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A model-independent procedure is proposed which allows us to obtain the asymptotic scaling function at
infinite momentum transfer and a comprehensive assessment of deviations of deep inelastic-neutron-scattering
data from a perfect scaling behavior, which are due to the finite values of energy and momentum transfers to
the target atom. The procedure is applied to simulated and experimental data on polycrystalline ZrH2 at
T520 and 290 K. We observe that the impulse approximation, valid for infinite energy and momentum
transfers, is not yet completely reached at the finite momentum transfer valuesq of neutron experiments even
at q.60 Å21. It is argued that, beyond the specific case of ZrH2, this procedure can be used for the
description of deep inelastic-neutron scattering from other molecular and atomic systems.
@S0163-1829~96!05333-7#

I. INTRODUCTION

Until recently inelastic neutron scattering was mainly
confined to moderate excitation energies~less than 100 meV
51200 K5800 cm21). The development of spallation neu-
tron sources, such as the IPNS~Intense Pulsed Neutron
Source! at Argonne National Laboratory~USA! and the ISIS
source at Rutherford Appleton Laboratory~UK! has consid-
erably extended the range of energy transfers which can be
accessed by neutron scattering and has opened a new area in
condensed-matter research: the study of the dynamics of
atomic systems through inelastic-neutron scattering at high
momentum transfersq (\51 units have been used through-
out the paper!, and energy transfersv.1,2 Indeed neutron mo-
lecular spectroscopy can now be used to study energy trans-
fers ranging over tens of eV and momentum transfers
ranging up to 150 Å21, allowing the momentum distribution
of the single atoms,n(p), to be investigated. The technique,
known as deep inelastic-neutron scattering~DINS!, uses the
same principle as the well-known technique of Compton
scattering3 ~which measures electron momentum distribu-
tions by the scattering of high-energy photons!: at suffi-
ciently high energy and momentum transfers the scattering
cross section can be related to the atomic momentum
distribution.4 Indeed, when the energy and momentum trans-
fers are much higher than the energies and momenta charac-
teristic of the ground state and of the collective behavior of
the target, the response function,S(q,v), can be related to
the momentum distribution of the struck particle by invoking
the impulse approximation~IA !, which assumes that, at infi-
nite momentum transfers, this particle recoils freely.5 High
q andv can be achieved at the eVS spectrometer operating
at the ISIS spallation source, where intense flux of neutrons

with electron volt energies are available.6,7 However, al-
though high, theq values available are always finite and
deviations from the IA can occur: those arising from the
interaction of the scattered particle with the surrounding
ones, known as final-state effects~FSE!;8 those coming from
the bound nature of the initial state, known as initial-state
effects.9 Conditions of validity of the IA are still a question
of debate and many theories have been developed to calcu-
late in many systems the form and magnitude of deviations
from IA arising at finiteq values.10–14 In some cases devia-
tions from IA are possible even at infinite values ofq: for
example, for a system of hard spheres it has been shown that
the IA regime is never reached, no matter how high the mo-
mentum transfer.15

For square integrable interaction potentials, it has been
rigorously shown16 that in the limit of high momentum trans-
fer, the scaling functionF(q,y), that is the response function
times appropriate kinematic coefficients, depends on a single
variable only, the variabley ~Ref. 17!, and takes the value
corresponding to the IA. In the last years theq dependence
of the scaling function, its behavior towards the asymptotic
regime,q→`, and the extent to which the deviations from
IA limit our ability to extract the single-particle momentum
distribution in the system under study have been the matter
of several experimental~see, e.g., Refs. 18–22! and theoreti-
cal ~see, e.g., Refs. 10–14,23,24! studies. From the experi-
mental and theoretical work it can be shown that, at the
presently accessible momentum transfers, deviations from IA
can hinder the extraction of momentum distribution func-
tions. In particular an important question is the size and func-
tional form of these deviations occurring at finiteq. Various
procedures have been proposed in the literature,25–28in order
to cope with these deviations, for instance, Sears26 suggested
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removing the antisymmetric part of these contributions by
simply symmetrizing the data abouty50. However, a
model-independent framework for a description of DINS in
molecular systems is still needed which is also able to cope
with the scattering process at finiteq.

In this paper we propose a model-independent procedure
for deriving the asymptotic scaling function at infinite mo-
mentum transfer (q→`), F(y), from DINS experiments in
the framework ofy scaling. In our methodF(y) is derived
from a fit performed on a set of experimental data collected
in a q range as wide as possible. The fitting procedure also
allows us to estimate the form and the magnitude of
y-scaling violating effects at finiteq and it will be shown
that the requirement of a wideq range is necessary to isolate
F(y) from the scaling violating contributions. Once the as-
ymptotic scaling function has been determined, if IA holds,
one can immediately obtain from the asymptotic scaling
function the atomic momentum distribution.17 In Sec. II the
theoretical framework is presented and in Sec. III a brief
description of our method is introduced. In Sec. IV the latter
is applied, initially to a simulated set of data in a harmonic
model for polycrystalline ZrH2, as an internal check for the
procedure, and then to real experimental data on the same
sample.

II. THEORETICAL FORMALISM

The IA is based on two basic assumptions:~i! the
inelastic-neutron scattering at high momentum transfers oc-
curs from single atoms, that is the scattering is incoherent,
with conservation of energy and momentum,~ii ! effects of
the final-state interaction between the struck particle and the
residual system are neglected. It is then possible to relate the
dynamical response functionS(q,v) to the atomic momen-
tum distributionn(p) via

S~q,v!5E n~p!d~v1Ei2Ef !dp, ~1!

whereEi ,Ef are the initial and final energy of the system,
respectively. Thed function in Eq. ~1! ensures the energy
conservation in the collisions among neutrons and atoms of
the target. IfM is the mass of the struck atom,p its momen-
tum before collision andp1q its momentum after collision,
the final energy can be expressed as

Ef5~p1q!2/2M1Er~p!, ~2!

where (p1q)2/2M is the final kinetic energy of the struck
particle andEr(p) is the energy of the residual system. Ob-
viously, the functional form of the momentum distribution in
Eq. ~1! depends on the interaction acting on the target atoms,
and is not necessarily a Gaussian.

In the case of a system of particles which interact through
square integrable16 or else through confining harmonic
potentials,23,29 it was shown that the response function of the
system,S(q,v), approaches exactly the value obtained from
the plane-wave impulse approximation whenq→`, and that
the effects of final-state interactions vanish at least as 1/q. By
making use of the scaling variabley,

y5~v2q2/2M !M /q, ~3!

it is possible to define a scaling functionF(q,y) via its re-
lationship with the response function

F~q,y!5q/MS~q,v!. ~4!

Then atq→` the q-independent terms in thed function in
Eq. ~1! can be neglected and the asymptotic value of the
scaling function becomes

J~y!5E n~p!d~y2pq̂!dp, ~5!

whereq̂5q/q.
In the hypothesis of scattering events occurring at high,

but finite, momentum transfer, one can assume that the scal-
ing function F(q,y) is regular and therefore can be repre-
sented by a series of powers of 1/q:

F~q,y!5F~y!1F ~21!~y!/q1F ~22!~y!/q21F ~23!~y!/q3

1O~1/q4!. ~6!

It can be noted that Eq.~6! is valid provided theF(q,y)
has a limit and is analytic inq when q→`. The first
q-independent term in the right-hand side of Eq.~6! repre-
sents the asymptotic value forq→` of the scaling function,
whereas the otherq-dependent terms include they-scaling
violating effects, such as FSE. If IA holds, the
q-independent term in Eq.~6! can be identified with its IA
counterpart, i.e.,F(y)5J(y) with J(y) defined by Eq.~5!.
At high momentum transfer the termsF (2n)(y)/q

n, with
n>3, go rapidly to zero and it is therefore expected that
scaling violating effects are entirely described by the linear
and the quadratic terms in 1/q. Clearly Eq.~6! has a range of
applicability wider than IA, i.e., it can be applied even when
the IA does not hold andF(y) cannot be identified with
J(y). An expansion like that in Eq.~6! was introduced in
Ref. 25, without proof of its convergence. The experimental
validity of the convergence of this expansion was investi-
gated in Ref. 30 in the case of electron scattering off finite
nuclei and nuclear matter, and in Ref. 27 for the neutron
scattering from polycrystalline D2O at T520 K. In both
cases the experimental scaling function was plotted versus
1/q for fixed values ofy and a linear behavior of the data for
small values of 1/q was observed. In this paper we will ex-
tend this kind of analysis, including both linear and quadratic
terms of the expansion in Eq.~6!.

It has to be pointed out that, in the case of asymptotic
series, an expansion like Eq.~6! can be useful even if it does
not converge. For example, this is the case for a system of
particles interacting through confining harmonic forces, as it
was shown in Ref. 29.

III. DATA ANALYSIS PROCEDURE

In a DINS experiment epithermal neutron beams are used
in order to approach the high momentum transfer region re-
quired by the IA. However, if one aims to derive not only the
atomic kinetic energy of the investigated system but also the
detailed shape of atomic momentum distribution function, it
is necessary to separate the asymptotic scaling function from
the contributions of the linear and quadratic terms in the
1/q expansion. To this end one has to collect data in aq
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range as wide as possible. Indeed, this allows us to study,
together with the scattering at very highq, the approach from
lower q values to this region, which is determined by the
q-dependent terms in Eq.~6!. Let us assume that the experi-
mental data are represented by the following expression:

FR~q,y!5E
2`

`

F~q,y8!R~q,y2y8!dy8, ~7!

whereF(q,y) is the experimental scaling function that we
assume being described according to Eq.~6! andR(q,y) is
the experimental resolution function.

In order to study the contribution of theF (2n)(y) terms to
the scattering data, we propose the following procedure:~1!
measure the scaling function in the widest possible interval
of momentum transfer;~2! expressF(y), F (21)(y), and
F (22)(y) as an overlap of a complete set of functions con-
veniently truncated; for example we can expressF(y),
F (21)(y), and F (22)(y) as a Gaussian times polynomials,
depending on some parameters to be determined~the Gauss-
ian variance and the polynomial coefficients!; ~3! assume
R(q,y) to be a known function, for example a Voigt function
~see the following section!; ~4! use the functionFR(q,y),
expressed according to Eq.~7!, with F(q,y) given by Eq.
~6!, for a fit of the experimental data.

The parameters derived from the fit will allow us to re-
construct the individual contributions,F(y),F (21)(y), and
F (22)(y), i.e., the asymptotic scaling function and the
y-scaling violating effect contributions. The experimental
data at highestq values will allow us to better determine
F(y), while the data at the lowestq values, the form for
F (21)(y) andF (22)(y). The fit has to be performed with the
normalization condition

E
2`

`

F~q,y!dy51, ~8!

which holds for any value ofq at high momentum transfer.
As a consequence, the following conditions obviously have
to be satisfied:

E
2`

`

F~y!dy51, ~9!

E
2`

`

F ~21!~y!dy50, ~10!

E
2`

`

F ~22!~y!dy50. ~11!

Let us express,F(y),F (21)(y), and F (22)(y), as sug-
gested before, as a product of a Gaussian times polynomial
as follows:

F~y!5exp~2by2!@a01a1y
2#, ~12!

F ~21!~y!5exp~2by2!@a2y1a3y
3#, ~13!

F ~22!~y!5exp~2by2!@a41a5y
21a6y

41a7y
6#. ~14!

In these equations we have consideredF(y) and
F (22)(y) to be even functions ofy andF (21)(y) to be an

odd function ofy according to Ref. 26. The condition ex-
pressed by Eq.~10! is automatically satisfied, while from
Eqs.~9! and~11! it follows that the parametersa0 anda4 can
be obtained from the other parameters by the following equa-
tions:

a05Ab

p
2
a1
2b

, ~15!

a452a5
1

2b
2a6

3

4b2
2a7

15

8b3
. ~16!

Equations~15! and~16! imply that in our procedure only
the parametersb, a1, a2, a3, a5, a6, a7 are to be determined
by fitting the whole set of experimental data using the
FR(q,y) functional form given in Eq.~7!, whereF(q,y) is
described by Eq.~6! andR(q,y) is the appropriate resolution
function.

IV. DATA ANALYSIS OF ZrH 2

We will apply the above procedure to both simulated and
experimental data for a sample of polycrystalline ZrH2 and
the following notations will be used: functionsF(y),
F(q,y), andFR(q,y) will have a superscripts or ex when
referring to simulated or experimental data, respectively; the
functions resulting from the fit will be referred to by a further
superscript Fit. Polycrystalline ZrH2 has been chosen be-
cause there is experimental evidence that it is an harmonic
system.31

A. Analysis of the simulated data

Simulated data for theFs(q,y) scaling function in ZrH2
can be derived by calculating the dynamical structure factor
S(q,v) for an isotropic harmonic solid. The simulation,
based on measurement of the vibrational density of states
and within the harmonic incoherent approximation is fully
described in Ref. 32. Scaling functions,Fs(q,y), were de-
rived at the same scattering angles for which the experiment
for ZrH2 on eVS was also performed.32 Subsequently, to
obtain FR

s (q,y), Fs(q,y) functions have been convoluted,
for each detector, with a resolution function,R(q,y), deter-
mined according to a method described in Ref. 18~see Table
I!. Following the procedure described in Sec. III a simulta-
neous fit of the data, for ten angles listed in Table I, was
performed in the range220 Å21,y,20 Å21, for a total
number of 1150 points, using for the scaling function the
expression given in Eq.~6!. Numerical values for the best
parameters resulting from the fit and the corresponding val-
ues for thex2 are listed in Table II. It has to be noted that
these parameters have been obtained by imposinga150 in
Eq. ~12!, after having checked that thex2 value does not
significantly change whena1 is let free. Furthermore, from
Table II we observe thata6 and a7 are small, so that the
termsa6y

4 anda7y
6 contribute significantly to Eq.~14! only

for uyu.5 Å21. An important result of our analysis is that
the best-fit value obtained for the parameterb,
b50.028860.0002 Å2, ~see Table II! is practically coinci-
dent with the value corresponding to the model used for
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FIG. 1. SimulatedFR
s (q,y) for ZrH2 at four scattering angles, 2u536.0°, 41.9°, 47.8°, 53.7°, are plotted as full squares in~a!, ~b!, ~c!,

and ~d!, respectively. Continuous lines represent theFR
s,Fit(q,y) functions calculated using the fitted parameters listed in Table II. Both

simulated and fitted functions are resolution convoluted. The dashed line in~d! representsFs,Fit(q,y) at the corresponding angle. Lower
abscissa is the scaling variable,y, and top abscissa the momentum transfer,q.

TABLE I. Parameters describing the resolution function, for
massM51 amu, at the scattering angles of the simulated and ex-
perimental data; the variance,sG , of the Gaussian component and
the half width at half maximum,G/2, of the Lorentzian component
of the Voigt resolution function,R(q,y), are reported for each
angle, together with the momentum transfer corresponding to the
maximum of each recoil peak~Ref. 18!.

2u sG G/2 q
~degree! (Å21! ~Å21! ~Å21!

36.0 0.61 0.98 35.4
38.1 0.60 0.91 38.3
39.9 0.59 0.86 40.8
41.9 0.58 0.80 43.8
43.7 0.58 0.75 46.8
45.9 0.57 0.70 50.4
47.8 0.57 0.65 53.8
49.7 0.56 0.61 57.6
51.7 0.56 0.57 61.7
53.7 0.55 0.53 66.1

TABLE II. Fitted parameters derived by the simultaneous fit of
the ZrH2 simulated and experimental data as described in the text.
The relationships between these parameters and the individual con-
tributions of the scaling function are given in Eqs.~12!, ~13!, and
~14!. The definition ofx2 is x25@1/(N2n)#(@(xi2zi)

2/« i
2# where

N is the number of experimental or simulated points,n is the num-
ber of parameters,xi is FR

s (q,y) or FR
ex(q,y), zi is FR

Fit(q,y), and
« i is the error on the data.

Simulated data Experimental data

b ~Å2! 2.8831022 3.0331022

a0 ~Å! 9.5831022 9.8331022

a1 ~Å3! 0 0
a2 ~Å! -1.2831021 -3.131022

a3 ~Å3! 1.6631023 -731024

a4 ~Å21! 631021 1.3
a5 ~Å! 1.2631021 331021

a6 ~Å3! 231023 -631023

a7 ~Å5! -531025 -231025

x2 0.29 1.27
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generating the simulated datab51/2s250.0287 Å2, where
s is the Gaussian variance of the asymptotic scaling func-
tion.

In Fig. 1 FR
s,Fit(q,y) resulting from the fit is com-

pared with FR
s (q,y) for four scattering angles (2u

536.0°, 41.9°, 47.8°, 53.7°). We note that the fit does re-
produce the simulated data very well in the wholeq range.
This implies that the truncation of the series expansion in Eq.
~6! up to the 1/q2 term is a reasonable assumption. In this
figure we also observe that by increasing the scattering
angle, i.e.,q, recoil peak position moves towardsy50,
while peak intensity increases. These findings originate from
two separate contributions, one coming from the explicit
1/q and 1/q2 terms in Eq.~6! and the other coming from the
q dependence of the resolution function which varies with
angle~see Table I!. In particular the increase of peak height
by increasingq can be mainly ascribed to the better resolu-
tion achieved at higher angles. In Fig. 1~d! theFs,Fit(q,y) is
also reported, as a dashed line, to better show the change in
intensity specifically due to the resolution contribution at this
angle.

In Fig. 2 the Fs,Fit(q,y) functions for three scattering
angles (2u536.0°, 41.9°, 53.7°) are plotted together with
the asymptotic scaling function,Fs,Fit(y), and the individual
contributions (1/q)F (21)

s,Fit (y) and (1/q2)F (22)
s,Fit (y). We ob-

serve that, while recoiling peak moves towardsy50 by in-
creasing scattering angles, also some change in peak inten-
sity occurs, both effects being associated with the 1/q and
1/q2 contributions. In particular, bearing in mind that
F (21)(y) is an antisymmetric function andF (22)(y) a sym-
metric one, we observe that the peak shift comes from the
contribution due to the 1/q term in Eq.~6!. In addition the
1/q term also produces some distortion in the shape of
the recoil peak. From the figure one can see at various
angles the individual contributions of (1/q)F (21)

s,Fit (y) and
(1/q2)F (22)

s,Fit (y), describing the corrections to IA, their mag-
nitude andq dependence. Furthermore in order to show the
relevance of the 1/q2 term in expansion~6!, we repeated the
fitting procedure of the simulated data without this term, i.e.,
by imposinga45a55a65a750. In this case the quality of
the fit is worse (x2 becomes 0.45! and the parameterb be-
comes 0.029160.0001 Å2, no more so close to the expected
valueb50.0287 Å2.

The excellent agreement between simulated data and the
fit shown in Fig. 1 at eachq value and in the asymptotic limit
implies the reliability of the procedure we have used to de-
rive theF(y) function and allows us to apply it to other more
general cases. As an example in the next section this proce-
dure will be applied to neutron experimental data of ZrH2.

B. Analysis of the experimental data

DINS experiment on polycrystalline ZrH2 at T520 and
290 K were performed using the eVS spectrometer at the
ISIS facility at Rutherford Appleton Laboratory~UK!.7,32

The two sets of data have been analyzed together, since the
proton is effectively restricted to the ground state at both
these temperatures.32 The eVS is an inverse geometry instru-
ment operating for inelastic-neutron-scattering experiments
with incident energies in the range 1–100 eV. The scattered
neutrons are analyzed using a resonance absorption foil~e.g.,
gold! which defines the final neutron energies. Details about

the spectrometer and data analysis procedure are described
fully elsewhere.22 In this spectrometer different components
contribute to the experimental resolution, the most important

FIG. 2. Fs,Fit(q,y) ~continuous line! is compared with
Fs,Fit(y) ~dashed line!, (1/q)F (21)

s,Fit (y) ~dot-dashed line! and
(1/q2) F (22)

s,Fit (y) ~dotted line! for 2u536.0°, 41.9°, 53.7°, in~a!,
~b!, and ~c!, respectively. All functions are without the resolution
component.
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of which comes from the intrinsic energy width of the reso-
nance foil. The latter is well described by a Lorentzian func-
tion and experimentally determined by measuring the recoil
scattering from heavy atoms.22 The other resolution compo-
nents, coming from the uncertainties in time and in incident
and scattering lengths, are instead well described by Gauss-
ian functions.18 Overall the resolution function for the spec-
trometer is well described by a Voigt function with the indi-
vidual components at various angles listed in Table I. The
same procedure used in the previous section for the analysis
of the simulated data is now employed for experimental data
at ten scattering angles, in the range220,y,20 Å21, for a
total number of 2300 points. As previously, a best fit of the
data is obtained by allowing just one Gaussian function for
F(y) with best fit parameters listed in Table II. We note that
the parameterb for the asymptotic scaling function
(b50.030360.0004 Å2) is almost identical to the one cor-
responding to the simulated data. Therefore one can argue
that the harmonic model used for the interaction potential
works. As a consequence, the asymptotic scaling function
F(y) can be identified withJ(y) of Eq. ~5! and then the
momentum distributionn(p) can be easily derived through

n~p!52
1

2py

dJ~y!

dy
with p5uyu ~17!

obtaining

n~p!5
a0b

p
exp~2bp2!. ~18!

In Figs. 3~a!, 3~b!, 3~c!, and 3~d! FR
ex(q,y) for four different

scattering angles are compared with theFR
ex,Fit(q,y) func-

tions. Although the experimental data are somewhat scat-
tered around their fitting values, in particular at high momen-
tum transfer, an overall good agreement is seen on the whole
q range. In Fig. 4 the experimental scaling function
Fex,Fit(q,y) is plotted together with the asymptotic scaling
function, Fex,Fit(y), and the individual contributions
(1/q)F (21)

ex,Fit(y) and (1/q2)F (22)
ex,Fit(y) for three scattering

angles (2u536.0°, 41.9°, 51.7°). Overall effects similar to
those already noted for the simulated data can be observed: a
shift of the peak positions towardsy,0 values for the
smaller angles and some contributions from the
q-dependent terms, even at the highest angles. These effects

FIG. 3. ExperimentalFR
ex(q,y) for ZrH2 at four scattering angles. The experimental data for 2u536.0°, 41.9°, 47.8°, 51.7° are plotted

as full squares in~a!, ~b!, ~c!, and~d!, respectively. Continuous lines represent theFR
ex,Fit(q,y) functions calculated using the fitted parameters

listed in Table II and resolution convoluted.
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are a fingerprint of existing deviations from IA, that although
small here, are not negligible, even atq.60 Å21. Indeed
Table II shows that while the parameters pertaining to the
1/q term are smaller, the parameters of the 1/q2 term are

larger for the experimental data as compared to the simulated
ones.

V. DISCUSSION AND CONCLUSION

We have shown that a scaling function described by a
series expansion in 1/q, which incorporateF(y), F (21)(y),
and F (22)(y) with appropriate Gaussian and polynomial
shapes, can be used to fit, in a wideq range, neutron-
scattering data in the DINS regime. Initially we have applied
our procedure to a set of simulated data on ZrH2 and have
been able to correctly reproduce theF(q,y) functions at
each individual angle; further from the fitted parameters, we
have obtained, together with the asymptotic scaling function,
both F (21)(y) and F (22)(y). The coincidence of the ob-
tainedF(y) with the asymptotic scaling function of the har-
monic model can be regarded as an internal consistency for
our method of analysis, thus indicating that this procedure
itself can be applied, in a more general way, to a wide variety
of systems with the aim of extracting the asymptotic scaling
function from experimental data at finiteq. When applying
our method to a generic system the analysis procedure con-
sists of performing a fit of the experimental data using ex-
pansion~6! for the response function; if a good description
of the data is obtained, this means that the experimental data
do scale and one is entitled to interpretF(y) as the asymp-
totic scaling function. In the hypothesis that the IA holds
@e.g., if the interaction potential satisfies the conditions for
identifying F(y) with J(y), see Sec. II# and that the system
is isotropic, from the asymptotic scaling function one can
then obtain the atomic momentum distribution and the mean
kinetic energy of the target atom,^Ek&, determined as the
second moment ofn(p). For some systems it can occur that
possible forms of the interaction potential are proposed, but a
rigorous demonstration of the validity of IA is not available.
However, also in these cases one can try to use Eq.~17! and
to compare the result with the theoretical momentum distri-
butions obtained from the proposed potentials. In conclusion
the domain of applicability of our procedure is a matter that
cannot bea priori defined, but has to be checked in any
specific case.

Some authors analyze the inelastic-neutron-scattering data
by symmetrizingFR

ex(q,y) with respect toy50 in order to
retrieve the asymptotic scaling function, in the hypothesis
that scaling violating effects are essentially due to the 1/q
term and therefore are an odd function ofy.26 On the con-
trary in this paper we have shown~see Sec. IV! that the
contribution coming from the 1/q2 term, although small, in
general can not be negligible. Indeed in the case of simulated
ZrH2 data the absence of the 1/q2 term in Eq.~6! leads to an
asymptotic scaling function with a variance different from
that of the harmonic model.

Once theF (21)(y) andF (22)(y) functions have been ob-
tained applying the procedure described in this paper, a sepa-
rate question arises about the physical interpretation of both
1/q and 1/q2 terms in the series expansion. However, this is
beyond the aim of the present work and is a matter which
needs to be addressed depending on the specific system un-
der study.

FIG. 4. Fex,Fit(q,y) ~continuous line! is compared with
Fex,Fit(y) ~dashed line!, (1/q)F (21)

ex,Fit(y) ~dot-dashed line! and
(1/q2)F (22)

ex,Fit(y) ~dotted line! for 2u536.0°, 41.9°, 51.7°, in~a!,
~b!, and ~c!, respectively. All functions are without the resolution
component.
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