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ABSTRACT  

 

Objective:  To design a precision medicine approach aimed at exploiting significant patterns in data, in order to 

produce venous thromboembolism (VTE) risk predictors for cancer outpatients that might be of advantage over 

the currently recommended model (Khorana score). 

Design:  Multiple kernel learning (MKL) based on support vector machines (SVM) and random optimization 

(RO) models were used to produce VTE risk predictors [referred as Machine-Learning (ML)-RO] yielding the 

best classification performance over a training (3-fold cross validation) and testing set. 

Results:  Attributes of the patient dataset (n=1179) were clustered into 9 groups according to clinical 

significance. Our analysis produced 6 ML-RO models in the training set, which yielded better likelihood ratios 

(LRs) than baseline models. Of interest, the most significant LRs were observed in two ML-RO approaches not 

including the Khorana score (ML-RO-2: +LR=1.68, -LR=0.24; ML-RO-3: +LR=1.64, -LR=0.37).  The enhanced 

performance of ML-RO approaches over the Khorana score was further confirmed by the analysis of the areas 

under the Precision-Recall curve (AUCPR), which were superior in the ML-RO approaches (best performances: 

ML-RO-2: AUCPR=0.212; ML-RO-3-K: AUCPR=0.146) compared to the Khorana score (AUCPR=0.096).  Of 

interest, the best fitting model was ML-RO-2, in which blood lipids and body mass index/performance status 

retained the strongest weights, with a weaker association with tumor site/stage and drugs.  

Conclusions:  Although the monocentric validation of the presented predictors might represent a limitation, 

these results demonstrate that a model based on MKL and RO may represent a novel methodological approach 

to derive VTE risk classifiers. Moreover, this study highlights the advantages of optimizing the relative 

importance of groups of clinical attributes in the selection of VTE risk predictors. 
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INTRODUCTION 

In recent years, the approach to medicine has been pressured by a growing availability of electronic health 

records (EHR) and by the consequent demand to provide precision medicine, especially in oncology, where the 

development of targeted therapies might improve treatment delivery and clinical outcome. 

A major challenge that oncologists are facing is the risk assessment of chemotherapy-associated venous 

thromboembolism (VTE), which may result in treatment delays with detrimental effects on disease outcome.1   

Nonetheless, all current consensus guidelines do not recommend routine prophylaxis for the primary 

prevention of VTE in chemotherapy-treated cancer out-patients2,3 although “it may be considered for selected 

high-risk patients”.3 Thus, selecting patients for prophylactic anticoagulation is perceived as a growing 

necessity in cancer patient management, fostering the demand for risk assessment models. 

However, predicting VTE risk for cancer patients is a compelling challenge where precision medicine can 

play a crucial role, as VTE risk differs not only among patients, but even in the same patient over the course of 

cancer natural history.4,5,6  In 2008, Khorana and colleagues proposed a VTE risk assessment model that uses a 

combination of routinely available variables.7  To date, the Khorana score (KS) is the sole model available for 

VTE prediction in chemotherapy-treated cancer outpatients.  Hence, it has been proposed in recent guidance 

statements.8 Nonetheless, although validated by some independent groups,9,10 others did not,11,12,13 as the KS 

fails to classify >50% of patients (intermediate risk), in whom clinical decision making remains challenging.  

Expanded risk scoring models, including biomarkers,9 or anti-cancer drug,14 were proposed to implement KS, 

but VTE risk prediction for chemotherapy-treated cancer outpatients remains sub-optimal. 

A solid base on which to build a precision medicine tool in oncology is represented by Machine-Learning 

(ML),15-19 which can derive patterns in clinical and biochemical knowledge20 and has been previously applied to 

learn VTE risk predictors in the general population.21  

Therefore, aim of the present study was to analyze the performance of a multiple kernel machine learning 

(MKL) model that combines support vector machines (SVM),22,23 and random optimization (RO)24 to produce 
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VTE risk predictors in a population of consecutive ambulatory cancer patients representative of a general 

practice cohort. These predictors exploit significant patterns in data – connoting causality between individual 

features and VTE – and can be used in the development of a clinical decision support system for VTE risk 

stratification prior to chemotherapy start. 
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METHODS 

Learning VTE Risk Predictors within a Precision Medicine Approach 

To deal with heterogeneity of clinical attributes, our methodology is based on a MKL model25,26 that 

combines SVM22 to learn classifiers and RO24 to devise relative importance of different groups of clinical 

attributes in final predictions.  

Based on MKL our VTE risk predictors are binary classifiers that have to determine whether patients 𝑥 will have 

an high-risk to develop a VTE event in the future (y=1) or not (y=-1). In Equation 1, 𝑠𝑔𝑛(𝑧) is the sign function 

that is 1 if 𝑧 > 0 and -1 if 𝑧 < 0, patients 𝑥 are represented with their clinical attributes  𝑥⃗ = (𝑥1, … , 𝑥𝑛) 

divided in groups 𝑥⃗ = [𝑔⃗1, 𝑔⃗2, … , 𝑔⃗𝑁], 𝑤𝑖⃗⃗⃗⃗⃗ are the decision hyperplanes for each group of attributes, and 𝛼𝑖 are 

the relative weights of the groups of attributes 𝑔⃗𝑖.  Using 𝛼𝑖, these VTE risk predictors take into account the 

heterogeneity of clinical attributes. 

VTE risk predictors are learned with an n-fold cross validation on a training set that allows to derive 

parameters 𝛼𝑖 with RO by optimizing the F-measure of classifiers 𝑓(𝑥) whose decision hyperplanes 𝑤𝑖⃗⃗⃗⃗⃗ are 

learned with SVM. F-measure is defined as: 

F-measure =  
2𝑃𝑅

𝑃 + 𝑅
 

that is a harmonic mean of positive predictive value (PPV) and sensitivity, which are called Precision (P) and 

Recall (R) in ML. As RO depends on the initial seed, we run the learning multiple times. Predictors are then 

sorted according to their decreasing F-measure on the training set. 

To assess their validity, learned VTE risk predictors are evaluated on a separated testing set.  

𝑓(𝑥) =  𝑠𝑔𝑛 (∑ 𝛼𝑖〈𝑤𝑖⃗⃗⃗⃗⃗, 𝑔𝑖⃗⃗⃗⃗ 〉

𝑁

𝑖=1

+ 𝑏) 
(1) 
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Our method to find the best VTE risk predictors has two major benefits: first, it selects the best predictors 

on training data; second, it determines relative weights  𝛼𝑖 among groups of clinical attributes. These weights 

give useful insights on how predictors take their decisions. 

Patient dataset for VTE risk assessment 

Patient dataset was attained by joint efforts between the PTV Bio.Ca.Re. (Policlinico Tor Vergata 

Biospecimen Cancer Repository) and the BioBIM (InterInstitutional Multidisciplinary Biobank, IRCCS San 

Raffaele Pisana), and consisted of 1179 consecutive ambulatory cancer patients with primary or 

relapsing/recurrent solid cancers, who were prospectively followed under the Institutional ethics approval in 

accordance with the principles embodied in the Declaration of Helsinki.  All patients were required to be at the 

start of a new chemotherapy regimen and no patient received thromboprophylaxis.  Eligibility criteria are 

detailed in Supplementary Table 1.  Clinical characteristics and laboratory attributes of patients are 

summarized in Supplementary Table 2. 

All patients received specific anti-cancer treatment, with or without supportive care agents, according to 

guidelines for cancer treatment by site. All patients were regularly seen at the Medical Oncology ward of the 

Department of Systems Medicine, PTV, at time of scheduled chemotherapy visits, or at the occurrence of 

clinically suspected VTE.  Deep venous thrombosis (DVT) or pulmonary embolism (PE) were diagnosed as 

previously reported.6  During a 1-year median follow-up, VTE occurred in 8% (29 PE and 65 DVT) of patients 

(median time-to-event 3 months).  Thirty-four (2.9%) patients had a previous history of VTE, and 5 (0.4%) had 

concurrent DVT on the first week of treatment.  Forty-one of 94 events were incidentally diagnosed (16 PE and 

25 DVT) at time of restaging.  Competing mortality at 6 months was approximately 2%, and 25 patients without 

VTE died of their disease during this timeframe. 

Experimental settings 

To test our methodology and default methods, the patient dataset was used as follows: 1) clinical attributes 

were clustered in 9 groups; 2) the patient dataset was randomly divided in training and testing set, 3)  values 𝑥 
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of continuous clinical attributes c were rescaled with functions 𝑓(𝑥) =  −0.5 + (𝑥 − 𝑚𝑐) (𝑀𝑐 − 𝑚𝑐)⁄  where 

𝑚𝑐 and 𝑀𝑐 are the minimal and the maximal values of c in the training set; 4) missing clinical attribute values 

were treated according to (Predictive) Value Imputation (PVI) method by replacing missing values with the 

average of the attribute observed in the training set.27 

Group clustering was performed according to the clinical significance of the attributes included in the 

patient dataset.  In particular, demographic variables and tumor site/stage were individually considered given 

their importance as risk factors for VTE.5,28  Hematological attributes, including blood cell counts,8,29 and 

neutrophil and platelet to lymphocytes ratios,30 were grouped together.  Similarly, individual attributes 

concerning fasting blood lipids, glycemic indexes and liver and kidney function were clustered within three 

individual groups.  Body mass index (BMI) and Eastern Cooperative Oncology Group Performance Status 

(ECOG-PS) were considered within the same group.  Supportive and anti-cancer drugs were collectively 

considered under the definition of “drugs”.  Details on groups of clinical attributes are reported in Figure 1. 

To learn our VTE risk predictors, the patient dataset was randomly divided in two needed sets:  

1) training set: 70% of the cases were used to learn risk predictors with SVM and to optimize the 

parameters 𝛼𝑖 with RO with a 3-fold cross validation (see Equation 1) 

2) testing set: 30% of the cases were used to test the learned risk predictors 

We performed 5 different learning sessions on the training set with 5 different RO initializations (Table 2). 

The final performance was then evaluated on the separated testing set (see Table 3). Experiments were 

performed including or not the KS.  

Statistical analysis 

Machine Learning used for the primary analysis was run on KELP.31  Bayesian analysis was performed, and 

positive (+LR) and negative (-LR) likelihood ratios were used to estimate the probability of having or not VTE, 

using a free web-based application (http://statpages.org/). Time-to-event was calculated from the enrolment 

date until VTE or the most recent follow-up visit. VTE-free survival curves were calculated by the Kaplan–Meier 
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method and the significance level was assessed by log-rank test using a computer software package (Statistica 

8.0, StatSoft Inc., Tulsa, OK). For administrative censoring VTE was considered to be an event if occurring during 

chemotherapy administration, but not subsequent follow-up. 

This study had no external funding source.   
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RESULTS 

The weights 𝛼𝑖 of groups of clinical attributes for the ROs models are reported in Table 1.  Tables 2 and 3 

summarize the results achieved using the risk predictors selected on the training and testing sets out of 5 runs 

obtained with RO using (ML-RO-1-K through ML-RO-5-K), or not (ML-RO-1 through ML-RO-5) the KS, and 4 

different baseline models: 1) Khorana k≥3: pure KS with cutoff at 3;8 2)  Khorana-ML: a SVM VTE event 

predictor trained with a polynomial kernel of degree 2 that uses only the KS as feature; 3) Basic-ML-K; 4) Basic-

ML. The two latter predictors are SVM VTE predictors where each group of clinical attributes has the same 

weight: Basic-ML-K uses KS and Basic-ML does not use it. 

As shown in Table 2, a ML approach with RO was capable of improving VTE risk prediction compared to 

Khorana k≥3 or Khorana-ML as demonstrated by a substantial improvement of the f-measure, translating in 

comparable precision (or positive predictive value – PPV) and considerably higher recall (or sensitivity) values. 

To better characterize the performance of the proposed method, +LR and -LR were calculated for all ML-RO 

model in comparison with Khorana k≥3 or Khorana-ML.  As shown in Table 2, the LRs achieved using the KS 

(with or without a ML approach) were not significant in terms of VTE risk prediction.  Conversely, all ML-RO 

models including the KS resulted in an overall improvement of the LRs for VTE risk prediction, whereas the ML-

RO approaches, not including the KS, yielded significant results in ML-RO-1 (p<0.0001) and ML-RO-3 (p=0.015), 

and ML-RO-4 (p=0.007), but not in the other ML-ROs (Table 2). 

When the algorithm was applied to the testing set, among all ML models including the KS the best fitting 

model was represented by ML-RO-3-K (+LR=1.52, -LR=0.55; p=0.017) (Table 3).  On the other hand, the ML 

approach not including the KS yielded the best results in ML-RO-2 (ML-RO-2: +LR=1.68, -LR=0.24; p<0.0001). 
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Table 1: Weights 𝜶𝒊 of groups of clinical attributes for the different models 

Method Sex Age Tumor site 
& stage 

BMI & ECOG Hematology 
 

Liver & 
kidney function 

Glycemic asset Blood lipid 
pattern 

Drugs Khorana 
Score 

Khorana-ML 0 0 0 0 0 0 0 0 0 1 

Basic-ML-K 1 1 1 1 1 1 1 1 1 1 

ML-RO-1-K 0.0963 0.0604 0.2218 0.9787 0.1161 0.0117 0.2334 0.0543 0.6735 0.0267 

ML-RO-2-K 0.0205 0.0304 0.8914 0.0577 0.0684 0.0256 0.0136 0.6652 0.1003 0.0000 

ML-RO-3-K 0.0581 0.0190 0.2437 1.2319 0.2636 0.2253 0.1265 0.3052 0.0523 0.0596 

ML-RO-4-K 0.1905 0.0048 0.9769 0.0116 0.4515 0.5668 0.4381 0.0619 0.0081 0.0906 

ML-RO-5-K 0.0962 0.1390 0.5158 0.0326 0.0148 0.4563 0.1417 0.0823 0.4154 0.0401 

Basic-ML 1 1 1 1 1 1 1 1 1 0 

ML-RO-1 0.0170 0.0035 0.1157 0.0538 0.0025 0.2511 0.7096 0.0046 0.1891 0 

ML-RO-2 0.1241 0.1144 0.3129 0.7672 0.0973 0.1420 0.0488 1.0548 0.2636 0 

ML-RO-3 0.1253 0.7654 0.2521 0.1808 0.0149 0.0616 0.0000 0.6499 0.3054 0 

ML-RO-4 0.4300 0.0023 0.0924 0.5372 0.1270 0.3742 0.3055 0.3222 0.3853 0 

ML-RO-5 0.5643 0.1205 0.1957 0.4045 0.0539 2.62E-06 0.9197 0.0057 0.1174 0 
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Table 2: Results of basic predictors and predictors based on machine-learning with random optimization – Results on 

training set – ML-RO models are ranked according to F-Measure. 

Method Precision 
(PPV) 

Recall 
(Sensitivity) 

F-measure +LR (95%CI) -LR (95%CI) 

Khorana (k>=3)* 0.122 0.075 0.093 1.59 (0.56-3.99) 0.97 (0.87-1.02) 

Khorana-ML 0.122 0.075 0.093 1.57 (0.55-3.95) 0.97 (0.88-1.02) 
      

Basic-ML-K 0.096 0.642 0.167 1.21 (1.00-1.39) 0.68 (0.43-1.00) 

ML-RO-1-K 0.126 0.761 0.217 1.57 (1.27-1.84) 0.54 (0.35-0.77) 

ML-RO-2-K 0.119 0.791 0.207 1.45 (1.22-1.62) 0.46 (0.27-0.73) 

ML-RO-3-K 0.115 0.687 0.197 1.40 (1.10-1.69) 0.69 (0.48-0.92) 

ML-RO-4-K 0.110 0.776 0.192 1.33 (1.05-1.59) 0.71 (0.49-0.96) 

ML-RO-5-K 0.107 0.776 0.189 1.25 (1.03-1.44) 0.65 (0.41-0.96) 
      

Basic-ML 0.091 0.537 0.155 1.24 (0.99-1.48) 0.74 (0.51-1.02) 

ML-RO-1 0.117 0.716 0.202 1.58 (1.30-1.80) 0.48 (0.30-0.72) 

ML-RO-2 0.115 0.731 0.198 1.15 (0.89-1.41) 0.85 (0.60-1.12) 

ML-RO-3 0.115 0.702 0.197 1.33 (1.05-1.58) 0.69 (0.48-0.95) 

ML-RO-4 0.114 0.627 0.193 1.50 (1.19-1.77) 0.61 (0.42-0.85) 

ML-RO-5 0.111 0.672 0.191 1.09 (0.84-1.33) 0.91 (0.65-1.19) 

 

*Patients with brain cancer (n=5) were excluded from the analysis (Khorana score not applicable) 

+LR: positive likelihood ratio 

-LR: negative likelihood ratio 
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Table 3: Results of basic predictors and predictors based on machine-learning with random optimization – Results on 

testing set –  ML-RO models are ranked according to F-measure on the training set (see Table 2) 

Method Precision 
(PPV) 

Recall 
(Sensitivity) 

F-measure +LR (95%CI) -LR (95%CI) 

Khorana (k>=3)* 0.136 0.111 0.122 1.90 (0.46-6.05) 0.94 (0.76-1.04) 

Khorana-ML 0.136 0.111 0.122 1.91 (0.46-6.08) 0.94 (0.76-1.04) 
      

Basic-ML-K 0.099 0.852 0.177 1.33 (1.01-1.50) 0.41 (0.13-0.99) 

ML-RO-1-K 0.105 0.741 0.184 1.43 (1.01-1.73) 0.54 (0.24-0.99) 

ML-RO-2-K 0.100 0.778 0.177 1.35 (0.98-1.60) 0.53 (0.22-1.03) 

ML-RO-3-K 0.112 0.704 0.193 1.52 (1.05-1.90) 0.55 (0.27-0.95) 

ML-RO-4-K 0.100 0.667 0.174 1.35 (0.91-1.71) 0.66 (0.34-1.09) 

ML-RO-5-K 0.096 0.778 0.171 1.29 (0.94-1.53) 0.56 (0.23-1.10) 
      

Basic-ML 0.078 0.593 0.137 1.02 (0.66-1.35) 0.97 (0.44-1.50) 

ML-RO-1 0.082 0.556 0.143 1.08 (0.68-1.47) 0.91 (0.53-1.36) 

ML-RO-2 0.122 0.889 0.214 1.68 (1.29-1.86) 0.24 (0.06-0.65) 

ML-RO-3 0.119 0.815 0.208 1.64 (1.21-1.90) 0.37 (0.14-0.78) 

ML-RO-4 0.092 0.593 0.159 1.23 (0.79-1.63) 0.79 (0.44-1.21) 

ML-RO-5 0.108 0.741 0.188 1.46 (1.03-1.77) 0.53 (0.24-0.96) 

 

*Patients with brain cancer (n=2) were excluded from the analysis (Khorana score not applicable) 

+LR: positive likelihood ratio 

-LR: negative likelihood ratio 
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Finally, the improvement of the ML approach with RO was confirmed by plotting recall vs. precision for 

the different systems on the test.  Figure 2 reports the recall vs. precision curves for the basic and the two 

best fitting models.  As shown, ML-RO-2 was the best predictor with an area under the precision-recall 

curve (AUCPR) of 0.212). 

 As the probability of VTE occurrence during chemotherapy is also a function of time (being maximal 

during the first 6 months of treatment)5,6 we finally performed a survival analysis by the Kaplan–Meier 

method with log-rank test.  Figure 3 reports the Kaplan–Meier curves for patients in the testing set 

stratified on the basis of Khorana k≥3 and the two best fitting ML-RO models.  As shown, despite a high 

precision, the KS used at a cut-off ≥3 points, as currently recommended,8 resulted in a 6-month VTE-free 

survival rate not significantly different from that of low-risk patients (Figure 2A).  On the other hand, 

optimizing the relative weight of groups of clinical attributes resulted in a substantial improvement of VTE 

risk prediction.  In particular, patients classified at-risk with ML-RO-2 (Figure 3C) had a significantly lower 6-

month VTE-free survival compared to patients classified as low-risk. 
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DISCUSSION  

The present study was designed to investigate the performance of ML as a novel methodological 

approach to derive a VTE risk classifier in chemotherapy-treated cancer outpatients.  In the algorithm here 

presented, we applied a combined approach of kernel machines and RO of performance of binary 

classifiers, hypothesizing that this method would have found combination of attributes yielding the best 

classification performance of our predictors over a testing set. The predictive value of our learned models 

was also compared with the Khorana’s risk assessment tool. 

The results obtained demonstrated, for the first time to our knowledge, that this approach can be 

advantageous in VTE risk assessment and allowed us to draw some interesting considerations.  

First, the analysis of clinical/biochemical variables identified several risk factors, not previously included 

in VTE risk models (i.e. blood lipids or ECOG-PS), as evidenced by attributes’ weights (Table 2).  Moreover, 

ML models using all clinical attributes (Basic-ML-K, Basic-ML and ML-ROs) showed better F-measures and 

LRs than generic models (pure KS and Khorana-ML), as verified on the training and, more importantly, on 

the testing set. Using additional clinical attributes is thus promising. 

Second, ML-ROs, which optimize the relative importance of groups of clinical attributes, appeared 

extremely useful in selecting better VTE risk predictors. It is obvious that on the training set f-measures of 

ML-ROs were better than Basic-ML as RO was performed on the training set. It is less obvious that ML-ROs 

generally outperformed Basic-MLs on the testing set in terms of f-measure. 

Most importantly, best scoring models in terms of both f-measure and LRs were also clinically plausible, 

as demonstrated by the finding that blood lipids and BMI and ECOG-PS retained the strongest weight both 

in ML-RO-3-K and in ML-RO-2 (Table 2). This is consistent with data showing that HDL-cholesterol32 and 

ECOG-PS28,30 might be good predictors of increased VTE risk in chemotherapy-treated cancer patients. 

Moreover, the ML-RO-2 model showed a weak association with tumor site and stage, and with drugs, which 

is not surprising, since these variables have been previously related with increased VTE risk.7,11 Undeniably, 

advanced cancer, either locally (regional) or distant,33 has been considered as a risk factor for VTE, and anti-

cancer drugs may act as thrombotic triggers.6,34  One major criticism raised to KS is that it does not consider 
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treatment-related risk of VTE, at a point that certain anti-cancer agents have been proposed to be used to 

implement KS.11 

Of course, we must acknowledge the low performance of both KS and ML-RO predictors in our model, 

either in terms of PPV or f-measures. This could be explained by the fact that this kind of dataset is 

extremely unbalanced. Indeed, VTE occurred only in 8% of the cases (in line with literature), which renders 

the application of ML models extremely difficult, consistently with Larrañaga et al.19 Previous studies in 

general population showed better predictive performance,21 but the test set used generally consisted of 

VTE cases paired to non-VTE controls. Our study cohort, instead, consisted of out-patients consecutively 

enrolled, in whom all VTE events were prospectively recorded during chemotherapy. Moreover, while in 

hospitalized patients cancer is connoted as one of the risk factors for VTE, in an out-patient population, as 

our, the attribute “cancer” is expanded into several clinical attributes (i.e., site and stage or anti-

cancer/supportive drugs) that portend different degrees of risk, and might “weight” differently in the 

context of a ML algorithm. 

There are, of course, some limitations to acknowledge.  First, the model here reported was designed 

and validated on a dataset, which was not extracted from the EHR of single patients, due to privacy 

restrictions in reference to identifiable individuals, as the Medical Oncology Unit stores EHRs under data 

protection legislation. These records, however, are highly customized into structured and non-structured 

fields including demographics, medical and family history, vital signs, medications, diagnostics and follow-

up updating. Thus, all variables necessary for prediction are easily extractable from EHRs, once the model is 

validated for clinical use, as recently demonstrated by Lustig et al., who implemented KS with EHRs 

extraction to readily stratify at-risk patients.36  Although glycemic profile and blood lipid pattern might not 

be always included in the pre-chemotherapy patient workout, we should take into consideration that these 

analytes are easy to perform and relatively inexpensive. This facilitates their inclusion in a validated clinical 

model with a negligible increase in health care costs.  

Another limitation might reside in the fact that the study was monocentric.  However, primary aim of 

this study was not to present a new classifier that other Centers can adopt, but rather to propose the 
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application of ML approach in VTE risk assessment models.  Here, we demonstrate that the use of ML 

algorithms and RO models might be useful in developing local classifiers capable of improving the original 

KS, while retaining other advantages (e.g., recalculation based on data advance over time) in a perspective 

of precision medicine.  Presently, we are involved in the development of an operator-friendly web 

interface, whose server component calculates VTE risk based on ML-RO-2 and returns to the client a binary 

information on risk (yes/no). 

 
 

CONCLUSIONS 

In conclusion, a ML approach might represent a suitable approach to VTE risk prediction by taking into 

consideration individual biological variability, environmental exposure and lifestyle, in a context of 

precision medicine.  This is particularly appealing in a Big-Data scenario, in which clinical/biochemical 

attributes, routinely collected in EHRs, may be all used to design new tools for clinical decision making.  

Indeed, the method we propose to find the optimal VTE predictors has the unquestionable advantages of 

selecting the best predictors on training data and to determine the relative weights between groups of 

clinical attributes.  Furthermore, it demonstrates that other variables must be considered in VTE risk 

evaluation, thus strengthening the concept that data should not be considered singularly but in a more 

general association, as advocated by precision medicine. 

This risk stratification approach well fits with others who identified the need of developing new 

guidelines or of identifying topics deserving further ad hoc clinical trials,37 and might help in filling the gap 

left by current guidelines concerning VTE prophylaxis.  

Ongoing research involves: 1) the use of other optimization methods such as simulated annealing and 

genetic algorithms; 2) the development of a web server interface using the proposed algorithm and its 

external validation by collaborating oncology wards. Nonetheless, the results here reported add further 

evidence to the rising idea that locally trained models may be of advantage over the classic scoring 

schemes, which, in time, can lose their prediction value and become less accurate. 
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FIGURE LEGENDS 
 

Figure 1.  Groups of clinical attributes.  NLR: Neutrophil/lymphocyte ratio; PLR: platelet/lymphocyte ratio; 

BMI: body mass index; ECOG-PS: Eastern Cooperative Oncology Group Performance Status; 

eGFR: estimated glomerular filtration rate. The group “Drugs” includes all supportive and anti-

cancer agents listed in Supplementary Table 2. 

 

Figure 2.  Recall vs. Precision curves of the ML systems. The plot for Khorana was obtained by computing 

Recall and Precision for 4 cut-off values: 3 (the standard value), 2, 1 and 0.  Numbers in open 

rectangles report the Area Under the Precision-Recall Curve (AUCPR).  PPV: Positive Predictive 

Value. 

 

Figure 3. Kaplan–Meier curves of VTE-free survival of chemotherapy treated ambulatory cancer patients 

in the testing set.  Comparison between patients with low (dotted line) or high (solid line) risk of 

VTE based on a SVM VTE event predictor using only the KS as feature (Khorana-ML)(Panel A) or 

the two best fitting ML-RO models: ML-RO-3-K (Panel B) and ML-RO-2 (Panel C). 

 


