneous resources wrapped upon a common model
for lexical resource definition, allows for their integration

with ontologies and for evaluation of the acquired
information. Once more, the objective is to relieve
developers from technical details such as resource access,
ontology interaction and update, by providing standard
facilities associated to tasks for ontology-lexicon
integration/enrichment, and thus leaving up to them the
sole objective of implementing enrichment algorithms.

User Interaction for Knowledge Acquisition and
Validation

User interaction is a fundamental aspect when dealing
with decision-support systems. Prompting the user with
compact and easy-to-analyze reports on the application of
automated processes, and putting at his hands instruments
for validating choices made by the system can
dramatically improve the outcome of processes for
knowledge acquisition as well as support supervised
training of these same processes. CODA front-end tools
should thus provide CODA specific applications
supporting training of learning-based COD components,
automatic acquisition of information from web pages
visualized through the browser (or management of info
previously extracted from entire corpora of documents)
and editing of main CODA data structures (such as UIMA
CAS types, projection documents and, obviously,
ontologies). Interactive tools should support iterative
refinement of massive production of ontology data as well
as human-centered process for ontology
development/evolution.

This last important environment is a further very relevant
objective, and motivated us to define and develop
UIMAST, an extension for Semantic Turkey (Griesi,
Pazienza, & Stellato, 2007; Pazienza, Scarpato, Stellato,
& Turbati, 2008), - a Semantic Web Knowledge

Acquisition and Management platform
2
 hosted on the

Firefox Web Browser - to act as a CODA front-end for
doing interactive knowledge acquisition from web pages.

5. UIMAST: A CODA-based tool supporting
dynamic ontology population

The UIMAST Project
3
 originated in late 2008, with the

intent of realizing a system for bringing UIMA support to
Semantic Turkey’s functionalities for Knowledge
Acquisition. The project has been organized around two
main milestones:

– Supporting manual production of UIMA CAS
compliant annotations

– Reuse UIMA annotators to automatically extract
information from web pages and project them over
the edited ontology

Milestone 1 has been reached in early 2009, with the first
release of UIMAST. This release features:

1. A UIMA Type System Editor (figure 2 above), more
intuitive to use than the Eclipse-based one bundled
with UIMA, in that it provides a taxonomical view of
edited Feature Structures, showing explicit and
inherited attributes for each Type.

2. Interactive UIMA annotator: Semantic Annotations
taken through Semantic Turkey can be projected as

2 https://addons.mozilla.org/it/firefox/addon/8880 is the official

page on Firefox add-ons site addressing Semantic Turkey

extension, while http://semanticturkey.uniroma2.it/ provides an

inside view about Semantic Turkey project, with updated

downloads, user manuals, developers support and access to ST

extensions.
3 http://semanticturkey.uniroma2.it/extensions/uimast/. The idea for

the project has been awarded with IBM UIMA Innovation Award

http://download.boulder.ibm.com/ibmdl/pub/software/dw/univer

sity/innovation/2007_uima_recipients.pdf

Figure 2. UIMAST Type System Editor

https://addons.mozilla.org/it/firefox/addon/8880
http://semanticturkey.uniroma2.it/
http://semanticturkey.uniroma2.it/extensions/uimast/

UIMA Annotations. A xml based projection
language

4
allows to project standard annotations taken

against any domain ontology with respect to a given
Type System. Currently there is no system supporting
manual production of UIMA annotations from Web
Pages. Annotations taken by human annotators can be
reused to train machine-learning based AEs as well as
to evaluate the output of AEs by producing golden-
standard annotated documents.

Annotations taken through feature 2 can be exported in
different formats, providing that their content can be
projected according to begin/end attributes of UIMA
AnnotationBase feature. By default, UIMAST exploits x-
pointer annotations taken through the RangeAnnotator

5

extension of Semantic Turkey.
During Milestone 2, we produced a cross-SOFA

6

annotator which is able to parse content of specific
document formats (such as HTML, PDF etc…) and
produce cross-annotations setting links between pure raw-
text surrogates of analyzed documents and their original

4http://semanticturkey.uniroma2.it/extensions/uimast/schemas/pr

ojection-20081117.xsd
5 http://semanticturkey.uniroma2.it/extensions/rangeannotator/
6 SOFA: Subject OF Analysis, a perspective over a (multimodal)

artifact, see UIMA User guide

source formats. An HTML version of this annotator thus
accepts HTML documents, stores their content in a
dedicated HTML SOFA, then runs an HTML SAX parser
erupting raw-text content which is stored in a dedicated
SOFA and cross-linked with the tag elements of the
former one.
X-pointer annotations taken over the HTML page can thus
be easily aligned with annotations taken over raw-text.
This alignment allows to produce standard char-offset
annotations starting from those manually taken with the
interactive UIMA annotator, as well as to project
automatically generated annotations produced by UIMA
AEs (which usually work over raw text content) over
X-Pointer references; as a consequence they can be
visualized inside the same web page under analysis
(which is the objective of milestone 2).
Currently, the new release of UIMAST provides:

1. A projection editor (figure 3: supporting only simple
Class and Property projections)

2. A UIMA pear installer, able to load UIMA pear
packages

3. The Visual Knowledge Acquisition Tool (KA Tool or
simply KAT).

KAT provides visual anchors for users willing to semi-
automatically import textual information present inside

Figure 3. Editing Projections in UIMAST: from simple TS feature EmailAddress to ontology Datatype property email

http://semanticturkey.uniroma2.it/extensions/uimast/schemas/projection-20081117.xsd
http://semanticturkey.uniroma2.it/extensions/uimast/schemas/projection-20081117.xsd
http://semanticturkey.uniroma2.it/extensions/rangeannotator/

web pages into the current working ontology of Semantic
Turkey. While knowledge acquisition in standard
Semantic Turkey requires the user to perform manual
work (discovery of useful info and annotation) and
decision making (produce data from annotated elements),
UIMAST KAT heavily exploits the background
knowledge available from the Type System of the loaded
AEs and the projection document, as well as beneficiating
of support coming from CODA components in the form of
smart suggestions, resolved identities etc…) thus speeding
up the acquisition process in the direction of automatizing
the task.
In an ordinary KA session, the user starts by defining the
tool setup: this implies loading one or more UIMA pears

7

through the pear installer and then loading a projection
document associated to the currently edited ontology and
the imported pears (all of the above may be stored as
default settings for the ontology project being edited so
that this process will not need to be repeated each time).
After tool setup, the user can immediately inspect web
pages containing interesting data which can be extracted
by the loaded AEs. The KAT then highlights all the text
sections of the web page which have been annotated by
the AEs. Each of these dynamically added highlights is
not a purely visual alteration of the underlying HTML, but
an active HTML component providing fast-to-click
acceptance of proposed data acquisitions as well as more
in-depth decision making procedures.
As an example of integrated process involving different
resources in a user defined application, see figure 4 where

7 A UIMA components package

a simple Named Entity Recognizer (the one bundled with
UIMA sample AEs) has been projected towards ontology
class Person. The AE has been launched and named
entities discovered over the page have been highlighted.
When the user passes with the mouse over one of these
highlighted textual occurrences, the operation available
from the projection doc is shown, and the user can right
away either authorize its execution, or modify its details.
In the example in the figure, the user has been prompted
with the subtree rooted in the projected ontology class,
and the user chooses to associate selected name to class
Researcher instead of the more general Person. Should an
identity resolution component discover that the given text
may correspond to an existing resource (from the same
edited ontology or from an external ENS), then he may
choose to associate the taken annotation to it or reject it
and create a new one.

6. Conclusion

The engineering of complex processes involving
manipulation, elaboration and transformation of data and
synthesis of knowledge is a recognized and widely
accepted need, which lead in these years to the
reformulation of tasks in terms of processing blocks other
than (more than?) resolution steps. While traditional
research fields such as Natural Language Processing and
Knowledge Representation/Management have now found
their standards, cross-boundary disciplines between the
two need to find their way towards real applicability of
approaches and proposed solutions. CODA aims at filling
this gap by providing on the one hand a common

Figure 4. Knowledge Acquisition with UIMAST

environment for ontology development through
knowledge acquisition, and on the other one by reusing
the many solutions and technologies which years of
research on these fields made easily accessible .
We hope that the ongoing realization of CODA will lead
to a more mature support for research in the fields of both
ontology learning and ontology/lexicon interfaces, .

7. References

Baker, C., Fillmore, C., & Lowe, J. (1998). The Berkeley
FrameNet project. COLING-ACL. Montreal, Canada.

Basili, R., Vindigni, M., & Zanzotto, F. (2003).
Integrating Ontological and Linguistic Knowledge for
Conceptual Information Extraction. IEEE/WIC
International Conference on Web Intelligence.
Washington, DC, USA.

Bouquet, P., Stoermer, H., & Bazzanella, B. (2008). An
Entity Naming System for the Semantic Web. In
Proceedings of the 5th European Semantic Web
Conference (ESWC 2008). Springer Verlag.

Buitelaar, P., Declerck, T., Frank, A., Racioppa, S.,
Kiesel, M., Sintek, M., et al. (2006). LingInfo: Design
and Applications of a Model for the Integration of
Linguistic Information in Ontologies. OntoLex06.
Genoa, Italy.

Buitelaar, P., Olejnik, D., & Sintek, M. (2004). A Protégé
Plug-In for Ontology Extraction from Text Based on
Linguistic Analysis. Proceedings of the 1st European
Semantic Web Symposium (ESWS). Heraklion, Greece.

Carpenter, B. (1992). The Logic of Typed Feature
Structures. Cambridge Tracts in Theoretical Computer
Science ((hardback) ed., Vol. 32). Cambridge
University Press.

Chaudhri, V. K., Farquhar, A., Fikes, R., Karp, P., &
Rice, J. P. (1998). OKBC: A programmatic foundation
for knowledge base interoperability. In Proceedings of
the Fifteenth National Conference on Artificial
Intelligence (AAAI-98) (pp. 600-607). Madison,
Wisconsin, USA: MIT Press.

Cimiano, P. (2006). Ontology Learning and Population
from Text Algorithms, Evaluation and Applications
(Vol. XXVIII). Springer.

Cimiano, P., & Völker, J. (2005). Text2Onto - A
Framework for Ontology Learning and Data-driven
Change Discovery. Proceedings of the 10th
International Conference on Applications of Natural
Language to Information Systems, (pp. 227-238).
Alicante.

Cimiano, P., Haase, P., Herold, M., Mantel, M., &
Buitelaar, P. (2007). LexOnto: A Model for Ontology
Lexicons for Ontology-based NLP. In Proceedings of
the OntoLex07 Workshop (held in conjunction with
ISWC'07).

Cunningham, H., Maynard, D., Bontcheva, K., & Tablan,
V. (2002). GATE: A Framework and Graphical
Development Environment for Robust NLP Tools and
Applications. In Proceedings of the 40th Anniversary
Meeting of the Association for Computational
Linguistics (ACL'02). Philadelphia.

Ferrucci, D., & Lally, A. (2004). Uima: an architectural
approach to unstructured information processing in the
corporate research environment. Nat. Lang. Eng. , 10
(3-4), 327-348.

Gennari, J., Musen, M., Fergerson, R., Grosso, W.,
Crubézy, M., Eriksson, H., et al. (2003). The evolution
of Protégé-2000: An environment for knowledge-based
systems development,. International Journal of
Human-Computer Studies , 58 (1), 89–123.

Griesi, D., Pazienza, M., & Stellato, A. (2007). Semantic
Turkey - a Semantic Bookmarking tool (System
Description). In E. Franconi, M. Kifer, & W. May (A
cura di), The Semantic Web: Research and
Applications, 4th European Semantic Web Conference,
ESWC 2007, Innsbruck, Austria, June 3-7, 2007,
Proceedings. Lecture Notes in Computer Science. 4519,
p. 779-788. Springer.

Harman, D. (1992). The DARPA TIPSTER project.
SIGIR Forum , 26 (2), 26-28.

Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D., &
Miller, K. (1993). Introduction to WordNet: An On-line
Lexical Database.

Pazienza, M. T., & Stellato, A. (2006). Exploiting
Linguistic Resources for building linguistically
motivated ontologies in the Semantic Web. Second
Workshop on Interfacing Ontologies and Lexical
Resources for Semantic Web Technologies
(OntoLex2006), held jointly with LREC2006.
Magazzini del Cotone Conference Center, Genoa, Italy.

Pazienza, M. T., Stellato, A., & Turbati, A. (2010). A
Suite of Semantic Web Tools Supporting Development
of Multilingual Ontologies. In G. Armano, M. de
Gemmis, G. Semeraro, & E. Vargiu (Eds.), Intelligent
Information Access. Studies in Computational
Intelligence Series. Springer-Verlag.

Pazienza, M., & Stellato, A. (2006). Linguistic
Enrichment of Ontologies: a methodological
framework. Second Workshop on Interfacing
Ontologies and Lexical Resources for Semantic Web
Technologies (OntoLex2006). Genoa, Italy.

Pazienza, M., Scarpato, N., Stellato, A., & Turbati, A.
(2008). Din din! The (Semantic) Turkey is served!
Semantic Web Applications and Perspectives. Rome,
Italy.

Pazienza, M., Stellato, A., & Turbati, A. (2008).
Linguistic Watermark 3.0: an RDF framework and a
software library for bridging language and ontologies in
the Semantic Web. Semantic Web Applications and
Perspectives, 5th Italian Semantic Web Workshop
(SWAP2008). FAO-UN, Rome, Italy.

Peter, H., Sack, H., & Beckstein, C. (2006).
SMARTINDEXER – Amalgamating Ontologies and
Lexical Resources for Document Indexing. Workshop
on Interfacing Ontologies and Lexical Resources for
Semantic Web Technologies (OntoLex2006). Genoa,
Italy.

Peters, W., Montiel-Ponsoda, E., Aguado de Cea, G., &
Gómez-Pérez, A. (2007). Localizing Ontologies in
OWL. In Proceedings of the OntoLex07 Workshop
(held in conjunction with ISWC'07).

Shi, L., & Mihalcea, R. (2005). Putting Pieces Together:
Combining FrameNet, VerbNet and WordNet for
Robust Semantic Parsing. CICLing 2005, (pp. 100-
111). Mexico.

Velardi, P., Navigli, R., Cucchiarelli, A., & Neri, F.
(2005). Evaluation of ontolearn, a methodology for
automatic population of domain ontologie. In Ontology
Learning from Text: Methods, Applications and
Evaluation. IOS Press.

