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Abstract: We present a lattice QCD computation of the b-quark mass, the B and Bs

decay constants, the B-mixing bag parameters for the full four-fermion operator basis as

well as determinations for ξ and fBq

√

B
(q)
i extrapolated to the continuum limit and to the

physical pion mass. We used Nf = 2 twisted mass Wilson fermions at four values of the

lattice spacing with pion masses ranging from 280 to 500MeV. Extrapolation in the heavy

quark mass from the charm to the bottom quark region has been carried out on ratios of

physical quantities computed at nearby quark masses, exploiting the fact that they have

an exactly known infinite mass limit. Our results are mb(mb,MS) = 4.29(12)GeV, fBs =

228(8)MeV, fB = 189(8)MeV and fBs/fB = 1.206(24). Moreover with our results for the

bag-parameters we find ξ = 1.225(31), B
(s)
1 /B

(d)
1 = 1.01(2), fBd

√

B̂
(d)
1 = 216(10)MeV and

fBs

√

B̂
(s)
1 = 262(10)MeV. We also computed the bag parameters for the complete basis of

the four-fermion operators which are required in beyond the SM theories. By using these

results for the bag parameters we are able to provide a refined Unitarity Triangle analysis

in the presence of New Physics, improving the bounds coming from B(s) − B̄(s) mixing.
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1 Introduction

Physical processes in the B-sector are crucial to perform accurate tests of the Standard

Model (SM) and search for possible signals of New Physics (NP). The experimental accu-

racy in flavour processes has recently been significantly increased by the B factories, and

new measurements are being performed, mainly thanks to the remarkable performance

of the dedicated experiment LHCb. On the theoretical side, lattice computations have

entered during the past few years a precision era, in which the target per cent precision

for some of the relevant hadronic parameters in Flavour Physics is becoming accessible.

In particular, in the study of B-physics processes, there has been substantial progress

thanks to alternative lattice methods and techniques aimed at treating the heavy quarks

on the lattice with controlled systematic uncertainties. For a recent review of lattice results

see ref. [1]. Lattice methods are irreplaceable for the calculation of the so called golden

plated processes since hadronisation effects are fully under control. They lead to accurate

determinations of decay constants, form factors and bag-parameters. For example, the

leptonic decays B → τντ and B0
(s) → µ+µ− receive precise input information from lattice

determinations of the B-mesons decay constants, that are necessary for the experimental

results to acquire their full physical interpretation. At present, the world average of the
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B-meson leptonic decays BR(B → τντ ) = (1.14 ± 0.22)10−4 [2–4], which is potentially

sensitive to NP effects already at tree level, turns out to be in agreement with the SM

prediction BR(B → τντ )SM = (0.81 ± 0.07)10−4 [5, 6], and also the recent measurements

of the B0
s → µ+µ− decay [7–10] have given a first, remarkable evidence of SM consis-

tency [11, 12, 6]. The neutral B-meson mixings, which can only occur at the loop level in

the SM, could be a privileged candidate process for detecting amplified NP effects, and in-

deed they play a crucial role in the Unitarity Triangle (UT) analysis (for recent results, see

for example [13–15]). While in the SM the frequency of the oscillations, ∆MB(s)
, receives

the contribution from a single four-quark operator, the knowledge of the bag-parameters

of the full four-fermion operator basis is required to get predictions in general NP exten-

sions of the SM. Two of these B-parameters also enter the SM prediction of the lifetime

difference ∆Γs of neutral Bs mesons, which has been recently measured rather precisely

by LHCb [16].

In this paper we use gauge configurations with Nf = 2 dynamical quarks at four values

of the lattice spacing, generated by European Twisted Mass Collaboration (ETMC), to

obtain the continuum limit results for a number of physical quantities that are relevant for

B-Physics. These are the b-quark mass mb, the pseudoscalar decay constants fB and fBs ,

and the bag-parameters of the full basis of ∆B = 2 four-fermion operators. In our previous

paper [17], we provided a determination of the b-quark mass and of the B-meson decay

constants obtained by studying the heavy quark on the lattice with the so called ratio

method, proposed in ref. [18]. The same strategy is also applied in the present study, and

the lattice calculation presented here is based on the same set of gauge configurations used

in our previous study. Nevertheless, several new results and improvements are presented

in this paper. The main novelties, with respect to ref. [17], are the following:

- We have computed the full set of B-parameters for the ∆B = 2 four-fermion opera-

tors, which are relevant for B-meson mixings, within and beyond the SM, and for the

theoretical predictions of the neutral B-meson lifetime differences ∆Γ(s). For the full

set of B-parameters, this is the first lattice calculation which takes into account the

effect of dynamical quarks (preliminary results obtained with Nf = 2 + 1 dynamical

quarks have been presented in [19]). We have used these results to provide a refined

Unitarity Triangle analysis improving the bounds coming from B(s)-meson mixing

constraints on NP.

- We have computed 2- and 3-point correlation functions by employing optimized

smearing techniques. Given the temporal extensions of our lattices, while the use

of smearing interpolating operators is mandatory to extract a signal for the B-

parameters from the 3-point correlation functions, the suppression of the excited

states contribution helps in improving also the determination of the b-quark mass

and the decay constants. For this reason, the results obtained in this paper for mb,

fB and fBs should be considered as an update of those given in ref. [17].

- One of the main sources of uncertainty in the determination of the decay constant

fB in ref. [17] was due to the chiral extrapolation. In this study, we reduce this

– 2 –
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uncertainty by making use of the observation that the double ratio of decay con-

stants (fBs/fB)/(fK/fπ) exhibits a much smoother chiral behavior with respect to

fBs/fB itself, due to a large numerical cancellation of the corresponding chiral log-

arithms [20]. Therefore, also in this respect, the present determinations of fBs/fB
and of fB represent an improvement over the results of ref. [17].

The plan of this paper is as follows. In section 2, based on the results of this work for

the ∆B = 2 bag parameters, we discuss the implications for NP of our updated Unitarity

Triangle analysis. In section 3 we give information about lattice simulation details and

we describe the techniques that have been used in this work. In sections 4 and 5 we

present and apply our strategy, namely the ratio method, in order to get continuum limit

determinations for the b-quark mass, pseudoscalar decay constants of the B and Bs mesons,

and the bag parameters for the full four-fermion operator basis, as well as other interesting

quantities like ξ and fBq

√

B
(q)
i (i = 1, . . . , 5 and q = d/s). In section 6 we summarise the

final results and discuss our error budget. We also provide some comparison plots between

our numbers and those obtained by other lattice collaborations.

For reader’s convenience we immediately give here our final results. For each quantity

the quoted error corresponds to the total uncertainty which is the sum in quadrature of

the statistical and systematic error.

The result for the b-quark mass is given in the MS scheme at the scale of its own value,

mb. We perform the running up to mb using either Nf = 2 or Nf = 4, we take the average

over the two results and we consider their half difference as a systematic uncertainty.1 We

get:

mb(mb,MS) = 4.29(12) GeV, (1.1)

Our results for the pseudoscalar decay constants for the B and Bs mesons as well as

for their ratio are:

fBs = 228(8) MeV (1.2)

fB = 189(8) MeV (1.3)

fBs

fB
= 1.206(24) (1.4)

As a by-product of our work we have computed the decay constants for the Ds and D

mesons as well as their ratio. They read:

fDs = 250(7) MeV, fD = 208(7) MeV, fDs/fD = 1.201(21). (1.5)

The most general form of the ∆F = 2 effective weak Hamiltonian is

H∆F=2
eff =

1

4

5
∑

i=1

CiOi +
1

4

3
∑

i=1

C̃iÕi, (1.6)

1See section 6 and eqs. (6.1) and (6.2).
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where in the so-called SUSY basis ([21, 22]) the four-fermion operators Oi and Õi read

O1 = [h
α
γµ(1− γ5)q

α][h
β
γµ(1− γ5)q

β ],

O2 = [h
α
(1− γ5)q

α][h
β
(1− γ5)q

β ],

O3 = [h
α
(1− γ5)q

β ][h
β
(1− γ5)q

α], (1.7)

O4 = [h
α
(1− γ5)q

α][h
β
(1 + γ5)q

β ],

O5 = [h
α
(1− γ5)q

β ][h
β
(1 + γ5)q

α],

Õ1 = [h
α
γµ(1 + γ5)q

α][h
β
γµ(1 + γ5)q

β ],

Õ2 = [h
α
(1 + γ5)q

α][h
β
(1 + γ5)q

β ], (1.8)

Õ3 = [h
α
(1 + γ5)q

β ][h
β
(1 + γ5)q

α].

For the neutral B-meson system h ≡ b and q ≡ d or s with α and β denoting color indices.

Spin indices are implicitly contracted within square brackets. The Wilson coefficients Ci

and C̃i have an implicit renormalization scale dependence which is compensated by the

scale dependence of the renormalization constants of the corresponding operators.

Notice that the parity-even parts of the operatorsOi and Õi are identical. Due to parity

conservation in strong interactions, for the study of B
0
q − B0

q oscillations it is sufficient to

consider only the matrix elements 〈B0
q |Oi|B0

q 〉, where by Oi (i = 1, . . . , 5) we denote the

parity-even components of the operators (1.7). We recall that in the SM only the matrix

element of the operator O1 is relevant.

The bag parameters, Bi (i = 1, . . . , 5), provide the value of four-fermion matrix ele-

ments in units of the magnitude of their vacuum saturation approximation. More explicitly,

they are defined by the equations [23, 24]

〈B0
q |O1(µ)|B0

q 〉 = C1B(q)
1 (µ) m2

Bq
f2Bq

(1.9)

〈B0
q |Oi(µ)|B0

q 〉 = CiB(q)
i (µ)

[

m2
Bq
fBq

mb(µ) +mq(µ)

]2

for i = 2, . . . , 5, (1.10)

with Ci = (8/3, −5/3, 1/3, 2, 2/3).

In table 1 we collect our results for the bag parameters (see eqs. (1.9) and and (1.10))

of the full operator basis (i.e. the parity even componenents of the operators in eq. (1.7))

in the RI/MOM scheme at the scale of the b-quark mass (eq. (1.1)). In table 2 we gather

results for the bag parameters expressed in the MS scheme of ref. [25] at the scale of the

b-quark mass. Also, in table 3 we give results for B
(d/s)
i with i = 2, 3, expressed in the

scheme of ref. [26] at the scale of the b-quark mass.

Our results for the SU(3)-breaking ratios B
(s)
1 /B

(d)
1 and ξ (see eq. (5.7)) are

B
(s)
1

B
(d)
1

= 1.01(2) (1.11)

ξ = 1.225(31) (1.12)

– 4 –
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(RI/MOM, mb)

B
(d)
1 B

(d)
2 B

(d)
3 B

(d)
4 B

(d)
5

0.84(4) 0.88(4) 1.10(18) 1.12(7) 1.89(16)

B
(s)
1 B

(s)
2 B

(s)
3 B

(s)
4 B

(s)
5

0.85(3) 0.91(4) 1.12(16) 1.10(5) 2.02(15)

Table 1. Continuum limit results of B
(d)
i and B

(s)
i (i = 1, . . . , 5), renormalized in the RI/MOM

scheme at the scale of the b-quark mass.

(MS–BMU, mb)

B
(d)
1 B

(d)
2 B

(d)
3 B

(d)
4 B

(d)
5

0.85(4) 0.72(3) 0.88(13) 0.95(5) 1.47(12)

B
(s)
1 B

(s)
2 B

(s)
3 B

(s)
4 B

(s)
5

0.86(3) 0.73(3) 0.89(12) 0.93(4) 1.57(11)

Table 2. Continuum limit results of B
(d)
i and B

(s)
i (i = 1, . . . , 5), renormalized in the MS scheme

of ref. [25] at the scale of the b-quark mass.

(MS–BBGLN, mb)

B
(d)
2 B

(d)
3 B

(s)
2 B

(s)
3

0.76(3) 0.87(13) 0.78(3) 0.89(12)

Table 3. Continuum limit results of B
(d)
i and B

(s)
i (i = 2, 3), renormalized in the MS scheme of

ref. [26] at the scale of the b-quark mass.

(MS, mb) [MeV]

i 1 2 3 4 5

fBd

√

B
(d)
i 174(8) 160(8) 177(17) 185(9) 229(14)

fBs

√

B
(s)
i 211(8) 195(7) 215(17) 220(9) 285(14)

Table 4. Continuum limit results of fBd

√

B
(d)
i and fBs

√

B
(s)
i (i = 1, . . . , 5). Bag parameters are

expressed in the MS scheme of ref. [25] at the scale of the b-quark mass.

– 5 –
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Finally, in table 4 we collect our results for the quantities fBq

√

B
(q)
i where q = d, s

and i = 1, . . . , 5. Again the bag parameters are expressed in the MS scheme of ref. [25]

at the scale of the b-quark mass. For convenience we also give our results for the SM

relevant quantities in which the bag parameters are expressed in the RGI scheme and we

have employed in the running Nf = 5 and Λ
(Nf=5)
QCD =213(9) MeV [27]. We get

fBd

√

B̂
(d)
1 = 216(10) MeV (1.13)

fBs

√

B̂
(s)
1 = 262(10) MeV (1.14)

The RGI values of the bag parameters corresponding to the SM four-fermion operators

read

B̂
(d)
1 = 1.30(6), B̂

(s)
1 = 1.32(5) (1.15)

2 Model-independent constraints on ∆B = 2 operators and NP scale

from the UT analysis

The Nf = 2 results obtained in this work for the bag parameters of the full basis of

∆B = 2 four-fermion operators represent the first unquenched determination of these

quantities. Besides the lattice studies of B1, which is relevant for B0 − B̄0 mixing in the

SM, a lattice result for B
(s)
2 has been obtained with Nf = 2 + 1 dynamical quarks in [28],

while preliminary results for the full basis with Nf = 2 + 1 have been presented in [19].

∆F = 2 processes provide some of the most stringent constraints on NP generalizations

of the SM. Several phenomenological analyses of ∆F = 2 processes have been performed

in the last years, both for specific models and in model-independent frameworks [29–39].

A generalization of the Unitarity Triangle (UT) analysis, which allows for NP effects by

including the most significant flavor constraints on NP available at the time was performed

in ref. [29]. The result was a simultaneous determination of the CKM parameters and

the size of NP contributions to ∆F = 2 processes in the neutral kaon and B(s) meson

sectors. The NP generalization of the UT analysis consists in including in the theoretical

parametrization of the various observables the matrix elements of operators which, though

absent in the SM, may appear in some of its extensions.

In a previous paper [39] we have presented the first (Nf = 2) unquenched, continuum

limit, lattice QCD results for the matrix elements of the operators describing neutral kaon

oscillations in extensions of the SM. In the same paper we have updated the UT analysis

allowing for possible NP effects, improving the bounds coming from K0 − K̄0 mixing

constraints.

In a similar way, we present here the Nf = 2 lattice QCD results for the bag parameters

of the full basis of ∆B = 2 four-fermion operators and we use them in updating the UT

analysis beyond the SM. The new ingredients entering the analysis are collected in table 2.

For all the other input data we use the numbers quoted in ref. [6] in the Winter 2013

analysis.

In the NP-oriented analysis, the relations among experimental observables and the

CKM matrix elements are extended by taking into consideration the most general form

– 6 –
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of the ∆F = 2 effective weak Hamiltonian, given in eq. (1.6). In the present analysis we

focus on ∆B = 2 processes. The effective weak Hamiltonian is parameterized by Wilson

coefficients of the form

Ci(Λ) =
FiLi

Λ2
, i = 2, . . . , 5 , (2.1)

where Fi is the (generally complex) relevant NP flavor coupling, Li is a (loop) factor which

depends on the interactions that generate Ci(Λ), and Λ is the scale of NP, i.e. the typical

mass of new particles mediating ∆B = 2 transitions. For a generic strongly interacting

theory with an unconstrained flavor structure, one expects Fi ∼ Li ∼ 1, so that the

phenomenologically allowed range for each of the Wilson coefficients can be immediately

translated into a lower bound on Λ. Specific assumptions on the flavor structure of NP

correspond to special choices of the Fi functions.

Following ref. [29], in deriving the lower bounds on the NP scale Λ, we assume Li = 1,

that corresponds to strongly-interacting and/or tree-level coupled NP. Two other inter-

esting possibilities are given by loop-mediated NP contributions proportional to either

α2
s or α2

W . The first case corresponds for example to gluino exchange in the minimal

supersymmetric SM. The second case applies to all models with SM-like loop-mediated

weak interactions. To obtain the lower bound on Λ entailed by loop-mediated contribu-

tions, one simply has to multiply the bounds we quote in the following by αs(Λ) ∼ 0.1 or

αW ∼ 0.03.

The results for the upper bounds on the |CBd

i | and |CBs

i | coefficients and the corre-

sponding lower bounds on the NP scale Λ are collected in tables 5 and 6, where they are

compared to the previous results of ref. [29]. The superscript Bd or Bs is to recall that we

are reporting the bounds coming from the Bd- and Bs-meson sectors we are here analyzing.

The constraints on the Wilson coefficients of the non-standard operators and, consequently,

on the NP scale turn out to be significantly more stringent than in ref. [29], in particular for

the Bs sector. Both experimental and theoretical inputs have been updated with respect

to ref. [29] (see ref. [6]). We notice, in particular, that the input values used in ref. [29]

for B
(d/s)
i were obtained in ref. [24] in the quenched approximation, at rather large pion

masses and at only one lattice spacing (a ∼ 0.1 fm).

We observe that the analysis is performed (as in [29]) by switching on one coefficient

at the time in each sector, thus excluding the possibility of having accidental cancellations

among the contributions of different operators. Therefore, the reader should keep in mind

that the bounds may be weakened if, instead, some accidental cancellation occurs.

In figures 1 and 2 we show the comparison between the lower bounds on the NP scale

obtained for the case of a generic strongly interacting NP with generic flavor structure by

the constraints on the |CBd

i | and |CBs

i | coefficients coming from the present generalized UT

analysis, and the previous results of ref. [29].

Comparing with the results of the UT–analysis in ref. [39], we notice that (at least

for generic NP models with unconstrained flavour structure) the bounds on the NP scale

coming from K0–K̄0 matrix elements turn out to be the most stringent ones.

– 7 –
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95% upper limit Lower limit on Λ

(GeV−2) (TeV)

|CBd

1 | 1.4 · 10−12 8.5 · 102

|CBd

2 | 3.0 · 10−13 1.8 · 103

|CBd

3 | 1.1 · 10−12 9.5 · 102

|CBd

4 | 9.5 · 10−14 3.2 · 103

|CBd

5 | 2.7 · 10−13 1.9 · 103

|CBd

1 | 2.3 · 10−11 2.1 · 102

|CBd

2 | 7.2 · 10−13 1.2 · 103

|CBd

3 | 2.8 · 10−12 6.0 · 102

|CBd

4 | 2.1 · 10−13 2.2 · 103

|CBd

5 | 6.0 · 10−13 1.3 · 103

Table 5. 95% upper bounds for the |CBd

i | coef-
ficients and the corresponding lower bounds on

the NP scale, Λ, for a generic strongly interact-

ing NP with generic flavor structure (Li = Fi =

1). In the lower panel the results of [29] are

displayed for comparison.

95% upper limit Lower limit on Λ

(GeV−2) (TeV)

|CBs

1 | 1.8 · 10−11 2.4 · 102

|CBs

2 | 4.9 · 10−12 4.5 · 102

|CBs

3 | 1.8 · 10−11 2.3 · 102

|CBs

4 | 1.6 · 10−12 7.9 · 102

|CBs

5 | 4.5 · 10−12 4.7 · 102

|CBs

1 | 1.1 · 10−9 3.0 · 101

|CBs

2 | 5.6 · 10−11 1.3 · 102

|CBs

3 | 2.1 · 10−10 7.0 · 101

|CBs

4 | 1.6 · 10−11 2.5 · 102

|CBs

5 | 4.5 · 10−11 1.5 · 102

Table 6. 95% upper bounds for the |CBs

i | coef-
ficients and the corresponding lower bounds on

the NP scale, Λ, for a generic strongly interact-

ing NP with generic flavor structure (Li = Fi =

1). In the lower panel the results of [29] are

displayed for comparison.

C1 C 2 C 3 C4 C 5
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5

10

15

20

25

30

T
eV

x
10

2

Figure 1. The lower bounds on the NP scale,

provided by the constraints on |CBd

i | (i =

1, . . . , 5) for generic NP flavor structure, are

shown as brown bars. For comparison, we plot

the bounds of ref. [29] as yellow bars.

C1 C 2 C 3 C4 C 5

0

200

400

600

800

T
eV

Figure 2. The lower bounds on the NP scale,

provided by the constraints on |CBs

i | (i =

1, . . . , 5) for generic NP flavor structure, are

shown as brown bars. For comparison, we plot

the bounds of ref. [29] as yellow bars.
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β (L/a, T/a) aµℓ aµs aµh

3.80 (24, 48) 0.0080, 0.0110 0.0175, 0.0194 0.1982, 0.2331, 0.2742, 0.3225, 0.3793,

0.0213 0.4461, 0.5246, 0.6170, 0.7257, 0.8536

3.90 (32, 64) 0.0030, 0.0040 0.0159, 0.0177 0.1828, 0.2150, 0.2529, 0.2974, 0.3498,

0.0195 0.4114, 0.4839, 0.5691, 0.6694, 0.7873

(24, 48) 0.0040, 0.0064

0.0085, 0.0100

4.05 (32, 64) 0.0030, 0.0080 0.0139, 0.0154 0.1572, 0.1849, 0.2175, 0.2558, 0.3008,

0.0169 0.3538, 0.4162, 0.4895, 0.5757, 0.6771

4.20 (48, 96) 0.0020 0.0116, 0.0129 0.13315, 0.1566, 0.1842, 0.2166, 0.2548,

0.0142 0.2997, 0.3525, 0.4145, 0.4876, 0.5734

(32, 64) 0.0065

Table 7. Simulation details for correlator computation at four values of the gauge coupling β =

3.80, 3.90, 4.05 and 4.20. The quantities aµℓ, aµs and aµh stand for light, strange-like and heavy

(i.e. charm-like and heavier) bare valence quark mass values respectively, expressed in lattice units.

3 Lattice setup and simulation details

The ETM Collaboration has generatedNf = 2 gauge configuration ensembles at four values

of the inverse bare gauge coupling, β, and at a number of light sea quark masses. The

values of the simulated lattice spacings lie in the interval [0.05, 0.1] fm. Dynamical quark

simulations have been performed using the tree-level improved Symanzik gauge action [40]

and the Wilson twisted mass action [41] tuned to maximal twist [42]. Bare quark mass

parameters, corresponding to a degenerate bare mass value of the u/d quark, are chosen so

as to have the light pseudoscalar mesons (“pions”) in the range 280 ≤ mPS ≤ 500MeV. A

list of the simulated charged pseudoscalar meson masses is given in [48]. Discussion about

the computation of the neutral pseudoscalar meson mass using twisted mass fermions has

been presented in [44, 45]. More details on the action and our Nf = 2 gauge ensembles

can be found in refs. [44, 45, 43]. We stress that the use of maximally twisted fermionic

action offers the advantage of automatic O(a) improvement for all the interesting physical

observables computed on the lattice [42].

In the present work we treat the strange and the charm quarks as quenched. We have

computed 2- and 3-point correlation functions using valence quark masses whose range is

extended from the light sea quark mass up to 2.5-3 times the charm quark mass. Simulation

details are given in table 7, where µℓ, µs and µh indicate the bare light, strange-like and

heavy (i.e. charm-like and heavier) valence quark masses respectively.

We have set light valence quark mass values equal to the light sea ones, aµℓ = aµsea.

Renormalised quark masses, µR, are obtained by the bare ones using the renormalisation

constant (RC) Zµ = Z−1
P , µR = µ/ZP [41, 46]. The values for ZP at the three coarsest
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β 3.80 3.90 4.05 4.20

ZP 0.447(13) 0.473(8) 0.516(5) 0.539(5)

a (fm) 0.098(4) 0.085(2) 0.067(2) 0.054(1)

Table 8. ZP in the MS scheme at 3GeV and lattice spacing values at the four values of the inverse

gauge coupling β.

lattice spacings have been computed in [47] using RI-MOM techniques. Following the same

method we have also computed ZP at the finest value of the lattice spacing corresponding

to β = 4.20. All ZP expressed in the MS scheme at 2GeV are gathered in appendix C

of [39]. Here we use the corresponding ZP values at the scale of 3GeV, which is in the

region of momenta directly accessible in the RI-MOM calculation of ref. [47]. In table 8

we collect the values of ZP at each value of β as well as the corresponding lattice spacing

values. The latter have been computed employing SU(2) (NLO) ChPT formulae to fit in

a combined way our data for the pion mass and decay constant by using as an input the

experimental value of the pion decay constant [48]. Moreover in [48], we have computed

the values for the light, strange and charm quark mass. In the MS scheme at 3GeV they

read:2 mu/d = 3.3(2)MeV, ms = 88(5)MeV and mc = 1.05(3)GeV.

We have computed 2- and 3- point correlation functions by employing smearing tech-

niques on a set of 100-240 independent gauge configurations for each ensemble and evalu-

ated statistical errors using the bootstrap method. Smeared interpolating operators become

mandatory in the cases where relativistic heavy quarks are involved. Smearing proves to

be beneficial in reducing the coupling of the interpolating field with the excited states,

thus increasing its projection onto the lowest energy eigenstate. The usual drawback, i.e.

increase of the gauge noise due to fluctuations of the links entering in the smeared fields, is

controlled by replacing thin gauge links with APE smeared ones [49]. With this technical

improvement we can extract heavy-light meson masses and matrix elements at relatively

small temporal separations while keeping noise-to-signal ratio under control. We employed

Gaussian smearing [50, 51] for heavy-light meson interpolating fields at the source and/or

the sink. The smeared field is of the form:

ΦS = (1 + 6κG)
−NG(1 + κGa

2∇2
APE)

NGΦL, (3.1)

where ΦL is a standard local source and ∇APE is the lattice covariant derivative with APE

smeared gauge links characterised by the parameters αAPE = 0.5 and NAPE = 20. We have

taken κG = 4 and NG = 30. We have noticed that in practice we get better overlap with

the ground state when the source, rather than the sink, is smeared. Thus 2-point Smeared-

Local (SL) correlation functions yield more improved plateaux for the lowest energy mass

state than Local-Smeared (LS) or Smeared-Smeared (SS) ones.

2Throughout this paper when we use the “overline” notation to the masses we mean renormalised quark

masses in the MS scheme at the scale of 3GeV, unless a different renormalisation scale is explicitly indicated.
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Figure 3. Example of the plateau for the effective pseudoscalar meson mass at β = 3.80 and

(aµℓ, aµh) = (0.0080, 0.5246): (a) improved plateau using a smeared field at the source and a

local field at the sink (SL) — green crosses — compared to the correlators (LL) — magenta upward

triangles — or (SS) — blue downward triangles; (b) further improvement is obtained with optimised

field at the source and local field at the sink after tuning the parameter w. Blue points represent

the values of Meff for different values of the parameter w; red full circles correspond to a case close

to the optimal improvement; green crosses are for the w=1 case which corresponds to the (SL)

correlator case shown in panel (a).

Even stronger overlap with the ground state is achieved with the use of an optimised

source constructed as follows:

Φopt ∼ wΦS + (1− w)ΦL, (3.2)

where we have introduced the tunable parameter w. In practice, the use of these sources

does not involve other inversions than those of the local and smeared sources. We con-

structed correlators that have Φopt as a source and either ΦL or ΦS in the sink. We verified

that in general the optimised correlators fulfil the expectations of providing an earlier Eu-

clidean time projection on the ground state than the (SL) correlators. In figure 3(a) we

show an example of an improved ground state plateau using smeared source for the quark

masses (aµℓ, aµh) = (0.0080, 0.5246) at β = 3.80. Figure 3(b) shows the improvement that

we achieve when we use the optimised source of eq. (3.2) with an appropriately tuned w

parameter. In the figure the effect of tuning w at the level of the first decimal place is illus-

trated.3 In our application however, we tried an even better tuning, e.g. up to the second

digit. Our general conclusion is that employing the optimal source (3.2) leads to significant

improvement that results in earlier time plateaux (i.e. at shorter time separations) for the

effective pseudoscalar meson mass. Further details on the implementation of the method

for computing pseudoscalar meson masses, decay constants and bag parameters are given

in appendix A.

3Notice that the absolute values of w given in the figure and the number of decimal digits depend on

the normalisation condition imposed in eq. (3.2).
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4 Computation of the b-quark mass and decay constants fB and fBs

The determination of the b-quark mass, the decay constants fB and fBs as well as for their

ratio, fBs/fB, is carried out by adopting the so-called ratio method presented in refs. [18,

17]. We refer the reader to these papers for a detailed presentation of the method. We

will here discuss how our improved 2-point correlation functions lead to reduced systematic

uncertainties. We start by recalling the main steps of the ratio method for the computation

of the b-quark mass. The HQET suggests the asymptotic behavior,

lim
µpole
h

→∞

(

Mhℓ

µpoleh

)

= const., (4.1)

where Mhℓ is the heavy–light pseudoscalar meson mass and µpoleh is the heavy quark pole

mass. The key observation is that the static limit of appropriate ratios of the quantity in

the (l.h.s.) of eq. (4.1) taken at nearby values of the quark pole mass is equal to unity.

This knowledge can be exploited in order to compute the b-quark mass by interpolating

between relativistic data obtained in the charm quark mass region and somewhat above it,

and the infinite heavy quark mass limit. To this aim it is convenient to consider a sequence

of heavy quark masses (µ
(1)
h , µ

(2)
h , · · · , µ(N)

h ) which have a fixed ratio, λ, between any two

successive values: µ
(n)
h = λµ

(n−1)
h . At each value of the lattice spacing we then build the

following ratios,

y(µ
(n)
h , λ;µℓ, a) ≡ Mhℓ(µ

(n)
h ;µℓ, a)

Mhℓ(µ
(n−1)
h ;µℓ, a)

· µ
(n−1)
h

µ
(n)
h

· ρ(µ
(n−1)
h , µ)

ρ(µ
(n)
h , µ)

=

= λ−1 Mhℓ(µ
(n)
h ;µℓ, a)

Mhℓ(µ
(n)
h /λ;µℓ, a)

· ρ(µ
(n)
h /λ, µ)

ρ(µ
(n)
h , µ)

, n = 2, · · · , N . (4.2)

where the function ρ(µ
(n)
h , µ), that is known up to N3LO in perturbation theory [52–

56], relates the MS renormalised quark mass (at the scale of µ = 3GeV) to the pole

mass: µpoleh = ρ(µh, µ)µh(µ). By construction, ratios of pseudoscalar meson masses at

successive values of the heavy quark mass are expected to show small discretisation errors

even for rather large values of µh. At each value of µ
(n)
h we can thus perform a well

controlled combined chiral and continuum fit on the ratios of eq. (4.2) to extract the

quantity y(µh) ≡ y(µh, λ;µu/d, a = 0). As an example of the quality of the fit we report

in figure 4(a) the linear fit in µℓ of the data for y(µ
(n)
h ) at the largest value of the heavy

quark mass.

Relying on the well-known matching of heavy-light meson mass evaluated in QCD onto

HQET, we have defined the ratio y(µh) in such a way that its dependence on µh can be

described by the fit ansatz

y(µh) = 1 +
η1
µh

+
η2
µ2h
, (4.3)

that implements the constraint limµh→∞ y(µh) = 1. The fit parameters could be, in general,

functions of log(µh). However in the range of the currently explored heavy quark mass
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Figure 4. (a) combined chiral and continuum fit of the ratio defined in eq. (4.2) against the

renormalised light quark mass µℓ for the largest value of the heavy quark mass (empty black circle

is our result at the physical u/d quark mass point in the continuum limit). (b) y(µh) against 1/µh

using the fit ansatz (4.3). We have used for the scale in the running coupling that enters in the

ρ(µh, µ) function, Λ
(Nf=2)
QCD = 315(15)MeV and λ = 1.1784. The vertical black thin line marks the

position of 1/µb.

values this logarithmic dependence can be safely neglected. Hence we approximate η1,2
to constants whose value will be determined by the fit to the available ratio data. Data

(with ρ from NLL order perturbative formulae) and fit are shown in figure 4(b). Finally

the value for the b-quark mass can be computed from the chain equation

y(µ
(2)
h ) y(µ

(3)
h ) . . . y(µ

(K+1)
h ) = λ−K Mhu/d(µ

(K+1)
h )

Mhu/d(µ
(1)
h )

·
[ ρ(µ

(1)
h , µ)

ρ(µ
(K+1)
h , µ)

]

. (4.4)

Here on the one hand λ, K and µ
(1)
h are such that Mhu/d(µ

(K+1)
h ) coincides with the exper-

imental value of the B-meson mass, MB = 5.279GeV; and on the other hand Mhu/d(µ
(1)
h )

is the result of the combined chiral and continuum fit of pseudoscalar meson mass values

evaluated at the reference heavy quark mass, µ
(1)
h . Because of its role to eq. (4.4) we will

call it the triggering point. The quality of the linear fit in µℓ is shown in figure 5(a).4 For

the present analysis we use (µ
(1)
h , λ) = (1.05 GeV, 1.1784), for which eq. (4.4) is satisfied

for K = Kb = 9. Many other choices of (µ
(1)
h , λ, Kb) could equally well be used. The

b-quark mass result reads

µb = λKb µ
(1)
h = 4.60(13) GeV. (4.5)

In section 6 we discuss the error budget attached to this result. We have also verified

that using Mhs instead of Mhℓ leads to fully compatible results for the b-quark mass, the

difference being at the per mille level.

4Following ref. [57], we fit pseudoscalar meson masses with a charm-like and a light quark mass assuming

that the dependence on the light quark mass is linear.
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Figure 5. Combined chiral and continuum fit for the triggering point for (a) pseudoscalar meson

mass Mhℓ(µ
(1)
h ) and (b) pseudoscalar decay constant fsh(µ

(1)
h ) against the renormalised light quark

mass µℓ. Both fit ansätze are linear in µℓ and in a2. Empty black circle is our result at the physical

u/d quark mass point in the continuum limit for both cases.

We apply an analogous strategy to compute the pseudoscalar decay constant of the

meson Bs, fBs and the ratio of the decay constants fBs/fB. The appropriate HQET

asymptotic conditions in the first two cases are

lim
µpole
h

→∞

fhs

√

µpoleh = constant, (4.6)

lim
µpole
h

→∞

(

fhs/fhℓ

)

= constant, (4.7)

where by ‘constant’ we denote some finite non-zero value. Based on QCD to HQET match-

ing of heavy-light meson decay constant (fhℓ) and mass (Mhℓ) we define the ratios

zd(µh, λ;µℓ, a) = λ1/2
fhℓ(µh, µℓ, a)

fhℓ(µh/λ, µℓ, a)
· C

stat
A (µ∗, µh/λ)

Cstat
A (µ∗, µh)

[ρ(µh, µ)]
1/2

[ρ(µh/λ, µ)]
1/2

, (4.8)

zs(µh, λ;µℓ, µs, a) = λ1/2
fhs(µh, µℓ, µs, a)

fhs(µh/λ, µℓ, µs, a)
· C

stat
A (µ∗, µh/λ)

Cstat
A (µ∗, µh)

[ρ(µh, µ)]
1/2

[ρ(µh/λ, µ)]
1/2

. (4.9)

The factor Cstat
A (µ∗, µh), known up to N2LO in PT [58], provides the matching between

the decay constant in QCD for a heavy quark mass µh and its static-light counterpart in

HQET (the arbitrary renormalization scale µ∗ of HQET cancels in the ratio above). From

eqs. (4.8) and (4.9) we also form the double ratio

ζ(µh, λ;µℓ, µs, a) =
zs(µh, λ;µℓ, µs, a)

zd(µh, λ;µℓ, a)
. (4.10)

By construction the ratios zd, zs and ζ have an exactly known static limit equal to unity

and show a smooth chiral and continuum combined behavior. As in the case of the y-ratios,

this is a consequence of the fact that zd, zs and ζ are simply ratios of quantities calculated
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Figure 6. Combined chiral and continuum fits for the ratio zs(µ
(n)
h ) (eq. (4.9)) and the double

ratio ζ(µ
(n)
h ) (eq. (4.10)) against µℓ are shown in panels (a) and (b) respectively. In both cases

ratios for the largest value of the heavy quark mass are reported (n = 7). Empty black circle is our

result at the physical u/d quark mass point in the continuum limit.

at nearby values of the heavy quark mass for which much of the discretisation errors cancel.

Figures 6(a) and 6(b) are two examples illustrating the quality of the combined chiral and

continuum fits for zs(µ
(7)
h ) and ζs(µ

(7)
h ) respectively, at the largest heavy quark mass values

used in the decay constant analysis.5,6 In figuress 7(a) and 7(b) we show the dependence

of zs(µh) and ζ(µh) on the inverse heavy quark mass, respectively. The fit ansätze we have

used are polynomial fit functions in the inverse heavy quark mass analogous to the one

specified in eq. (4.3). For the case of the double ratio ζ(µh) we have also tried a linear fit

in 1/µh always implementing the static condition limµh→∞ ζ(µh) = 1.

Determinations of fBs and fBs/fB are obtained by means of the equations

zs(µ
(2)
h ) zs(µ

(3)
h ) . . . zs(µ

(K+1)
h ) = λK/2 fhs(µ

(K+1)
h )

fhs(µ
(1)
h )

·
[ Cstat

A (µ∗, µ
(1)
h )

Cstat
A (µ∗, µ

(K+1)
h )

√

√

√

√

ρ(µ
(K+1)
h , µ)

ρ(µ
(1)
h , µ)

]

,

(4.11)

5Note that at the largest value of the heavy quark mass, µ
(8)
h , which has been used in the b-quark mass

analysis, our estimates of the pseudoscalar meson decay constants proved to be rather noisy. Hence, in the

decay constants’ analysis we decided to use data corresponding up to the next largest heavy quark mass

value, µ
(7)
h .

6The rather high χ2/dof value in the fit of ζs(µ
(7)
h ) data ratio is not representative of the quality of

the ratio fits performed in the present work. The fits performed in the present analysis are dominated by

systematic uncertainties. Correlation matrices are not taken into account since they turn out to be affected

by large uncertainties, and the χ2 definition incorporates the contribution of priors. Furthermore, we would

like to stress that in order to control systematic effects in the ratio analysis for all the physical quantities

studied inn this work, we have repeated the whole procedure excluding the heaviest quark mass. We have

treated the difference between the analyses as a systematic uncertainty in the final result. See also the

discussion in section 6.
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Figure 7. zs(µh) and ζ(µh) against 1/µh in panels (a) and (b), respectively. We have used

Λ
(Nf=2)
QCD = 315(15)MeV and λ = 1.1784. In both cases the fit function has a polynomial form of

the type like the one of eq. (4.3) (blue curve). In panel (b) a fit of the form ζ(µh) = 1 + 1/µh has

also been performed (black dashed straight line). The vertical black thin line marks the position of

1/µb.

ζ(µ
(2)
h ) ζ(µ

(3)
h ) . . . ζ(µ

(K+1)
h ) = λK/2

[fhs(µ
(K+1)
h )/fhu/d(µ

(K+1)
h )

fhs(µ
(1)
h )/fhu/d(µ

(1)
h )

]

. (4.12)

The (l.h.s.) of the above equations are taken from the fits of figures 7(a) and (b) respec-

tively. Setting µ
(K+1)
h = µb, (cf. eq. (4.5)) and having determined the values of fhs(µ

(1)
h )

and [fhs(µ
(1)
h )/fhu/d(µ

(1)
h )] from a combined chiral and continuum fit, we finally get our

results for fBs and [fBs/fB] respectively. As expected the combined chiral and continuum

fit for the quantity fhs(µ
(1)
h ) is smooth and shows tolerably small cutoff effects, as well as

a very weak dependence on the light quark mass (see figure 5(b)).

It is important to emphasize that in determining the value of the Bs-meson decay

constant one could adopt, instead of eq. (4.6), the following condition

lim
Mhs→∞

fhs
√

Mhs = constant , (4.13)

by means of which any use of the heavy quark pole mass is avoided. In analogy to eq. (4.9)

we can define the ratio

z̃s(µh, λ;µℓ, µs, a) =
fhs(µh, µℓ, µs, a)

√

Mhs(µh, µℓ, µs, a)

fhs(µh/λ, µℓ, µs, a)
√

Mhs(µh/λ, µℓ, µs, a)
· C

stat
A (µ∗, µh/λ)

Cstat
A (µ∗, µh)

. (4.14)

We then determine the value of fBs by means of the equation

z̃s(µ
(2)
h ) z̃s(µ

(3)
h ) . . . z̃s(µ

(K+1)
h ) =

fhs(µ
(K+1)
h )

√

Mhs(µ
(K+1)
h )

fhs(µ
(1)
h )

√

Mhs(µ
(1)
h )

·
[ Cstat

A (µ∗, µ
(1)
h )

Cstat
A (µ∗, µ

(K+1)
h )

]

(4.15)

where we set Mhs(µ
(K+1)
h ) equal to the experimental value of the Bs-meson mass, MBs =

5366.7MeV.
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Figure 8. (a) Combined chiral and continuum fit for the triggering point for the quantity fhs
√
Mhs

against µℓ. (b) Combined chiral and continuum fit for the ratio z̃s, against µℓ calculated between

the two largest heavy quark mass values used in this work (n = 7). (c) z̃s(µh) against the inverse

heavy quark mass. The static condition at unity is imposed explicitly in the fit ansatz.

Figures 8(a), (b) and (c) are the equivalent of figures 5(b), 6(a) and 7(a) when, in the

computation of fBs using the ratio method, we employ the condition presented in eq. (4.13)

instead of the one given in the eq. (4.6). Note that, as it can be seen from figure 8(a),

the triggering point calculation of the quantity fhs
√
Mhs presents very small discretisation

effects, and, though it is an accidental fact, it contributes to an accurate computation of

the continuum limit. The fit ansatz used in fitting the data of figure 8(c) against the inverse

heavy quark mass is of the same form as the one presented in eq. (4.3). We anticipate here

(see also section 6) our finding that determinations of fBs computed either via zs or z̃s
ratios are fully compatible differing by less than 0.5%. We also note that ratios defined in

terms of Mhs (or Mhℓ), rather than the heavy quark pole mass, could be used for all the

matrix elements discussed in the present paper.

We also need to estimate the triggering point ratio [fhs(µ
(1)
h )/fhu/d(µ

(1)
h )] i.e. the value

it takes after extrapolation to the continuum limit and the physical light quark mass.

To this aim we make use of the useful observation [20, 59] that by forming the double
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ratio of the decay constants [(fhs/fhℓ)/(fsℓ/fℓℓ)] one can exploit the possibility for a large

cancellation of the chiral logarithmic terms. One can get the triggering point value by

multiplying the above expression by an appropriate estimate of the ratio of the K to π

decay constants, (fK/fπ). For notation simplicity we define the quantity

Rf = [(fhs/fhℓ)/(fsℓ/fℓℓ)](fK/fπ) (4.16)

and we plot it against µℓ, see figure 9. We have used two fit ansätze. The first fit ansatz

is linear in µℓ, the second one is suggested by the combined use of the SU(2) ChPT and

HMChPT. They read

(I) Rf = a
(1)
h + b

(1)
h µℓ +D

(1)
h a2 (4.17)

(II) Rf = a
(2)
h

[

1 + b
(2)
h µℓ +

[3(1 + 3ĝ2)

4
− 5

4

] 2B0µℓ
(4πf0)2

log
( 2B0µℓ
(4πf0)2

)]

+D
(2)
h a2 (4.18)

In the fit based on HMChPT, we take for the parameter ĝ the value ĝ = 0.61(7) [60]

obtained from the experimental measurement of the gD∗Dπ coupling. We choose this value,

instead of the HQET prediction ĝ = 0.44(8) [61], because we fit data that are close to the

charm mass region and in order to conservatively include in the average the maximum

spread resulting from the different ways of performing the chiral extrapolation of our data.

As it can be noticed from figure 9 discretisation effects are small. The two estimates

for the triggering point ratio at the physical light quark mass are compatible within two

standard deviations. We take their average value as our final result and we consider their

half difference as a systematic uncertainty. In this computation we have used the result

fK/fπ = 1.193(5) by FLAG [62] coming from an average over lattice determinations using

Nf = 2 + 1 dynamical quark simulations. This value is completely uncorrelated with

relevant determinations by ETMC. The latest PDG result for the same ratio could be an

alternative choice. This differs by one standard deviation from the above one [2]. In order

to to get a (conservative) estimate of this particular systematic uncertainty we consider the

spread between the above value, fK/fπ = 1.193(5), and the one determined from Nf = 2

dynamical quark simulations, fK/fπ = 1.210(18) [62]. Finally, we sum in quadrature the

two systematic uncertainties, that is the one coming from the fit ansatz choice and the

other from fK/fπ. Our result at the triggering point reads

fhs
fhu/d

∣

∣

∣

µ
(1)
h

= 1.201(7)(20), (4.19)

where the first error is statistical and the second denotes the systematic uncertainty we

have just discussed.

5 Computation of Bag parameters and ξ

For the evaluation of the four-fermion matrix elements on the lattice we use a mixed

fermionic action setup where we adopt different regularizations for sea and valence quarks

as proposed in ref. [46]. The Mtm-LQCD action of the light quark flavor doublet that is
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Figure 9. Combined chiral and continuum fit at the triggering point for the quantity defined in

eq. (4.16). We have used fit ansätze defined in eqs. (4.17) and (4.18) with ĝ = 0.61(7). Colored

lines correspond to the fit of eq. (4.17). Empty black circle and empty black triangle are the results

from the linear and the ChPT fit ansatz, respectively, at the physical u/d quark mass point in the

continuum limit.

used to generate unquenched gauge configurations can be written in the so-called “physical

basis” in the form [42]

SMtm
sea = a4

∑

x

ψ̄(x)
{1

2

∑

µ

γµ(∇µ+∇∗
µ)−iγ5τ3rsea

[

Mcr−
a

2

∑

µ

∇∗
µ∇µ

]

+µsea

}

ψ(x) . (5.1)

The field ψ denotes a mass degenerate up and down doublet with bare (twisted) mass µsea.

The parameterMcr is the critical mass that one has to fix non-perturbatively at its optimal

value [43, 44] to guarantee the O(a)-improvement of physical observables and get rid of all

the unwanted leading chirally enhanced cutoff effects. In the gauge sector the tree-level

improved action proposed in ref. [40] has been used.

For valence quarks we use the OS regularization [63]. The full valence action is given

by the sum of the contributions of each individual valence flavour qf and reads [46]

SOS
val = a4

∑

x,f

q̄f (x)
{1

2

∑

µ

γµ(∇µ +∇∗
µ)− iγ5rf

[

Mcr −
a

2

∑

µ

∇∗
µ∇µ

]

+ µf

}

qf (x) , (5.2)

where the index f labels the valence flavors and Mcr is the same critical mass parameter

which appears in eq. (5.1). We denote by rf and µf the values of the Wilson parameter

and the twisted quark mass of each valence flavor.

This particular setup offers the advantage that one can compute matrix elements that

are at the same time O(a)-improved and free of wrong chirality mixing effects [64]. These

two properties have already proved to be very beneficial in the study of neutral Kaon

meson oscillations [39, 65–67]. For a detailed discussion about the choice of the action

and its implementation for the calculation of the matrix elements we refer to section 4 and

appendix A of ref. [39].
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Figure 10. Plateau quality for the quantity E[Bi] (i = 1, . . . , 5) defined in eq. (5.3) for a value of aµs

close to the physical one: (a) β = 3.80, (aµℓ, aµh) = (0.0080, 0.5246); (b) β = 4.20, (aµℓ, aµh) =

(0.0020, 0.3525). For clarity of presentation some ensembles of datapoints have been shifted as

indicated in the label.

The only significant difference concerning the four-fermion matrix elements computa-

tion of the present work with respect to ref. [39] is that here we are dealing with heavy

quarks (i.e. charm-like and heavier ones) rather than with the strange quark. With heavy

quarks the signal to noise ratio deteriorates quickly as the time separation increases and

moreover large time separations are necessary for the projection onto the ground state.

We overcome both problems by employing smeared interpolating operators for the meson

sources and in this way we are able to reduce the source time separation, Tsep. The latter

turns out to be less than half of the lattice time extension leading to safe plateau signals.

In particular we have used Tsep = 16, 18, 22, and 28 for the 3-point correlation functions

at β = 3.80, 3.90, 4.05, and 4.20, respectively. Note that the rest of the simulation

details are the same as those collected in table 7.

Bare Bi (i = 1, . . . , 5) can be evaluated from ratios of 3-point, C3;i(x0) and two 2-point,

C2(x0) and C
′
2(x0) correlation functions (for more details see the discussion that leads to

eqs. (4.10)-(4.13) of ref. [39]):

E[Bi](x0) =
C3;i(x0)

C2(x0) C ′
2(x0)

, i = 1, . . . , 5 . (5.3)

For large time separation from the location of the two meson sources (defined at time

positions y0 and y0+Tsep), the plateau of the ratio (5.3) provides an estimate of the (bare)

Bi (i = 1, . . . , 5) values, each multiplied by the corresponding factor (C1, C2, C3, C4, C5) =

(8/3, −5/3, 1/3, 2, 2/3). In figures 10(a) and 10(b) we show two examples of the plateaux

quality at β = 3.80 and β = 4.20.

RCs of the four-fermion operators have been calculated using the RI-MOMmethod [68].

For their computation and results we refer the reader to appendices B and C of ref. [39].
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5.1 Ratio method for the bag parameters and ξ

We apply the ratio method to compute the bag parameters relevant to the neutral B-

meson system. We introduce ratios that approach unity in the static limit. In HQET, the

static limit of each of the five bag parameters is a constant. Hence, following a procedure

analogous to that used for the b-quark mass and decay constants determination, we build

ratios for each bag parameter computed at nearby values of the heavy quark mass that we

define to be7

ω
(d)
i (µh, λ;µℓ, a) =

Wij(µ
⋆, µh, µ)

Wij(µ⋆, µh/λ, µ)

B
(d)
j (µh, µℓ, a)

B
(d)
j (µh/λ, µℓ, a)

(i, j = 1, . . . , 5) (5.4)

ω
(s)
i (µh, λ;µℓ, µs, a) =

Wij(µ
⋆, µh, µ)

Wij(µ⋆, µh/λ, µ)

B
(s)
j (µh, µℓ, µs, a)

B
(s)
j (µh/λ, µℓ, µs, a)

(i, j = 1, . . . , 5), (5.5)

where B
(d/s)
i (i = 1, . . . , 5) denote the renormalised five bag parameters computed at the

scale µ (in our case µ = 3GeV). The indices (d/s) correspond to the bag parameters

controlling (B
0
d − B0

d) and (B
0
s − B0

s ) mixing, respectively. The 5 × 5 matrix W converts

(to a given order in RG-improved perturbation theory) the QCD B-parameters into their

counterparts in the HQET theory, thereby removing (to the same perturbative order)

the corrections logarithmic in µh in the O((1/µh)
0)–term of the ω

(d,s)
i ratios above. It

incorporates the QCD evolution from the scale µ to the reference scale identified by the

heavy quark mass and the HQET evolution from the same heavy quark mass scale to some

arbitrary scale µ⋆ (the dependence on which cancels in all ratios above), as well as the

matching between the two theories. At NLL order the W matrix has a (3 × 3 ⊕ 2 × 2)

block diagonal form. Note that at TL or LL order the SM bag parameters B
(d/s)
1 evolve

without mixing with B
(d/s)
2 and B

(d/s)
3 . For more details on the QCD-HQET matching of

the B-parameters see appendix B. Moreover in appendix C we show that using the ratio

method (with QCD to HQET matching at TL order) one can numerically verify with good

precision the relationship which connects, via the equations of motion, the operators O(q)
1 ,

O(q)
2 and O(q)

3 (q = d, s) in the static limit.

Similarly we define the double ratio relevant to the SM bag parameters:

ζω(µh, λ;µℓ, µs, a) =
ω
(s)
1 (µh, λ;µℓ, µs, a)

ω
(d)
1 (µh, λ;µℓ, a)

. (5.6)

It has been noticed that, due to strong cancellations of systematic effects, it is conve-

nient for the unitarity triangle analysis, to compute the SU(3)-breaking parameter ξ,

ξ =
fBs

fBd

√

√

√

√

B
(s)
1

B
(d)
1

, (5.7)

7Summation over repeated indices is assumed.
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Figure 11. Combined chiral and continuum fit at the triggering point of the bag parameters B
(s)
1

and B
(s)
2 are shown in panels (a) and (b) respectively. Both fit ansätze are linear in µℓ and in a2.

Empty black circle is our result at the physical u/d quark mass point in the continuum limit for

both cases. In panel (a) discretisation effects are rather small and to avoid cluttering the figure

only the extrapolated line is shown.

whose knowledge fixes the ratio of the CKM matrix elements, |Vtd|/|Vts|. According to the

philosophy of this paper we define the ratio (see eqs. (4.8), (4.9), (5.4) and (5.5))

ζξ(µh, λ;µℓ, µs, a) =
zs
zd

√

√

√

√

ω
(s)
1

ω
(d)
1

. (5.8)

The static limit of the ratios defined in eqs. (5.4), (5.5), (5.6) and (5.8) is 1. At this point

we consider chain equations analogous to the ones of eqs. (4.4) and (4.11). For example we

consider the chains

ω
(d)
i (µ

(2)
h )ω

(d)
i (µ

(3)
h ) . . . ω

(d)
i (µ

(K+1)
h ) =

Wij(µ
⋆, µ

(K+1)
h , µ)B

(d)
j (µ

(K+1)
h , µu/d)

Wij(µ⋆, µ
(1)
h , µ)B

(d)
j (µ

(1)
h , µu/d)

(5.9)

ω
(s)
i (µ

(2)
h )ω

(s)
i (µ

(3)
h ) . . . ω

(s)
i (µ

(K+1)
h ) =

Wij(µ
⋆, µ

(K+1)
h , µ)B

(s)
j (µ

(K+1)
h , µu/d, µs)

Wij(µ⋆, µ
(1)
h , µ)B

(s)
j (µ

(1)
h , µu/d, µs)

.(5.10)

Bag parameters defined at µ
(1)
h are determined as usual by a combined chiral and continuum

fit that shows small discretisation effects. In figures 11(a) and 11(b) we present the fit

for the cases of B
(s)
1 and B

(s)
2 respectively. We illustrate the cases of B

(d)
1 and B

(d)
2 in

figures 12(a) and 12(b) respectively. A similar behaviour is observed for the rest of the

bag parameters B
(s)
i and B

(d)
i with (i = 3, 4, 5). Note that for the B

(d)
i cases HMChPT

predicts a logarithmic chiral behaviour [69]. We have thus tried besides a linear fit ansatz,
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Figure 12. Combined chiral and continuum fit at the triggering point of the bag parameters B
(d)
1

and B
(d)
2 are shown in panels (a) and (b), respectively. For both quantities we have used a linear fit

ansatz in µℓ and the fit function proposed by HMChPT, (see eq. (5.11)). Colored lines correspond

to the latter case. The results at the physical point - empty black circle - obtained by the two fit

function choices are indistinguishable.

fit functions of the following type:

B
(d)
1 = Bχ

1

[

1 + b1µℓ −
(1− 3ĝ2)

2

2B0µℓ
(4πf0)2

log
( 2B0µℓ
(4πf0)2

)]

+D1a
2 (5.11)

B
(d)
i = Bχ

i

[

1 + biµℓ −
(1− 3ĝ2 Y )

2

2B0µℓ
(4πf0)2

log
( 2B0µℓ
(4πf0)2

)]

+Dia
2, i = 2 (5.12)

B
(d)
i = Bχ

i

[

1 + biµℓ +
(1 + 3ĝ2 Y )

2

2B0µℓ
(4πf0)2

log
( 2B0µℓ
(4πf0)2

)]

+Dia
2, i = 4, 5 (5.13)

where we use the HMChPT-based estimates Y = 1 [69] and ĝ = 0.61(7) [60]. The bag

parameter B3 is related in HQET to the bag parameters B1 and B2 (see appendix C).

In the case Y = 1, which is the only one considered in this paper, the chiral expansion

for B3 is similar to the one of B2 with the same chiral log. The results at the physical

point — empty black circle in figures 12(a) and 12(b) — obtained by the two fit functional

choices (HMChPT and linear fit) are in practice indistinguishable. In figure 13(a) and

figure 13(b) we illustrate two examples of the combined chiral and continuum fits for the

ratios ω
(s)
1 (µ

(n)
h ) and ω

(s)
2 (µ

(n)
h ) at the largest value of heavy quark mass used in this part

of the analysis (n = 7).

We now pass to the discussion of the dependence on the inverse heavy quark mass of

the ω-ratios, evaluated in the continuum limit at the light quark physical point. As before

we try polynomial fit ansatz of the form,

ω
(q)
i (µh) = 1 +

b
(q)
i

µh
+
c
(q)
i

µ2h
(q ≡ d, s; i = 1, . . . , 5), (5.14)

using alternatively TL, LL, NLL order expressions for the matrix W . The relevant fits (for

the case of W at NLL order) are illustrated in the five panels of figure 14 for B
(s)
i with
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Figure 13. Combined chiral and continuum fits of the ratio ω
(s)
1 (µ

(n)
h ) and ω

(s)
2 (µ

(n)
h ) (eq. (5.10))

against µℓ are shown in the panels (a) and (b), respectively. In both cases ratios for the largest

value of the heavy quark mass are reported (n = 7). Linear fit ansatz in µℓ and fit to a constant

are shown. Colored lines show the linear fit to the data. Empty black circle and full grey circle are

the results, respectively, at the physical u/d quark mass point in the continuum limit.

i = 1, . . . , 5. Finally, using eqs. (5.9) and (5.10) we obtain the values of the bag parameters

at the b-quark mass by identifying µ
(K+1)
h with µb given in eq. (4.5).

We follow the same procedure to determine the numerical value of the ratio B
(s)
1 /B

(d)
1

and the parameter ξ. Our final results will be presented in the next section. In figure 15(a)

we show the combined chiral and continuum fit for the bag parameter ratios at µ
(1)
h for four

values of the lattice spacing. We have made use of two fit ansätze. The first one suggested

by the HMChPT reads

[B
(s)
1

B
(d)
1

]

(µ
(1)
h ;µℓ, a) = bh

[

1 + chµℓ +
1− 3ĝ2

2

2B0µℓ
(4πf0)2

log
( 2B0µℓ
(4πf0)2

)

+ dha
2
]

(5.15)

with ĝ = 0.61(7) [60]. The second is a linear fit with no logarithmic terms. It can be

seen from figure 15(a) that both fit ansätze lead to compatible results within half standard

deviation.8 We average over the two results and we take their half difference as a systematic

error:
[B

(s)
1

B
(d)
1

]

(µ
(1)
h ) = 1.021(9)(2). (5.16)

We study the dependence of ξ(µ
(1)
h ) on µℓ by making use of the quantity Rf defined

in eq. (4.16) in order to better control and test the impact of the logarithmic terms from

our data. The quantity that we fit against the light quark mass is defined by

Rξ = Rf

√

B
(s)
1 /B

(d)
1 . (5.17)

8Had we used ĝ = 0.53(4) [70] in the fit function (5.15) the shift of our physical point result would be

less than half a standard deviation i.e. a value similar to the shift due to the uncertainty of the estimate of

ĝ itself.
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Figure 14. ω
(s)
i (µh) against 1/µh for i = 1, . . . , 5 are shown in panels (a),. . ., (e), respectively. In

all cases the fit function has a polynomial form like the one in eq. (4.3). The vertical black thin

line marks the position of 1/µb.
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Lin. Fit (χ2/dof [dof ] = 0.6[9])

HMChPT Fit (χ2/dof [dof ] = 0.7[9])
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Figure 15. Combined chiral and continuum fits at the triggering point (a) of the double ratio

[B
(s)
1 /B

(d)
1 ](µ

(1)
h ) and (b) of the quantity Rξ(µ

(1)
h ) are shown. In both cases (HM)ChPT and linear

fit functions have been used. In panel (a) colored lines correspond to the (HM)ChPT fit ansatz

while in panel (b) to the linear fit one. In each panel empty black circle denotes the result at the

physical u/d quark mass point in the continuum limit.

The fit is illustrated in figure 15(b). We have tried a fit ansatz following SU(2) ChPT and

HMChPT combining the formulae given in eqs. (4.18) and (5.15). We have also tried a

fit assuming only a linear dependence on µℓ. Following the same reasoning as in the case

of the ratio of the decay constants we take our final result as the average over the two

values coming from the respective fit ansätze. We also consider similar arguments to get

the estimate of our systematic uncertainty. Hence our result at the triggering point reads

ξ(µ
(1)
h ) = 1.215(9)(22), (5.18)

where the first error is statistical while the second is systematic.

In figures 16(a) and 16(b) we illustrate the dependence of ζω(µ
(n)
h , µℓ, µs, a) and ζξ(µ

(n)
h ,

µℓ, µs, a) on µℓ at the largest µh value used in this part of the analysis (i.e. n = 7). In

figures 17(a) and 17(b) we show the dependence of ζω(µ
(n)
h ) and ζξ(µ

(n)
h ) on the inverse

heavy quark mass, 1/µh. We have used for both of them fit function ansätze which display

a linear and quadratic dependence on 1/µh while the static condition to unity is explicitly

imposed.

6 Summary of results and discussion

In this section we collect the results for the b-quark mass, the pseudoscalar decay constants

of the B and Bs mesons, the bag parameters for the full four-fermion operator basis that

quantify the QCD effects in the B
0
d−B0

d and B
0
s−B0

s oscillations, as well as the parameter

ξ and the quantities fBq

√

BBq (q = d or s).

b-quark mass: from eq. (4.5) given in MS scheme at the scale of 3GeV we get the

result for the b-quark mass at the scale of the b-quark mass itself. The running depends
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Figure 16. Combined chiral and continuum fits of the double ratios ζω(µ
(n)
h ) and ζξ(µ

(n)
h ) against

µℓ are shown in panels (a) and (b), respectively. Ratios for the largest value of the heavy quark

mass are reported (n = 7). Linear fit ansatz in µℓ and fit to a constant are shown. Empty black

circle and full grey circle are the results, respectively, at the physical u/d quark mass point in the

continuum limit.
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Figure 17. ζω(µh) and ζξ(µh) against 1/µh are shown in panels (a) and (b), respectively. For

both cases the fit function has a polynomial form of the type analogous to eq. (4.3) (blue curve).

Moreover, in panel (b) a fit of the form ζ(µh) = 1 + 1/µh has also been performed (black dashed

straight line). The vertical black thin line marks the position of 1/µb.

on the active flavour number and the value of ΛQCD. We consider two cases. In the

first case we consider the number of the simulated dynamical flavours, Nf = 2, with

Λ
(Nf=2)
QCD = 315(15)MeV. The ΛQCD value is the average over the values presented in

refs. [71–73]. The second case consists in using Nf = 4, (i.e. the number of active flavours

between µ = 3GeV and µ = mb in the physical case), with Λ
(Nf=4)
QCD = 296(10)MeV [27].
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We obtain

mb(mb,MS) = 4.31(9)(8) GeV, (Nf = 2 running ) (6.1)

mb(mb,MS) = 4.27(9)(8) GeV, (Nf = 4 ” ) (6.2)

The first error (see the first entry for mb in the error budget table 9) has been computed

using the bootstrap method. It includes the statistical uncertainties on the pseudoscalar

meson mass at the triggering point (typically less than 0.5%) and on the ratios (less than

0.1 − 0.2%), the uncertainty due to the quark mass renormalisation constant, ZP , in em-

ploying renormalised light and heavy quark masses, as well as the statistical uncertainties

of the lattice scale. Notice that the pure statistical error of the pseudoscalar mass val-

ues computed from the relevant 2-point correlator functions lies typically at a sub-percent

level. The second error includes: (i) systematic uncertainties of the lattice scale; (ii) The

estimate of discretisation effects that has been obtained by repeating the whole analysis

without including the data corresponding to the coarsest value of the lattice spacing; (iii)

systematic uncertainties due to fit choices by (a) fitting the ratios y against the inverse

heavy quark mass adding an extra cubic dependence in the fit ansatz (see eq. (4.3)) and

(b) excluding from the fit all the data from the ratio corresponding to the heaviest quark

mass. Each of these checks in the fitting procedure leads to a small shift of 0.2-0.3% from

the central value. (iv) We consider he systematic error due to the ΛQCD value as well as

due to the half difference between results obtained employing in the running either Nf = 2

or Nf = 4 dynamical flavours.

In table 9 we present a detailed description of the error budget giving the percentage error

for each of the systematic sources of uncertainty. Our total error is computed by summing

in quadrature all the above errors and it amounts to less than 3%. By averaging the two

results above and including their half-difference as an additional systematic uncertainty we

finally obtain

mb(mb,MS) = 4.29(9)(8)(2) GeV (6.3)

Our current result for the b-quark mass is fully compatible with our previous determination

in ref. [17].

Pseudoscalar decay constants: we have computed directly fBs and the ratio fBs/fBs.

From these we can get the value for fB = fBs/(fBs/fB). Our results read

fBs = 228(5)(6) MeV (6.4)

fBs

fB
= 1.206(10)(22) (6.5)

fB = 189(4)(5)(4) MeV (6.6)

where the first error is due to statistical uncertainties estimated using the bootstrap

method. The statistical error for the matrix element from which decay constants are

computed is at a sub-percent level. The statistical uncertainties at the triggering point

and those of the ratios are about 0.5% and 0.2%, respectively. It is also included the statis-

tical uncertainty of the lattice scale. The second error refers to systematic uncertainties all
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added in quadrature. They are discussed in the following. (i) For dimensionful quantities

the systematic uncertainty of the lattice scale (about 2%) is taken into account. (ii) We

estimate the systematic uncertainty due to residual discretisation effects by repeating the

whole analysis without including data from the coarsest value of the lattice spacing. (iii)

The fBs value has been obtained using the NLL approximation of the factors Cstat
A and ρ,

(see eq. (4.9)).9 Had we used LL or TL approximation the total shift to the central value

would be about 2MeV which is well covered by the quoted errors. This is also included in

the systematic error budget. A shift to the final value at the level of per mille is noticed if

we exclude from the fitting procedure of ratios against the inverse heavy quark mass data

corresponding to the heaviest quark mass. (iv) The second error in the decay constant

ratio (6.5) as well as the third error in fB is due to the systematic uncertainty arising from

the chiral fit at the triggering point — see the discussion in section 4 and the result (4.19).

In table 9 we present in detail the full error budget. The alternative ratio method compu-

tation of fBs based on the use of the HQET asymptotic behaviour expressed in eq. (4.13)

leads to an estimate which differs from the above of eq. (6.4) by only 0.5%, but its total

error is a bit larger due to statistical and systematic uncertainties coming from the meson

mass, Mhs.

Our total uncertainty is given by the sum in quadrature of the above errors. For fBs,

fBs/fB and fB the total error is 3.4%, 2.0% and 4.0%, respectively. In table 9 a detailed

description of the error budget is presented. We also notice that our present results are

compatible within one standard deviation with the older ones of ref. [17] which have been

computed using local sources for the various propagator inversions.

As a by-product of our work, since the heavy quark mass value at the triggering point

has been set equal to the charm quark mass, we have computed the decay constants for

the Ds and D mesons as well as their ratio. They read:

fDs = 250(5)(5) MeV, fD = 208(4)(6) MeV, fDs/fD = 1.201(7)(20), (6.7)

where the first error is statistical and the second one is systematic.

The results for the B-meson decay constants in eqs. (6.4)–(6.6) are obtained in the

Nf = 2 theory and do not account for the dynamical sea quark effects of the strange and

the heavier quarks. In figures 18 (a) to (d) we compare these results and the one for the

b-quark mass of eq. (6.3) with those obtained by other lattice studies using either Nf = 2,

Nf = 2 + 1 or Nf = 2 + 1 + 1 simulations. The good agreement observed among the

various results in the plots provides a first indication that the systematic effects due to

the quenching of the strange and charm quarks are smaller than present uncertainties from

other sources.

More quantitatively, one can compare our results for the decay constants with the

averages quoted by the FLAG working group from Nf = 2 + 1 calculations [74]:

fBs = 227.7(4.5) MeV , fB = 190.5(4.2) MeV ,
fBs

fB
= 1.202(22) . (6.8)

9Their explicit form can be found in ref. [17], eqs. (3.16) and (3.5).
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source of uncertainty (in %) mb fBs fBs/fB fB B
(s)
1 /B

(d)
1 ξ

stat. + fit (CL and Chiral) 2.1 2.2 0.8 2.1 1.5 1.3

lat. scale syst. error 2.0 2.0 - 2.0 - -

syst. from discr. effects 0.2 1.3 0.4 1.7 1.3 1.0

syst. from fit in 1/µh 0.4 1.0 0.1 1.1 - 0.5

syst. from trig. point - - 1.7 1.7 0.1 1.8

syst. from ΛQCD and running 0.5 - - - - -

Total 3.0 3.4 2.0 4.0 2.0 2.5

Table 9. Error budget (in %) for mb, fBs, fBs/fB , fB , B
(s)
1 /B

(d)
1 and ξ. Each of the numbers

in the first row includes the uncertainties coming from the statistical errors of the correlators, the

uncertainty of the quark mass renormalisation, the error of the combined chiral and continuum fits

and the statistical uncertainty from the scale setting. In the second row we estimate the uncer-

tainty due to the lattice scale systematics. In the third row we give an estimate of the systematic

uncertainty related to discretisation effects. In the fourth row we display the systematic uncertainty

connected to the fit of the ratios against 1/µh. In the fifth row the systematic uncertainty at the

triggering point fit is shown. The sixth row is for the systematic error coming from the uncertainty

in the value of ΛQCD and the half difference between results obtained employing either Nf = 2 or

Nf = 4 in the evolution from µ = 3 Gev to the b-mass point ∼ 4.3GeV. The last row gives the

total error.

The differences in central values between our Nf = 2 results of eqs. (6.4)–(6.6) and the

Nf = 2 + 1 FLAG averages are smaller than 1%, showing that the quenching effect of the

strange quark is smaller, at present, than other uncertainties. For the heavier charm quark,

the quenching effect is expected to be even smaller in size and the comparison between the

Nf = 2+1+1 results of ref. [75] with the Nf = 2 and Nf = 2+1 determinations presented

in figure 18 does not show, indeed, any systematic deviation.

In the case of the charm quark, a parametric estimate of the quenching effect can

be also derived using a perturbative argument. Since the sea quark contributions enter

at the loop level, involving the exchange of at least two gluons, and are quadratically

suppressed in the decoupling limit by the inverse quark mass, one expects them to be

of order αs(mc)
2(ΛQCD/mc)

2 for the charm quark, corresponding to less than 1%. Even

though the accuracy of perturbation theory at the charm scale is limited, this estimate is

of the same order of magnitude of the one indicated by the previous numerical comparison

between lattice results. It supports the conclusion that for the decay constants this error

is negligible with respect to other uncertainties.

The estimate of the partial quenching effects in the determination of the quark masses,

like the b-quark mass in the present study, is more subtle, since it also depends on the details

of the renormalization procedure. In our calculation, we have renormalized the quark mass

with the non-perturbative RI-MOM method at the scale µ = 3GeV and we have chosen

to quote our final result in the MS scheme at the scale mb. Thus, a dependence on the
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(MS, mb)

B
(d)
1 B

(d)
2 B

(d)
3 B

(d)
4 B

(d)
5

0.85(3)(2) 0.72(3)(1) 0.88(12)(6) 0.95(4)(3) 1.47(8)(9)

B
(s)
1 B

(s)
2 B

(s)
3 B

(s)
4 B

(s)
5

0.86(3)(1) 0.73(3)(1) 0.89(10)(7) 0.93(4)(1) 1.57(7)(8)

Table 10. Continuum limit results for B
(d)
i and B

(s)
i (i = 1, . . . , 5), renormalized in the MS scheme

of ref. [25] at the scale of the b-quark mass. See the text for discussion about the quoted errors.

number of dynamical flavors also appears in the matching between the initial and the final

scheme and scale. This effect is quantified by the difference between the results in eq. (6.1)

and (6.2) and it is at the level of 1%. In this case, being not fully negligible with respect

to other uncertainties, it has been taken into account in the systematic error quoted in

eq. (6.3).

Bag parameters: in table 10 we gather our results for the bag parameters of the full four-

fermion operator basis. Results are given in the MS scheme of ref. [25] at the scale of the

b-quark mass mb of eq. (6.3). We consider our final values to be the average over the results

obtained by using Nf = 2 and Nf = 4 in the evolution from the QCD renormalization

scale (µ = 3GeV) and the b-mass scale (∼ 4.3GeV), while their difference, which is less

than 1% (in the worst case), is taken as an additional systematic error. In the results of

table 10 the first error corresponds to the sum of the statistical errors (typically about

1%) on the correlators, the RCs uncertainty (which is the largest among the others and

amounts to 2 − 3% depending on the case) and the fit error. The second error includes:

(i) the uncertainties due to the possible choices of fit ansatz in 1/µh and the maximum

spread in the results induced by using the TL, LL or NLL order formulae for W in the

ratios of eqs. (5.4) and (5.5). The latter uncertainty is for most of the cases rather small

compared to the first error i.e. about 0.1%− 1%, with the exception of B
(d)
3 , B

(s)
3 and B

(s)
5

for which we notice errors of 7.3%, 6.7% and 3.5%, respectively; (ii) the uncertainty due

to the fit ansatz (polynomial or HMChPT) at the triggering point (only for the case B
(d)
i );

(iii) the systematic uncertainty of residual discretisation effects, estimated by repeating the

whole analysis without including data from the coarsest value of the lattice spacing. our

systematic uncertainty coming from the value (iv) the systematic error due to the ΛQCD

value as well as due to the half difference between results obtained employing in the running

either Nf = 2 or Nf = 4 dynamical flavours. In tables 11 and 12 we give the detailed error

budget for B
(d)
i and B

(s)
i , respectively.

We notice that the results for B
(d/s)
i in ref. [24], obtained in the quenched approxima-

tion and using Wilson-clover quarks are in the same ballpark as the present ones. A detailed

comparison, for example on the impact of quenching, is not very meaningful because older

quenched results have been obtained at rather large pion masses and at only one lattice

spacing (a ∼ 0.1 fm), while the unquenched ones of this work have been extrapolated to
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Nf = 2 + 1

Nf = 2+ 1 + 1
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HPQCD ’13
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Figure 18. A comparison of the available continuum extrapolated determinations of fBs panel

(a), fB panel (b), fBs/fB panel (c) and mb panel (d). The results of the present work have been

labeled as “ETMC ’13”. For the results of the other lattice groups we refer to (from top to bottom):

(a) refs. [75–79]; (b) refs. [75, 77, 77–79]; (c) refs. [75, 77, 78]; (d) refs. [80, 81, 79]. (The results of

ref. [79] are still preliminary. Note also that the results in panel (a) indicated as HPQCD’11 and

HPQCD’12, as well as those indicated as HPQCD’12 in panel (b), have both been obtained using

Nf = 2 + 1 (MILC) gauge ensembles but employ different valence quark regularisations.)
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source of uncertainty (in %) B
(d)
1 B

(d)
2 B

(d)
3 B

(d)
4 B

(d)
5

stat + fit + RCs 3.8 4.0 14 4.6 5.1

syst. from discr. effects 1.7 0.2 0.7 2.0 3.8

syst. from fit in 1/µh 1.6 1.8 7.3 1.5 3.6

syst. from trig. point 0.1 0.1 0.1 2.2 2.4

syst. due to ΛQCD and running 0.2 0.5 0.2 0.1 0.9

Total 4.5 4.4 16 5.7 7.8

Table 11. Error budget (in % ) for Bd
i (i = 1, . . . , 5). First row includes the statistical uncertainties

of correlators, of the fits’ extrapolation and interpolation as well as the uncertainties of the RCs.

The second row includes the systematic uncertainties due to discretisation effects. In the third

row we give the estimates of the systematic errors by employing different choices of fit ansätze

in fitting the ratios as a function of µℓ and the systematics related to the fit of the continuum

value of the ratios against 1/µh. We have also included the systematic uncertainty estimated by

repeating our analysis without using data from the heaviest quark mass pair. In the fourth we show

the systematic uncertainty from the fitting procedure at the triggering point. In the fifth row we

display our systematic uncertainty coming from the value of ΛQCD and the half difference between

results obtained employing in the running either Nf = 2 or Nf = 4 dynamical flavours. The last

row gives the total error.

source of uncertainty (in %) B
(s)
1 B

(s)
2 B

(s)
3 B

(s)
4 B

(s)
5

stat + fit + RCs 3.1 3.6 11.1 4.3 4.2

syst. from discr. effects 0.5 0.5 2.9 1.2 0.6

syst. from fit in 1/µh 1.3 1.7 6.7 0.2 5.0

syst. due to ΛQCD and running 0.2 0.5 0.2 0.1 0.9

Total 3.4 4.0 13.3 4.5 6.6

Table 12. Error budget (in % ) for Bs
i (i = 1, . . . , 5). For details see caption of table 11.

the continuum limit and to the physical pion mass.

Other quantities: B
(s)
1 /B

(d)
1 , ξ, fBq

√

B
(q)
i . Following the analysis presented in sec-

tions 4 and 5 we obtain

B
(s)
1

B
(d)
1

= 1.007(15)(14) (6.9)

ξ = 1.225(16)(14)(22). (6.10)

The first error in both results is of statistical nature and it is due to the fitting procedures

employed for the triggering point, ∼ 1% (in both quantities) and for the corresponding

ratios (less than 1% for each one of them). The second error is our estimated uncertainty
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(MS, mb) [MeV]

i 1 2 3 4 5

fBd

√

B
(d)
i 174(5)(6) 160(5)(6) 177(14)(9) 185(6)(7) 229(8)(11)

fBs

√

B
(s)
i 211(5)(6) 195(5)(5) 215(14)(9) 220(7)(6) 285(8)(12)

Table 13. Continuum limit results for fBd

√

B
(d)
i and fBs

√

B
(s)
i (i = 1, . . . , 5). Bag parameters

are expressed in the MS scheme of ref. [25] at the scale of the b-quark mass.

coming from employing different types of ansatz in fitting the ratios (less than ∼ 0.5%)

as a function of the inverse heavy quark mass, as well as the uncertainty coming from

using different orders for the QCD and HQET running and matching (less than 0.5% in

both cases). The third error in ξ corresponds to the uncertainty due to possible fit ansatz

choices at the triggering point discussed in section 5, (see eq. (5.18)). Our final uncertainty

is taken as the sum in quadrature of the various uncertainties and it amounts to 2.0% for

B
(s)
1 /B

(d)
1 and 2.5% for ξ. The error budget for both quantities is summarized in table 9.

In table 13 we collect our results for the quantities fBq

√

B
(q)
i with q = d, s and i =

1, . . . , 5. Bag parameters are expressed in the MS scheme of ref. [25] at the scale of the

b-quark mass. The error for each of these quantities is determined by combining the errors

previously discussed on decay constants and bag-parameters. For convenience we also give

our results for the SM relevant quantities in which the bag parameters are expressed in

the RGI scheme. In this case for the running of the coupling constant we take Nf = 5 and

Λ
(Nf=5)
QCD =213(9) MeV [27]. We find

fBd

√

B̂
(d)
1 = 216(6)(8) MeV (6.11)

fBs

√

B̂
(s)
1 = 262(6)(8) MeV, (6.12)

where the first error is statistical and the second one is systematic.

The RGI values of the bag parameters corresponding to the SM four-fermion operators

read

B̂
(d)
1 = 1.30(5)(3), B̂

(s)
1 = 1.32(5)(2), (6.13)

where the first error is statistical and the second one is systematic.

In figure 19 we compare our results for ξ, fBd

√

B̂
(d)
1 and fBs

√

B̂
(s)
1 , with bag-parame-

ters expressed in the RGI scheme, with the ones obtained by other lattice collaborations.

In conclusion, in this work using smeared interpolating operators in computing the 2-

and 3-point correlation functions:

(i) we update our older continuum limit results [17] for the b-quark mass and the pseu-

doscalar decay constants for the B and Bs pseudoscalar mesons for which local in-

terpolating operators had been used in computing the 2-point correlation functions.
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Nf = 2

Nf = 2 + 1

ETMC ’13

FNAL-MILC ’12

HPQCD ’09

ξ

1.41.31.21.1

(a)

HPQCD ’09

FNAL-MILC ’11

ETMC ’13

Nf = 2

Nf = 2 + 1

fBd

√

B̂
(d)
1 [MeV]

300280260240220200

(b)

HPQCD ’09

FNAL-MILC ’11

ETMC ’13

Nf = 2

Nf = 2 + 1

fBs

√

B̂
(s)
1 [MeV]

320300280260240220200

(c)

Figure 19. A comparison of the available continuum extrapolated determinations of ξ panel (a),

fBd

√

B̂
(d)
1 panel (b) and fBs

√

B̂
(s)
1 panel (c). Bag parameters are given in the RGI scheme. The

results of the present work have been labeled as“ETMC ’13”. For the results of the other lattice

groups we refer to (from top to bottom): (a) refs. [82, 83] (b) refs. [82, 19]; (c) refs. [82, 19].
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Our final errors now are smaller though they are principally determined by uncertain-

ties in the renormalisation constant for the quark mass and the lattice scale. Besides

that, the fitting procedure of our ratios against the inverse heavy quark mass towards

the exactly known static limit has gained more accuracy with respect to our previous

work thanks to the higher precision in calculating the ratios;

(ii) we have presented results, extrapolated in the continuum limit and to the physical

light quark mass point, about the bag-parameters for the full four-fermion operator

basis that control the neutral B-meson oscillations, as well as results for the parameter

ξ and the quantities fBd

√

B
(d)
i , fBs

√

B
(s)
i (i = 1, . . . , 5).

Finally, preliminary results for the b-quark mass employing the ratio method on Nf =

2 + 1 + 1 dynamical quark configurations generated by ETMC have already been pre-

sented [84]. ETMC will present in the near future a complete analysis of the physical

observables studied in the present paper but employing Nf = 2 + 1 + 1 gauge ensembles.
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A Optimised smeared interpolating operators

Optimised two-point correlators can be built using optimized fields Φopt as suggested in

eq. (3.2) which we report here for the reader’s convenience

Φopt ∼ wΦS + (1− w)ΦL. (A.1)

Without loss of generality we consider in practice correlators with an optimized field at the

source and a local field at the sink, which read10

Copt-L
2 (x0) = w0C

(SL)
2 (x0) + w̃0C

(LL)
2 (x0) (A.2)

10We should note that it would also be possible to construct an optimised correlator formed by a local

source ΦL and a sink given by the operator defined in eq. (3.2).
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β
[

xmin
0 /a, xmax

0 /a
](j)

x0

3.80 5:8, 6:9, 7:10, 8:11, 9:12 2

3.90 8:11, 9:12, 10:13, 11:14, 12:15 4

4.05 9:14, 10:15, 11:16, 12:17, 13:18, 14:19 6

4.20 10:16, 11:17, 12:18, 13:19, 14:20 7

Table 14. (∆x0)
(j) =

[

xmin
0 , xmax

0

](j)
Euclidean time intervals used in order to get the optimal

value of w at each β. x0 denotes the normalization time, see eq. (A.3).

where we have defined C
(SL)
2 (x0) ≡ 〈ΦS †ΦL〉(x0) and C

(LL)
2 (t) ≡ 〈ΦL †ΦL〉(x0). We have

also set

w0 ≡ w/C
(SL)
2 (x0), w̃0 ≡ (1− w)/C

(LL)
2 (x0) (A.3)

The choice of the normalization time x0, where by construction Copt-L
2 (x0) = 1, is in

principle arbitrary and only affects the optimal value of w and its behaviour as a function

of the mass parameters. The x0 values used at each β in this study are gathered in table 14.

They have been chosen so as to yield a reasonably smooth behaviour of the optimal w-value

as a function of the heavy quark mass µh, which in turn eases its numerical search. We

recall that here ΦL and ΦS always carry the quantum numbers of a pseudoscalar density.

The optimal values of w are those for which earliest Euclidean time projection on

the ground state can be achieved. We now describe the procedure we have followed. We

consider the correlator given in eq. (A.2) being computed for a set of w values and for each

one of them we get estimates of the pseudoscalar meson mass on several Euclidean time

intervals,11 (∆x0)
(j) =

[

xmin
0 , xmax

0

](j)
. In this way we obtain a set of estimators for the

pseudoscalar meson mass, namelyM
(j)
ps . In table 14 we collect the Euclidean time intervals

(∆x0)
(j) that we used at each β. Given these time intervals, at each β and each µh we vary w

with a sufficiently fine resolution (typically around 0.05), then for all w-values we compute

the maximal spread among the pseudoscalar mass estimates, M
(j)
ps , corresponding to the

various intervals (∆x0)
(j): (∆Mps) = ∆Mps(w;µh, β) ≡ maxpairs j,j′

∣

∣

∣M
(j)
ps −M

(j′)
ps

∣

∣

∣

µh,β
.

The (almost) optimal value of w is of course depending on β and µh and is taken as

the one for which (i) (∆Mps) attains a minimum and (ii) the values of M
(j)
ps display an

oscillating (i.e. non-monotonic) behaviour as a function of j (i.e. (∆x0)
(j)). The latter

condition strongly restricts the values of xmin
0 to be considered in practice for the intervals

(∆x0)
(j), the upper end of which, xmax

0 , is taken at some larger Euclidean time (but not

too large so as to avoid introducing too much statistical noise).

Using maximally twisted mass lattice fermions, the decay constant of a pseudoscalar

(non-singlet) meson made out of two valence quarks with masses µ1 and µ2, regularized

with Wilson parameters r1 = −r2, is evaluated via the (Ward-identity based) formula ([41,

11For instance, at β = 3.80 there are five time intervals: (∆x0)
(1) = [5 : 8], . . . , (∆x0)

(5) = [9 : 12].
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smeared
opt - smeared

x0

f p
s
(x

0
)

22201816141210864

0.17

0.16

0.15

0.14

0.13

Figure 20. Pseudoscalar decay constant computation at β = 3.80 and (aµℓ; aµs, aµh) =

(0.0080; 0.0194, 0.5246) employing smeared fields (blue squares) compared to the one where op-

timised fields (red circles) are used.

42, 59]:

fps =
(µ1 + µ2)

Mps sinhMps
〈0|P |PS〉, (A.4)

where we have set a = 1 and P = q̄1γ5q2 is the pseudoscalar density. Using optimised

interpolating fields, fps is extracted from the following formula (in lattice units)

fps(x0) =
(µ1 + µ2)

Mps sinh(Mps)

√

MpseMpsT/2

√

cosh
[

Mps

(

T
2 − x0

)]

Copt-L
2 (x0)

√

Copt-opt
2 (x0)

, (A.5)

where the correlator Copt−opt
2 is given by

Copt−opt
2 = 〈Φopt †Φopt〉(x0). (A.6)

In figure 20 we illustrate an example on the pseudoscalar decay constant computation using

optimised and smeared interpolating operators.

We have investigated the possibility of using improved interpolating operators in the

computation of B-parameters. Optimised bare Bi are evaluated from the ratio of the

double-optimised 3-point correlation function defined as

Copt-opt
3;i (x0) = 〈ΦoptOiΦ

opt〉(x0), i = 1, . . . 5 (A.7)

and the two 2-point correlation functions, Copt-L
2 (x0) and C

′opt-L
2 (x0), (cf. eq. (5.3))

E[Bopt-opt
i ](x0) =

Copt-opt
3;i (x0)

Copt-L
2 (x0) C

′opt-L
2 (x0)

, i = 1, . . . , 5. (A.8)

This computation implies the employment of optimised 〈P †A0〉 and 〈P †P 〉 2-point

correlation functions, for i = 1 and i = 2, 3, 4, 5, respectively.
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opt - smeared
smeared

local

x0/Tsep

E
[B

1
](
x
0
)

0.90.80.70.60.50.40.30.20.1

1.20

1.10

1.00

0.90

0.80

0.70

(a)

opt - smeared
smeared

local

x0/Tsep

E
[B

2
](
x
0
)

0.90.80.70.60.50.40.30.20.1

1.10

1.00

0.90

0.80

(b)

Figure 21. Plateau quality for E [B1] (left) and E [B2] (right) at β = 3.80 and for (aµℓ, aµh) =

(0.0080, 0.5246) obtained from local (red squares), smeared (blue circles) and optimised interpolat-

ing fields (green triangles).

At β = 3.80 we have compared results for the (bare) bag parameters Bi (i = 1, . . . , 5)

obtained through eq. (A.8) with the ones coming through the use of smeared interpolating

operators. We have found out that within our current statistical errors it is hardly noticed

any difference on the plateau values of the bag parameters. In the two panels of figure 21 we

illustrate two examples supporting the above numerical observation for the cases of Bi with

i = 1, 2, respectively. A similar behaviour has been observed also for the bag parameters

B3, B4 and B5. In the two figures we have also included data corresponding to the case

where local sources have been employed. In this last case, as it might be expected, the

plateau quality results problematic if heavy quark masses are to be employed as we do in

the present study. Based on the above observations we have thus opted for using smeared

interpolating fields in the computation of the bag parameters throughout this work.

Finally, we note that statistical errors on pseudoscalar meson masses, pseudoscalar

decay constants as well as on four-fermion operator matrix elements have been evaluated

using the jackknife procedure. With 16 jackknife bins for each configuration ensemble we

have verified that autocorrelations are well under control. In order to take into proper

account the cross correlations we compute statistical errors on the fit results using the

bootstrap method and for that we employ 1000 bootstrap samples produced by independent

gauge configuration ensembles.

B QCD-HQET matching of B-parameters

According to the HQET scaling laws, each B-parameter scales with the inverse heavy

quark mass µh as a constant up to some perturbative logarithmic corrections of order

∼ 1/ log (µh/ΛQCD). These corrections are expected to be tiny in the range of heavy quark

masses we are dealing with. This point is checked, and the corresponding systematic un-

certainty is quantified, by matching at different (TL, LL, NLL) perturbative orders the
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QCD B-parameters to their counterparts in HQET, thereby yielding B-parameters with a

well-defined static limit and correspondingly smaller ( O(α(µh)), O(α(µh)
2), O(α(µh)

3) )

logarithmic corrections to their leading 1/µh-behaviour. It turns out (see the error bud-

get discussion in section 6) that the impact of logarithmic corrections to the power-like

1/µh-behaviour on the chain equations (5.9) and (5.10), through which B-parameters are

determined, is small (O(1%)) compared to other uncertainties in the calculation. It is only

to this well controlled extent that a perturbative QCD-to-HQET matching of the quantities

of interest, carried out by using the formulae given in the present appendix, enters in our

ratio method computation.

In this appendix, we consider the QCD four-fermion operators in the SUSY basis of

eq. (1.7). The corresponding HQET operators have exactly the same form but with the

relativistic heavy quark field h replaced by the (infinitely) heavy quark field of HQET. In

the HQET due to the heavy quark spin symmetries, the operator O3 is related to O1 and

O2 by the relation O3 = −O2 − 1/2O1. Nevertheless, we find it convenient to work with

the redundant basis of five operators, which includes O3, in order to deal with squared 5x5

evolution and matching matrices in HQET as in QCD.

The relation between QCD B-parameters evaluated at the heavy quark mass µh and

their counterparts in HQET can be expressed as:

B̃i (µh;µ
∗) =Wij (µ

∗, µh, µ)Bj (µh;µ) (B.1)

where Bi (µh;µ) denotes the B-parameters in QCD renormalized at the scale µ and B̃i(µh;

µ∗) are the HQET B-parameters renormalized at the scale µ∗. The latter satisfy the heavy

quark scaling laws with logarithmic corrections dictated by their renormalization group

evolution, which are therefore easy to take into account when applying the ratio method.

The matrix W (µ∗, µh, µ) can be decomposed as follows:

W (µ∗, µh, µ) = Ũ (µ∗, µh)C (µh)
−1

U (µh, µ) (B.2)

The matrix U (µh, µ) encodes the full QCD evolution from the scale µ to the scale µh for

the five ∆B = 2 B-parameters. Ũ (µ∗, µh) is the corresponding evolution matrix in HQET,

from µh to µ∗. Finally, C (µh) provides the matching from HQET to QCD at the common

scale µh.

At next-to-leading-log (NLL), the explicit expression of W reads

WNLL (µ∗, µh, µ) = C−1











[

1− α (µ∗)

4π
J̃T
B

] [

α (µ∗)

α (µh)

]

γ̃
(0)
B
2β0

[

1 +
α (µh)

4π
J̃T
B

]

×
[

1− c
(1)
B

α (µh)

4π

]

×
[

1− α (µh)

4π
JT
B

] [

α (µh)

α (µ)

]

γ
(0)
B
2β0

[

1 +
α (µ)

4π
JT
B

]











C

(B.3)
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where the superscript T stands for “transposed”. The corresponding leading-log (LL)

expression of W is obtained by setting JB = J̃B = c
(1)
B = 0. Moreover, in eq. (B.3):

• β0 is the leading order coefficient of the QCD beta function, β0 = 11− 2Nf/3

• C = diag {8/3,−5/3, 1/3, 2, 2/3}

• γ
(0)
B is the scheme-independent one-loop anomalous dimension matrix (ADM) of the

QCD B-parameters. It is obtained by combining the one-loop ADM of the cor-

responding four-fermion operator γ(0) with the one-loop ADM of the pseudoscalar

density γ
(0)
P as:

{

γ
(0)
B

}

ij
= γ

(0)
ij − 2γ

(0)
P

k=5
∑

k=2

δikδjk (B.4)

where γ
(0)
P = −8 [52] and the expression of γ(0) in the SUSY basis of eq. (1.7) reads [85]

γ(0) =















4 0 0 0 0

0 −28/3 4/3 0 0

0 16/3 32/3 0 0

0 0 0 −16 0

0 0 0 −6 2















(B.5)

• γ̃
(0)
B is the scheme-independent one-loop ADM of the HQET B-parameters. It can

be obtained from the ADMs of the static-light four-fermion operator γ̃(0) and the

static-light axial current γ̃
(0)
A as12

{

γ̃
(0)
B

}

ij
= γ̃

(0)
ij − 2γ̃

(0)
A δij (B.6)

where γ̃
(0)
A = −4 [86] and γ̃(0) is given by [24]

γ̃(0) =















−8 0 0 0 0

0 −16/3 −8/3 0 0

0 −8/3 −16/3 0 0

0 0 0 −7 −3

0 0 0 −3 −7















(B.7)

• JB is the scheme-dependent two-loop ADM of the B-parameters in QCD. It is

obtained from the ADMs of the four-fermion operator J and of the pseudoscalar

density JP through

{JB}ij = Jij − 2JP

k=5
∑

k=2

δikδjk (B.8)

12In HQET the static-light axial current and pseudoscalar density operators happen to coincide and carry

a non-zero anomalous dimension.
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where in the MS scheme with Nf = 2 active flavors one obtains JP = 8134/2523. The

expression of J in the SUSY basis and in the MS scheme of ref. [25], with Nf = 2, is

J =

































9875
5046 0 0 0 0

0 1318145
310329

1633930
310329 0 0

0 33817
310329 −2024698

310329 0 0

0 0 0 2882869
565152

3365
188384

0 0 0 627
224 −576173

565152

































(B.9)

• J̃B is the scheme-dependent two-loop ADM of the B-parameters in HQET. It is

obtained from the ADMs of the four-fermion operator J̃ and of the axial density J̃A,

both in HQET, as
{

J̃B

}

ij
= J̃ij − 2J̃Aδij (B.10)

where J̃A = 1037/2523 − 28π2/261 in the MS scheme with Nf = 2. The HQET

two-loop ADM of the four-fermion operators has been computed in ref. [87]. In the

SUSY basis, it reads

J̃ =



































68π2

261 − 943
2523 0 0 0 0

0 74π2

261 − 24509
30276

13193
30276 − 2π2

87 0 0

0 18239
30276 − 2π2

87
74π2

261 − 29555
30276 0 0

0 0 0 74π2

261 − 5819
5046

4375
5046 − 2π2

87

0 0 0 4375
5046 − 2π2

87
74π2

261 − 5819
5046



































(B.11)

• c
(1)
B is the LL order coefficient of the matching matrix between HQET and QCD. By

combining the matching relations for the four-fermion operators, the axial and the

pseudoscalar densities, one finds

{

c
(1)
B

}

ij
= c

(1)
ij − 2c

(1)
A δi1δj1 − 2c

(1)
P

k=5
∑

k=2

δikδjk (B.12)

where the axial and pseudoscalar coefficients take the values c
(1)
A = −8/3 and c

(1)
P =

8/3 [86] and the matching matrix for the four-fermion operators is [24]

c(1) =















−14 −8 0 0 0

0 61/12 −13/4 0 0

0 −77/12 −121/12 0 0

0 0 0 17/2 −11/2

0 0 0 7/2 −21/2















(B.13)
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C Ratio method and the static limit relation between the four-fermion

operators O1, O2 and O3

In the static limit the equations of motion relate the four-fermion operators O(q)
1 , O(q)

2 and

O(q)
3 (q = d, s), at tree-level, via the relationship

O(q)
3 +O(q)

2 +
1

2
O(q)

1 = 0, q = d, s (C.1)

In this appendix it will be shown that using the ratio method and data taken from rela-

tivistic quark simulations one can verify the validity of eq. (C.1) in the infinite heavy quark

mass limit.

Following the discussion in ref. [39], see eq. (4.16) and (4.19), we define the ratios of

the three-point correlation functions

E
[

R
(q)
i

]

(x0) =
C

(q)
3;i (x0)

C
(q)
3;1 (x0)

, i = 2, 3 and q = d, s (C.2)

in order to get lattice estimators for the ratios of the matrix elements, given by

R
(q)
i =

〈B0
q |O

(q)
i |B0

q 〉
〈B0

q |O
(q)
1 |B0

q 〉
, (i = 2, 3 and q = d, s). (C.3)

We will show numerically, using just TL formulae for connecting matrix elements in QCD

to their HQET counterparts, that the following equation

R
(q)
3 +R

(q)
2 +

1

2
= 0, q = d, s (C.4)

is satisfied in the static limit with good precision.

Following the familiar procedure that we have used throughout this paper we define

suitable ratios of R
(d)
i , or R

(s)
i evaluated at nearby heavy quark mass values. With the

aforementioned TL approximation in the formulae for QCD-to-HQET connection they

read

r
(d)
i (µh, λ;µℓ, a) =

R
(d)
i (µh, µℓ, a)

R
(d)
i (µh/λ, µℓ, a)

(i = 2, 3) (C.5)

r
(s)
i (µh, λ;µℓ, µs, a) =

R
(s)
i (µh, µℓ, µsa)

R
(s)
i (µh/λ, µℓ, µsa)

(i = 2, 3) (C.6)

and they satisfy the asymptotic limit condition

lim
µh→∞

r
(q)
i (µh) = 1 (i = 2, 3 and q = d, s). (C.7)

In figures 22(a) and (b) we display the combined chiral-continuum fit against the light

quark mass for R2 and R3, respectively, at the triggering point (µ
(1)
h ). In both fits we have

used a linear fit ansatz in µℓ as well as in a
2.
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Figure 22. Combined chiral and continuum limit at the triggering point for R
(s)
2 (left) and R

(s)
3

(right), renormalised in the MS scheme of ref. [25] at 3GeV. The fit ansatz is a linear fit in µℓ and

in a2.

Const. Fit (χ2/dof [dof ] = 0.7[10])

Lin. Fit (χ2/dof [dof ] = 0.7[9])
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Figure 23. Combined chiral and continuum fits of the ratio r
(s)
2 (µh) (left panel) and r

(s)
3 (µh) (right

panel) against µℓ for the largest value of the heavy quark mass considered in this work (n = 7).

The full black line corresponds to a linear fit ansatz in µℓ and a
2, while the dashed one corresponds

to the continuum limit curve in the case of a linear fit in a2 without dependence on µℓ (constant

fit). In both panels colored lines correspond to the linear fit ansatz in µℓ and a2.

For each pair of nearby heavy quark masses we get the continuum limit result at the

physical point of the ratios defined in eqs. (C.5) and (C.6) through a combined chiral-

continuum extrapolation. In figures 23(a) and (b) we illustrate this extrapolation for

r
(s)
2

(

µ
(n)
h

)

and r
(s)
3

(

µ
(n)
h

)

, respectively at the largest value of heavy quark mass used in this

work (n = 7).

In figure 24 we show the dependence of r
(s)
2 (µh) and r

(s)
3 (µh) on the inverse heavy

quark mass 1/µh. We fit data employing a second order polynomial fit function in 1/µh
while the static condition at unity is explicitly imposed.

The determinations of R
(q)
i in the infinite heavy quark mass limit are obtained through

the use of a chain equation assuming a high number of steps Ns in terms of which we write
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Figure 24. r
(s)
2 (µh) and r

(s)
3 (µh) versus 1/µh. For both cases a second order polynomial fit ansatz

in 1/µh with the static condition at unity has been used.
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Figure 25. The behaviour of
[

R
(q)
3 + R

(q)
2 + 1

2

]

with the increasing number of Ns for q = d (left

panel) and q = s (right panel). In each plot the vertical dashed line indicates the triggering point

(µ
(1)
h ), while the dotted vertical one indicates the position of µb.

µ
(Ns)
h = λNsµ

(1)
h . The chain equation reads

R
(q)
i

(

µ
(Ns)
h

)

=

[

k=Ns
∏

k=2

r
(q)
i

(

µ
(k)
h

)

]

R
(q)
i

(

µ
(1)
h

)

, q = d, s (C.8)

where with R
(q)
i

(

µ
(1)
h

)

we denote the triggering point estimate. We get the following

results:

lim
Ns→∞

[

R
(d)
3 +R

(d)
2 +

1

2

]

(

µ
(Ns)
h

)

= −0.003(32) (C.9)

lim
Ns→∞

[

R
(s)
3 +R

(s)
2 +

1

2

]

(

µ
(Ns)
h

)

= 0.028(29) (C.10)

In figure 25(a) and (b) we show the behaviour of the quantites
[

R
(d)
3 + R

(d)
2 + 1

2

]

and
[

R
(s)
3 +R

(s)
2 + 1

2

]

, respectively, as the number of Ns increases. We observe that for Ns > 25

the asymptotic value compatible with zero within one standard deviation is reached.
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