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Model-independent analysis of inelastic-neutron-scattering data at high momentum transfer
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A model-independent procedure is proposed which allows us to obtain the asymptotic scaling function at
infinite momentum transfer and a comprehensive assessment of deviations of deep inelastic-neutron-scattering
data from a perfect scaling behavior, which are due to the finite values of energy and momentum transfers to
the target atom. The procedure is applied to simulated and experimental data on polycrystallinatZrH
T=20 and 290 K. We observe that the impulse approximation, valid for infinite energy and momentum
transfers, is not yet completely reached at the finite momentum transfer vpbfaseutron experiments even
at =60 A~ It is argued that, beyond the specific case of Zrihis procedure can be used for the
description of deep inelastic-neutron scattering from other molecular and atomic systems.
[S0163-182696)05333-1

[. INTRODUCTION with electron volt energies are availal§ié.However, al-
though high, theq values available are always finite and
Until recently inelastic neutron scattering was mainly deviations from the IA can occur: those arising from the
confined to moderate excitation energfess than 100 meV interaction of the scattered particle with the surrounding
=1200 K=800 cm1). The development of spallation neu- ones, known as final-state effe¢&SB;® those coming from
tron sources, such as the IPN$tense Pulsed Neutron the bound nature of the initial state, known as initial-state
Sourcé at Argonne National Laborator§SA) and the ISIS  effects? Conditions of validity of the IA are still a question
source at Rutherford Appleton LaboratdtyK) has consid- of debate and many theories have been developed to calcu-
erably extended the range of energy transfers which can Hate in many systems the form and magnitude of deviations
accessed by neutron scattering and has opened a new aredriom IA arising at finiteq valuest®~**In some cases devia-
condensed-matter research: the study of the dynamics dibns from IA are possible even at infinite valuesaffor
atomic systems through inelastic-neutron scattering at higkxample, for a system of hard spheres it has been shown that
momentum transferg (7 =1 units have been used through- the IA regime is never reached, no matter how high the mo-
out the paper and energy transfers.>? Indeed neutron mo- mentum transfet®
lecular spectroscopy can now be used to study energy trans- For square integrable interaction potentials, it has been
fers ranging over tens of eV and momentum transfersigorously showr® that in the limit of high momentum trans-
ranging up to 150 A2, allowing the momentum distribution fer, the scaling functiof¥(q,y), that is the response function
of the single atomsj(p), to be investigated. The technique, times appropriate kinematic coefficients, depends on a single
known as deep inelastic-neutron scattefByNS), uses the variable only, the variablg (Ref. 17, and takes the value
same principle as the well-known technique of Comptoncorresponding to the IA. In the last years thelependence
scattering (which measures electron momentum distribu-of the scaling function, its behavior towards the asymptotic
tions by the scattering of high-energy photpnat suffi- regime,q—«, and the extent to which the deviations from
ciently high energy and momentum transfers the scatteringA limit our ability to extract the single-particle momentum
cross section can be related to the atomic momentundistribution in the system under study have been the matter
distribution? Indeed, when the energy and momentum transof several experimentdsee, e.g., Refs. 18—2and theoreti-
fers are much higher than the energies and momenta charagal (see, e.g., Refs. 10—-14,23)2tudies. From the experi-
teristic of the ground state and of the collective behavior ofmental and theoretical work it can be shown that, at the
the target, the response functid¥(g,»), can be related to presently accessible momentum transfers, deviations from 1A
the momentum distribution of the struck particle by invoking can hinder the extraction of momentum distribution func-
the impulse approximatiofiA), which assumes that, at infi- tions. In particular an important question is the size and func-
nite momentum transfers, this particle recoils freelligh  tional form of these deviations occurring at finije Various
q andw can be achieved at the eVS spectrometer operatingrocedures have been proposed in the literéturé,in order
at the ISIS spallation source, where intense flux of neutronto cope with these deviations, for instance, S€asggested
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removing the antisymmetric part of these contributions byit is possible to define a scaling functié(q,y) via its re-
simply symmetrizing the data abouyt=0. However, a lationship with the response function
model-independent framework for a description of DINS in

molecular systems is still needed which is also able to cope F(a,y)=a/MS(q,0). 4

with the scattering process at finite Then atq— the g-independent terms in thé function in
In this paper we propose a model-independent procedur,

> ; ; ; - E €q. (1) can be neglected and the asymptotic value of the
for deriving the asymptotic scaling function at mﬂmte mo- scaling function becomes
mentum transferd—o), F(y), from DINS experiments in
the framework ofy scaling. In our methodF(y) is derived .
from a fit performed on a set of experimental data collected J(y)=j n(p)s(y—pag)dp, )
in a g range as wide as possible. The fitting procedure also A N o
allows us to estimate the form and the magnitude ofvhereg=a/q.
y-scaling violating effects at finitgg and it will be shown In the hypothesis of scattering events occurring at high,
that the requirement of a widgrange is necessary to isolate but finite, momentum transfer, one can assume that the scal-
F(y) from the scaling violating contributions. Once the as-ing function F(q,y) is regular and therefore can be repre-
ymptotic scaling function has been determined, if IA holds,sented by a series of powers ofj1/
one can immediately obtain from the asymptotic scaling ) 3
function the atomic momentum distributidhin Sec. Il the ~ F(A.Y)=F()+F5,(y)/a+F2(y)/q°+F5(y)/q
theoretical framework is presented and in Sec. Ill a brief +0O(1/gh. 6)
description of our method is introduced. In Sec. IV the latter

is applied, initially to a simulated set of data in a harmonic  |; can be noted that Eq6) is valid provided theF(q,y)
model for polycrystalline ZrH, as an internal check for the has g Jimit and is analytic ing when g—c. The first
procedure, and then to real experimental data on the samgindependent term in the right-hand side of E6). repre-
sample. sents the asymptotic value fqr—o of the scaling function,
whereas the otheg-dependent terms include thescaling
Il. THEORETICAL FORMALISM violating effects, such as FSE. If IA holds, the
g-independent term in Ed6) can be identified with its 1A

The IA is based on two basic assumptior(s) the . o ; .
inelastic-neutron scattering at high momentum transfers OC(_:ounterpart, .e.F(y)=J(y) with J(y) defined by Eq(5).

. no
curs from single atoms, that is the scattering is incoherenfé‘;g'gh mom_glntutm transferdth_ tetL”E(;n)(y)/q ; ‘;‘”g‘ hat
with conservation of energy and momentuin) effects of /I" 90 rlan_' y ; z?ro an It ISI dere O.E)e deEpet(;]e i a
the final-state interaction between the struck particle and thgcaling violaling elfects are enurely described by the finear

residual system are neglected. It is then possible to relate #fd the guadratic terms indl/Clearly Eq.(6) has a range of

ical functi to the atomi _ applicability wider than IA, i.e., it can be applied_e_ven V\_/hen
Sggaggslfﬁblzﬁiﬁg?s)e V?;C 108(, ) to the atomic momen the 1A does not hold andr(y) cannot be identified with

J(y). An expansion like that in Eq6) was introduced in
Ref. 25, without proof of its convergence. The experimental
S(q,w)=f n(p)8(w+E;—Ef)dp, 1) validity of the convergence of this expansion was investi-
- - gated in Ref. 30 in the case of electron scattering off finite
whereE; ,E; are the initial and final energy of the system, nuclei and nuclear matter, and in Ref. 27 for the neutron
respectively. Thes function in Eq.(1) ensures the energy scattering from polycrystalline BD at T=20 K. In both
conservation in the collisions among neutrons and atoms afases the experimental scaling function was plotted versus
the target. IfM is the mass of the struck atom,its momen-  1/q for fixed values ofy and a linear behavior of the data for
tum before collision ang+ q its momentum after collision, small values of I was observed. In this paper we will ex-

the final energy can be expressed as tend this kind of analysis, including both linear and quadratic
terms of the expansion in E¢).
Ei=(p+Qq)%2M+E,(p), (2 It has to be pointed out that, in the case of asymptotic

) ) _ o series, an expansion like E@) can be useful even if it does
where (+0q)°/2M is the final kinetic energy of the struck not converge. For example, this is the case for a system of
particle andE, (p) is the energy of the residual system. Ob- particles interacting through confining harmonic forces, as it
viously, the functional form of the momentum distribution in was shown in Ref. 29.

Eq. (1) depends on the interaction acting on the target atoms,
and is not necessarily a Gaussia_n. o IIl. DATA ANALYSIS PROCEDURE

In the case of a system of particles which interact through
square integrabt® or else through confining harmonic In a DINS experiment epithermal neutron beams are used
potentials®>?°it was shown that the response function of thein order to approach the high momentum transfer region re-
system,S(q, ), approaches exactly the value obtained fromquired by the IA. However, if one aims to derive not only the
the plane-wave impulse approximation whes-o, and that ~ atomic kinetic energy of the investigated system but also the
the effects of final-state interactions vanish at leastqsBy  detailed shape of atomic momentum distribution function, it
making use of the scaling variabje is necessary to separate the asymptotic scaling function from

the contributions of the linear and quadratic terms in the
y=(w—0g%/2M)M/q, 3 1/q expansion. To this end one has to collect data ig a
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range as wide as possible. Indeed, this allows us to studypdd function ofy according to Ref. 26. The condition ex-
together with the scattering at very highthe approach from pressed by Eq(10) is automatically satisfied, while from
lower q values to this region, which is determined by the Egs.(9) and(11) it follows that the parameteey, anda, can
g-dependent terms in E@6). Let us assume that the experi- be obtained from the other parameters by the following equa-
mental data are represented by the following expression: tions:

_ ' —vHdy' b a
Fr(a,y) LOF(q,y JR(q,y—y")dy’, () ag= \[;_ ﬁ' (15)
whereF(q,y) is the experimental scaling function that we
assume being described according to &).andR(q,y) is 1 3 15
the experimental resolution function. as= _aS%_a‘SW—%W' (16)

In order to study the contribution of thg _,,(y) terms to
the scattering data, we propose the following proced{ire:
measure the scaling function in the widest possible interva{h
of momentum transfer(2) expressF(y), F1(y), and
F(-2)(y) as an overlap of a complete set of functions con-
veniently truncated; for example we can exprdsgy),
F(,l)(y), andF(_,(y) as a Gaussian times polynomials
depending on some parameters to be determitredGauss-
ian variance and the polynomial coefficient$3) assume
R(q,y) to be a known function, for example a Voigt function IV. DATA ANALYSIS OF ZrH,
(see the following section (4) use the functionFg(q,y),
expressed according to EG7), with F(q,y) given by Eq.
(6), for a fit of the experimental data.

Equations(15) and(16) imply that in our procedure only
e parameterb, a,, a,, as, as, ag, a; are to be determined
by fitting the whole set of experimental data using the
Fr(g,y) functional form given in Eq(7), whereF(q,y) is
described by Eq6) andR(q,Y) is the appropriate resolution
' function.

We will apply the above procedure to both simulated and
experimental data for a sample of polycrystalline 4rand
i L the following notations will be used: function&(y),
The parameters derived from the fit will allow us to re- F(q.y), andF(q,y) will have a superscrips or ex when
lc:onstruct t_he mﬂmdual contr_lbut|0r1l$:,(y)f,F(,_l)(y), a;d h referring to simulated or experimental data, respectively; the
(_2)(_y), I-€., t € asymptotm_sce_ung unction an e functions resulting from the fit will be referred to by a further
y-scaling violating effect contributions. The expenmentalSuperscript Fit. Polycrystalline ZrHhas been chosen be-

data at highesy values will allow us to better determine .50 there is experimental evidence that it is an harmonic
F(y), while the data at the lowes} values, the form for systent

F(-1)(y) andF_,(y). The fit has to be performed with the

normalization condition _ _
A. Analysis of the simulated data

fx F(q,y)dy=1, (8) Simulate_d data for thES_(q,y) scaling fgnction in Zr5
o can be derived by calculating the dynamical structure factor
S(q,w) for an isotropic harmonic solid. The simulation,
é)ased on measurement of the vibrational density of states
and within the harmonic incoherent approximation is fully
described in Ref. 32. Scaling functiors$(q,y), were de-

o rived at the same scattering angles for which the experiment
f F(y)dy=1, (9 for ZrH, on eVS was also performéd.Subsequently, to

obtain F}(q,y), F%(q,y) functions have been convoluted,

x for each detector, with a resolution functidR(q,y), deter-
f F-1(y)dy=0, (20 mined according to a method described in Ref(4ée Table

m I). Following the procedure described in Sec. Ill a simulta-

which holds for any value off at high momentum transfer.
As a consequence, the following conditions obviously hav
to be satisfied:

— o

. neous fit of the data, for ten angles listed in Table I, was
f F(_(y)dy=0. (17  performed in the range-20 A"*<y<20 A", for a total
— number of 1150 points, using for the scaling function the
expression given in Eq6). Numerical values for the best
Let us expressF(y),F(-1)(y), and F(_5)(y), as sug- parameters resulting from the fit and the corresponding val-
gested before, as a product of a Gaussian times polynomigks for they? are listed in Table II. It has to be noted that
as follows: these parameters have been obtained by impasjrg0 in
_ ) 4 a2 Eq. (12), after having checked that thg? value does not
Fly)=exp(=by )lao+ay’, (12 significantly change when; is let free. Furthermore, from
E = exp(—by?)[a,y+asy?], 13 Table Il we observe thaag and a; are small, so that the
(-n(Y)=exp=byT)[azy+asy’] a3 termsagy* anda,y® contribute significantly to Eq14) only
F_2(y)=exp(—by?)[a,+agy?+agy*+azy®]. (14  for ly|>5 A~%. An important result of our analysis is that
the best-fit value obtained for the parametdy,
In these equations we have considerédy) and b=0.0288-0.0002 A2, (see Table Il is practically coinci-
F(-2)(y) to be even functions of andF_4(y) to be an dent with the value corresponding to the model used for
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TABLE |. Parameters describing the resolution function, for ~ TABLE Il. Fitted parameters derived by the simultaneous fit of
massM =1 amu, at the scattering angles of the simulated and exthe ZrH, simulated and experimental data as described in the text.
perimental data; the varianceg, of the Gaussian component and The relationships between these parameters and the individual con-
the half width at half maximuml'/2, of the Lorentzian component tributions of the scaling function are given in Eq42), (13), and
of the Voigt resolution functionR(q,y), are reported for each (14). The definition ofy? is x>=[1/(N—n)]=[(x;—z)?/sZ] where
angle, together with the momentum transfer corresponding to thé&l is the number of experimental or simulated poimss the num-
maximum of each recoil pealRef. 18. ber of parameters; is F&(q.,y) or F&(q,y), z is FR'(q,y), and
g; is the error on the data.

26 oG r/2 q
(degree (A} A A™Y Simulated data Experimental data
36.0 0.61 0.98 35.4 b (A? 2.88x10°2 3.03x 1072
38.1 0.60 0.91 38.3 ap (A) 9.58x10 2 9.83x10°?
39.9 0.59 0.86 40.8 a; (RY 0 0
41.9 0.58 0.80 43.8 a, (A) -1.28x107! -3.1x1072
43.7 0.58 0.75 46.8 as (A% 1.66x10°° -7x1074
459 0.57 0.70 50.4 a, (A™Y 6x10°1 1.3
47.8 0.57 0.65 53.8 as (A) 1.26x10° 3x10°t
49.7 0.56 0.61 57.6 ag (Ad 2x1073 -6x1073
51.7 0.56 0.57 61.7 a; (A% -5x107° -2x107°
53.7 0.55 0.53 66.1 X2 0.29 1.27
q (A" q (A"
30.2 314 331 354 385 42.8 48.9 41.7 442 48.5 53.8 61.2 715 87.7
0.10 . T Y . . T : 0.10 : . . " . . .
0.08 0.08 |-
0.06 — 0.06
< <
= =
O
i%': 0.04 E‘ 0.04 |
0.02 0.02 -
) —— 0.00
- -20
356 37.7 40.2 438 48.3 55.0 64.9 48.3 52.8 58.3 66.1 77.3 95.2 124.0
0.10 T . T . T . 0.10 . . T . . .
0.08 |- < 0.08 |- -
0.06 | : .. 006 .
< <
= =
Z ooalk i E o4l d
u_x 0.04 u_n:
0.02 - 0.02 i
0AOO-ZO : ‘ I — :” 0'00-20 ‘—-10 0 . 10 20
y (A" y (A"

FIG. 1. Simulated=(q,y) for ZrH, at four scattering angles,02=36.0°, 41.9°, 47.8°, 53.7°, are plotted as full square@jn(b), (c),
and (d), respectively. Continuous lines represent E@:"(q,y) functions calculated using the fitted parameters listed in Table Il. Both
simulated and fitted functions are resolution convoluted. The dashed lih nepresent$=>F(q,y) at the corresponding angle. Lower
abscissa is the scaling variablg,and top abscissa the momentum trander,
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generating the simulated dalte= 1/20°=0.0287 &, where

o is the Gaussian variance of the asymptotic scaling func-

tion. _ 0.10
In Fig. 1 F3™(q,y) resulting from the fit is com-

pared with F}(q,y) for four scattering angles @ 0.08

=36.0°, 41.9°, 47.8°, 53.7°). We note that the fit does re-

produce the simulated data very well in the whqgleange.

This implies that the truncation of the series expansion in Eq.

(6) up to the 1¢? term is a reasonable assumption. In this

figure we also observe that by increasing the scattering 2 004

angle, i.e.,q, recoil peak position moves towards=0,

while peak intensity increases. These findings originate from ¢

two separate contributions, one coming from the explicit

1/q and 142 terms in Eq.(6) and the other coming from the

g dependence of the resolution function which varies with

angle(see Table)l In particular the increase of peak height

by increasingy can be mainly ascribed to the better resolu-

tion achieved at higher angles. In Figdithe FSF(q,y) is

also reported, as a dashed line, to better show the change in

intensity specifically due to the resolution contribution at this oo 356 377 402 438 483 550 640

angle. ' ) ' ' '
In Fig. 2 the FSF(q,y) functions for three scattering

angles (#=36.0°, 41.9°, 53.7°) are plotted together with 0.08

the asymptotic scaling functiof;>™(y), and the individual .

-1
q(A™)
302 314 331 354 385 428 489

0.06

¥} (A)

F(a

contributions (14)F{\(y) and (16%)F{(y). We ob- 006

serve that, while recoiling peak moves towaxds0 by in- <

creasing scattering angles, also some change in peak intens g4
o

sity occurs, both effects being associated with the drid hrig
1/g? contributions. In particular, bearing in mind that
F(-1)(y) is an antisymmetric function anié_,)(y) a sym-
metric one, we observe that the peak shift comes from the
contribution due to the #/term in Eq.(6). In addition the
1/g term also produces some distortion in the shape of
the recoil peak. From the figure one can see at various
angles the individual contributions of @)/Ff‘f'lt)(y) and
(1/q2)F?’_F'2t)(y), describing the corrections to IA, their mag-
nitude andq dependence. Furthermore in order to show the 465 28 583 661 773 952 1240
relevance of the 4% term in expansiort6), we repeated the g
fitting procedure of the simulated data without this term, i.e.,
by imposinga,=as=ag=a;=0. In this case the quality of
the fit is worse §? becomes 0.45and the parametdy be-
comes 0.0291 0.0001 A2, no more so close to the expected 0.08
valueb=0.0287 &. <
The excellent agreement between simulated data and the§ 0.04
fit shown in Fig. 1 at each value and in the asymptotic limit &
implies the reliability of the procedure we have used to de- ;4
rive theF(y) function and allows us to apply it to other more
general cases. As an example in the next section this proce-
dure will be applied to neutron experimental data of ZrH

0.00

0.08

-20 . -10 . 0 . 10 . 20
B. Analysis of the experimental data

DINS experiment on polycrystalline ZrfHat T=20 and

290 K were performed using the eVS spectrometer at the g 5 FsFi(qy) (continuous ling is compared with

ISIS faClllty at Rutherford Appleton Laborator&UK).7’32 Fs,Fit(y) (dashed ling (1/q)FS,F:IE (y) (dot-dashed ling and
The two sets of data have been analyzed together, since the;q2) FFa(y) (dotted ling for (20)=36.0°, 41.9°, 53.7°, ina),

proton is effectively restricted to the ground state at bothy), and (c), respectively. All functions are without the resolution
these temperaturdéThe eVS is an inverse geometry instru- component.

ment operating for inelastic-neutron-scattering experiments

with incident energies in the range 1-100 eV. The scatterethe spectrometer and data analysis procedure are described
neutrons are analyzed using a resonance absorptiofefgil  fully elsewhere?? In this spectrometer different components
gold) which defines the final neutron energies. Details aboutontribute to the experimental resolution, the most important
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a(A™ q (A"

30.2 31.4 33.1 354 38.5 428 489 M7 44.2 48.5 53.8 61.2 71.5 87.7
0.10 T T T T T T T 0.10 T T T T T T

0.06

2 S
> =
o =
£ 004 =
[:4

Ll_n: u.

0.02

0.00 WAL

. : . : : : : . . . 6 1093
0.10 : . : : : : . 040 : . : . , .

Frla.y) (A)
Fra.y) (A)

y (A

FIG. 3. ExperimentaFg{(q,y) for ZrH, at four scattering angles. The experimental data #®+36.0°, 41.9°, 47.8°, 51.7° are plotted
as full squares ifia), (b), (c), and(d), respectively. Continuous lines representf#&™(q,y) functions calculated using the fitted parameters
listed in Table Il and resolution convoluted.

of which comes from the intrinsic energy width of the reso- 1 dy)
nance foil. The latter is well described by a Lorentzian func- n(p)=—
tion and experimentally determined by measuring the recoil

scattering from heavy atonié.The other resolution compo- obtaining

nents, coming from the uncertainties in time and in incident

and scattering lengths, are instead well described by Gauss- _ aoh 2
ian functionst® Overall the resolution function for the spec- n(p)=—-exp(=bp?).
trometer is well described by a Voigt function with the indi- ) )
vidual components at various angles listed in Table I. Thdn Figs. 3a), 3(b), 3(c), and 3d) Fg{(q,y) for four different
same procedure used in the previous section for the analyskattering angles are compared with #g“™(q,y) func-

of the simulated data is now employed for experimental datdions. Although the experimental data are somewhat scat-
at ten scattering angles, in the rang@0<y<20 A~1, fora  tered around their fitting values, in particular at high momen-
total number of 2300 points. As previously, a best fit of thetum transfer, an overall good agreement is seen on the whole
data is obtained by allowing just one Gaussian function foid range. In Fig. 4 the experimental scaling function
F(y) with best fit parameters listed in Table Il. We note thatF**"(g.y) is plotted together with the asymptotic scaling
the parameterb for the asymptotic scaling function function, F®F{y), and the individual contributions
(b=0.0303t0.0004 &) is almost identical to the one cor- (1/q)F'ff‘f')t(y) and (1112)Fff'§')t(y) for three scattering
responding to the simulated data. Therefore one can arguegles (#=36.0°, 41.9°, 51.7°). Overall effects similar to
that the harmonic model used for the interaction potentiathose already noted for the simulated data can be observed: a
works. As a consequence, the asymptotic scaling functioshift of the peak positions towardg<O values for the
F(y) can be identified withJ(y) of Eq. (5) and then the smaller angles and some contributions from the
momentum distributiom(p) can be easily derived through g-dependent terms, even at the highest angles. These effects

2my dy with p=ly| 17)

(18
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q (A"

302 314 331 354 385 428 489
0.10 . T " - ; ~ :

0.08 (a)

0.06

0.04

Fla.y) (A)

0.02

0.00

20

0.10

0.06

0.04

Fa.y) (A)

0.00

Fla.y) (A)

-20 . -10 . 0 10 . 20
y (AT

FIG. 4. F®F{q,y) (continuous ling is compared with
Fe*Fi(y) (dashed ling (1/q)F‘ff’f;t(y) (dot-dashed line and
(1/q2)F?f'§;t(y) (dotted ling for 26=36.0°, 41.9°, 51.7°, ina),
(b), and(c), respectively. All functions are without the resolution
component.

larger for the experimental data as compared to the simulated
ones.

V. DISCUSSION AND CONCLUSION

We have shown that a scaling function described by a
series expansion in d/ which incorporate=(y), F_1)(y),
and F_,)(y) with appropriate Gaussian and polynomial
shapes, can be used to fit, in a widerange, neutron-
scattering data in the DINS regime. Initially we have applied
our procedure to a set of simulated data on Zikhd have
been able to correctly reproduce tid€q,y) functions at
each individual angle; further from the fitted parameters, we
have obtained, together with the asymptotic scaling function,
both F(_1y(y) and F(_,)(y). The coincidence of the ob-
tainedF(y) with the asymptotic scaling function of the har-
monic model can be regarded as an internal consistency for
our method of analysis, thus indicating that this procedure
itself can be applied, in a more general way, to a wide variety
of systems with the aim of extracting the asymptotic scaling
function from experimental data at finite When applying
our method to a generic system the analysis procedure con-
sists of performing a fit of the experimental data using ex-
pansion(6) for the response function; if a good description
of the data is obtained, this means that the experimental data
do scale and one is entitled to interpFety) as the asymp-
totic scaling function. In the hypothesis that the 1A holds
[e.g., if the interaction potential satisfies the conditions for
identifying F(y) with J(y), see Sec. lland that the system
is isotropic, from the asymptotic scaling function one can
then obtain the atomic momentum distribution and the mean
kinetic energy of the target aton{E,), determined as the
second moment afi(p). For some systems it can occur that
possible forms of the interaction potential are proposed, but a
rigorous demonstration of the validity of IA is not available.
However, also in these cases one can try to usgEf.and
to compare the result with the theoretical momentum distri-
butions obtained from the proposed potentials. In conclusion
the domain of applicability of our procedure is a matter that
cannot bea priori defined, but has to be checked in any
specific case.

Some authors analyze the inelastic-neutron-scattering data
by symmetrizingFg{(q,y) with respect toy=0 in order to
retrieve the asymptotic scaling function, in the hypothesis
that scaling violating effects are essentially due to the 1/
term and therefore are an odd functionyof® On the con-
trary in this paper we have showiee Sec. Y that the
contribution coming from the §? term, although small, in
general can not be negligible. Indeed in the case of simulated
ZrH, data the absence of thegt/term in Eq.(6) leads to an
asymptotic scaling function with a variance different from
that of the harmonic model.

Once theF_1)(y) andF_5)(y) functions have been ob-
tained applying the procedure described in this paper, a sepa-
rate question arises about the physical interpretation of both

are a fingerprint of existing deviations from IA, that although 1/q and 162 terms in the series expansion. However, this is

small here, are not negligible, even @60 A 1. Indeed

beyond the aim of the present work and is a matter which

Table Il shows that while the parameters pertaining to theneeds to be addressed depending on the specific system un-

1/q term are smaller, the parameters of thg?lferm are

der study.
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