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of high speed granular mass often depends on the in-
terstitial pressures at the base of the mass, that can 
vary between null and higher than hydrostatic values 
(Iverson, 1997), due to possible water pressure ex-
cess, related to very rapid changes of pore volumes, 
often localized along a thin layer in proximity of the 
sliding surface. Experimental observations showed in 
fact the growth of a basal “shear zone” where initially 
great deformations and then dilation and collisions oc-
cur, differently from the top (Hungr, 1995).

Field observations denote the dependence of the 
runout length on the debris flow volume, but the usual 
Mohr-Coulomb (M-C) shear resistance criterium 
doesn’t allow to obtain this result. 

Thus, more complex resistance laws must be 
developed to describe the rapid sliding of a granular 
mass because high speed relative motion and colli-
sions between solid grains take place within the basal 
shear layer, causing a fluidification effect (Hungr & 
Evans, 1996) coupled with energy dissipations.

To this purpose, Bagnold (1954) defined “dis-
persive pressure” the stress component normal to the 
boundary that encloses a set of particles in grain-in-
ertial regime:

(1)

being:
ai, the “Bagnold coefficient”; Bagnold (1954) and 
Takahashi (1981) suggest the value 0.042;
ρs, the solid fraction mass density;

ABSTRACT
The power balance of a high speed granular mass 

sliding along planar surfaces is written by taking into 
account its volume, the slopes of the surfaces (runout 
and runup), an assigned basal fluid pressure and dif-
ferent possibilities for the energy dissipation. In par-
ticular, collisions acting within a thin layer (“shear 
zone”) at the base of the mass and shear resistance 
due to friction along the basal surface induce the dis-
sipation of energy. The solution of the ODE describ-
ing the mass displacements vs time is numerically ob-
tained. The runout length and the speed evolution of 
the sliding mass depend on the involved geometrical, 
physical and mechanical parameters as well as on the 
rheological laws assumed to express the energy dis-
sipation effects. The well known solutions referred 
to the Mohr-Coulomb or Voellmy resistance laws are 
recovered as particular cases. The runout length of a 
case is finally back analysed, as well as a review of 
some relationships expressing  the runout length as a 
function of the volume V of the sliding mass. 
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INTRODUCTION
The analysis of the complex mechanisms of the 

chaotic movement of high speed granular masses 
sloping along mountain streams till their arrest is nec-
essary to identify hazardous areas. The runout length 
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a comparison among solutions of G-M, Rickenmann’s 
empirical formula (1999) and Corominas’s results 
(1994) of analyses are finally developed.

BASIC ASSUMPTIONS
• The granular sliding body is composed by two 

masses of equal basal area Ω and length l; they rep-
resent respectively the "shear zone" (thickness ss) and 
the superimposed mass (thickness sb,“block”). The to-
tal height of the sliding mass is H = sb(t) + ss(t). The 
global geometry (Ω, l and H) does not change; erosion 
or deposition processes are neglected.

• The “shear zone” is composed by particles that, 
moving at high velocity and colliding each with oth-
ers, induce appreciable fluctuations of their velocities 
(granular temperature); the “block” is dominated by 
inertial forces and quasi-static stress.

• The sum of the masses of the shear zone (ms) 
and the overlying block (mb) equals the total sliding 
mass m0. Both masses vary during the sliding and may 
change their volume:

ρs, ρb simply assume constant values although it is pos-
sible to define their dependence upon the sliding rate.

• The thicknesses sb(x(t)), ss(x(t)) are not a priori 
known along the travelled distance x, at time t. Their 
values may be obtained by imposing the equilibrium 
in the direction orthogonal to the sliding planes: the 
resulting Ntot (= Wcosζ, ζ=θ or α, Fig. 1) must be bal-
anced by the lithostatic stresses, σlit, as well as by the 
dispersive pressures, pdis, introduced by Bagnold 
(1954). The equilibrium equation is therefore written 
as follows:

	 (4)

being:
	 (5)

H=s0
b, block initial thickness;

the functions r and r̅ are defined to allow a rational 
splitting of the force Ntot between the lithostatic force 
and the resultant of the colliding forces. They are writ-
ten as a function of the rate of the sliding masses(ẋ):

	(6)

	 (7)

being:

λ, the “linear concentration”, that is a function of solid 
fraction vs;
dp, the characteristic diameter of the grain;
(du/dy)2, the square of the velocity gradient;
Φ, the internal dynamic friction angle of granular 
bulk.

If a linear change of velocity, along the orthogo-
nal direction of the motion, is assumed, the following 
dependence is obtained between the Bagnold’s defini-
tion of dispersive pressure and the rate x ̇ of the sliding 
mass: pdis~x2.

Ogawa (1978) defined “granular temperature” as 
the mean square deviance of the relative velocities of 
sliding and colliding particles with respect to the mean 
value

                                      (2)

Several Authors apply the Voellmy law (V-M): a 
turbulent resistance is added to the M-C resistance, to 
estimate the runout length of debris flows. 

To overcome these limitations, the rapid sliding 
of a granular mass along planar surfaces is analyti-
cally modelled in the paper, by taking into account the 
effects of granular temperature and dispersive pres-
sure, acting within the basal ‘shear zone’. An original 
model is firstly proposed, based on some simplifying 
hypotheses. The governing equations are formulated 
by introducing the parameters describing the granu-
lar temperature and the dispersive pressure. After an 
evaluation of the model parameters, some paramet-
ric results are developed. The comparisons among 
solutions obtained according to the General (G-M), 
Coulomb (C-M) and Voellmy Models (V-M) are then 
shown. The schematic back analysis of a well de-
scribed avalanche is carried out through the G-M and 

Fig. 1	 -	 Problem’s setting and reference systems. The ori-
gin (x = 0) of each reference system coincides with 
the projection of the position of the gravity centre 
of the sliding mass along the sliding surfaces

(3)
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         (17)     

(18)

Counterslope:

                                                                                                   (19)

                                                                                                   (20)

Transition zone:

    (21)

    (22)

    (23)

    (24)

    (25)

    (26)

In the proposed model, to simplify the numerical 
solution, it is directly assumed a linear combination 
on powers of energies:

(27)

being
(28)

(29)

The kinetic energy and the power of the kinetic 
energy are expressed as follows:

        (30)

        (31)

        (32)

        (33)

EFFECTS OF COLLISIONS
Egt , Ecoll. The energy Egm transferred to the “shear 

η, parameterϵ[0.005,0.5];
vcrit, the critical value of the speed for which the re-
gime dominated by the inertial forces turns towards a 
regime governed by the collisions.
By recalling the expression [4], it is obtained:

	 (8)

	 	 (9)

being:
	 (10)

• The angle ζ of the slope may assume only two 
values: ζ = θ, runout; ζ = α, runup. Therefore, the total 
length traveled by a high speed sliding granular mass 
is obtained through the analysis of three sliding phas-
es. (I): the granular mass runs along the first slope (θ 
and length L are assigned) and progressively acceler-
ates; (II) intermediate section: the granular mass runs 
at the same time along both slopes (θ and α, see Fig. 
1); (III): the granular mass runs only along the coun-
terslope (α); its speed decreases up to stop.

ENERGY AND POWER BALANCES
The energy balance of the sliding mass is ex-

pressed by the equation:
(11)

Ep,0, initial potential energy; Ep, potential energy; 
Ek, kinetic energy of the sliding mass; Efr, energy 
lost due to the (Coulomb’s) friction along the slid-
ing surface; Ecoll and Egt, energies transferred from the 
“block” to the basal “shear zone” to support the grain 
inertial regime. Deriving the eq. [11], the Power Bal-
ance is obtained:

(12)

POTENTIAL AND KINETIC ENERGY: EP AND 
EK

The potential energy is expressed as follows (b = 
block; s = shear zone):

(13)

The corresponding power is obtained deriving [13]:
                       (14)

First slope:
     (15)

                                                                    

(16)



F. FEDERICO & C. CESALI

156

International Conference on Vajont - 1963-2013 - Thoughts and analyses after 50 years since the catastrophic landslide   Padua, Italy - 8-10 October 2013

ues must be assigned. The length dw varies in the range: 
d(w,min)≤dw≤d(w,max). If the sliding granular mass always 
transfers positive normal stresses to the basal surface, 
the minimum value dw,min can be deduced by imposing 
the equilibrium along the direction perpendicular to the 
sliding surface:

(41)

γs is the unit weight of the sliding mass. The interstitial 
pressure’s resultant is expressed as follows:

(42)

THE ROLE OF BASAL FRICTION
The role of basal friction: Efr. Efr is a function of 

the weight W of the sliding mass, the dynamic friction 
angle Φb at the base of the block. Dispersive and inter-
stitial pressures reduce the friction energy dissipation.

By including the effect of interstitial pressures, 
the basal friction resistance is expressed as follows:

(43)

φb assumes a constant value along the slopes. The 
power related to the energy dissipated due to the fric-
tion along the sliding basal surface is:

                                                                                                     (44)

RESULTS OF PARAMETRICAL ANALY-
SES

The proposed model depends on few param-
eters pertaining to the micromechanical behaviour: β 
(ϵ[0,2]), e (restitution coefficient ϵ[0,1]), k (in Ėgt’s 
expression [36]) and dp (grain diameter). First of all, 
by changing arbitrarily the parameters e and β, we in-
vestigate the effect of the parameter k, for the assigned 
values of remaining parameters: L=1000 m; θ=38°; 
α=0°, Φb=18°, l=300 m; Ω=15000 m2; H=35 m; dp = 
0.1 m; interstitial pressure resultant U ≠ 0 (dw = 0). In 
Table 1, the set of selected values is shown

Results in terms of the (runout and runup) total 
length (x), block and shear zone thicknesses (sb, ss), 

zone” is partly lost due to repeated grain inelastic col-
lisions (Ecoll) and partly stored as granular temperature 
(Egt). Zhang & Foda (1997) have shown that the power 
of the energy lost in granular collisions is related to the 
granular temperature (Tg) according to the relation: 
E coll~Tg

(3/2). Ogawa (1978) observed that the energy 
stored in the grain-inertial regime is proportional to the 
granular temperature: Egt~Tg.

Granular temperature, in turn, is proportional to 
the mean velocity of the grains composing the shear 
zone (Savage & Jeffrey, 1981), according to the re-
lation: Tg~x2. These relations are respectively applied 
to formulate the powers of energies lost due to grain 
inelastic collisions (Ecoll) as well as stored in granular 
temperature (Egt):

	 	 (34)

	 	 (35)

being, according to previous analyses (Federico & 
Favata, 2011):

	 (36)

(37)

    (38)

e being the restitution coefficient (ϵ[0,1]); ω, ZHANG-
FODA coefficient; β, coefficient ϵ[0,2] and υs being 
the solid franction; dp, the characteristic diameter of 
the grains, ρ

s
, the solid phase density

(39)

INTERSTITIAL PRESSURES
The interstitial pressure pw(x ) at the base of the 

mass affects the friction dissipated energy. Isopiezic 
lines are assumed orthogonal to the motion direction 
and  pw (x) is assumed constant along the planar slid-
ing surface (Iverson, 1997):

        (40)

γw is the specific weight of the water; dw= 0 if the mass 
is saturated; dw=H if the mass is dry; pw may exceed 
the hydrostatic value due to the mechanical effects as-
sociated with the rapid change of pore volumes, cor-
responding growth of interstitial water pressures excess 
(Musso et alii, 2004). To simulate this effect, dw< 0 val-

Tab. 1	 -	 Assigned values to the parameters e, β, k
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sults are reported in terms of runout length, block and 
shear zone thicknesses, collisional energy and energy 
related to granular temperature, according to dp.

collisional energy (Ecoll) and energy related to granular 
temperature (Egt), for different values of the parameter 
k are shown in the figures 2, 3, 4 and 5.

The thicknesses of the block and the ‘shear zone’ 
slightly change if the parameter k increases (Fig. 2). 
Collisional energy Ecoll, set the coefficient of restitution 
(e = 0.3), to decrease of the parameter k (and therefore 
of β), increases, while holding almost unchanged, to 
the decrease of k, fixed the coefficient β (Fig. 3).

The energy associated with granular tempera-
ture Egt decreases if k decreases (Fig. 4). It is worth 
observing that if the parameters e, β provide small 
values of k, the sliding mass reaches unrealistic high 
speeds (more than 40 m/s), usually obtained by Cou-
lomb Model. Fixed parameter β, a decrease of k (and 
thereby the increase of e) gets an increase of both 
maximum speed and runout length, while fixed e, if 
k decreases, the runout length decreases too (Fig. 5).

Effect of the parameter dp. (the parameters e, β 
and k are: e = 0.3; β = 1.75; k = 0.7).

The following values of the parameter dp are as-
signed: dp=0.05 m; dp=0.10 m; dp = 0.15 m). The re-

Fig. 2	 -	 Curves [sb(x(t)), x(t)];[ss(x(t)), x(t)]; )];[H, x(t)] 
for different values of parameter k

Fig. 3	 -	 Collisional energy for different values of k

Fig. 4	 -	 Energy Egt related to the granular temperature Tg, 
for different values of parameter k

Fig. 5	 -	 Rate v of the sliding granular mass, for different 
values of parameter k

Fig. 6	 -	 Curves [sb(x(t)), x(t)]; [ss(x(t)), x(t)]; [v, x(t)] for 
different values of parameter dp
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If the diameter dp decreases, the thickness of the 
‘shear zone’ becomes smaller; as a result, being the sum 
of sb and ss equal to the height H of the debris flow (con-
stant value), the thickness of the sustained block increas-
es (Fig. 6). Instead, the collisional energy, to an increase 
of dp, increases (Fig. 7). If dp increases, the distance 
traveled, the maximum speed (Fig. 6) and the energy as-
sociated with granular temperature Egt (Fig. 7) decrease.

COMPARISON WITH RESULTS OBTAI-
NED ACCORDING TO CONVENTIONAL 
RHEOLOGICAL MODELS

Results obtained through the General-Model (G-M) 
are compared with solutions of Coulomb-Model (C-M) 
and Voellmy-Model (V-M). The motion equations for 
the V-M and C-M models are given by the ODE:
                                                                                                                          (45)

M̅=0 describes the Coulomb Model (C-M); M̅≠0, 
the Voellmy Model (V-M). The M̅ parameter can be 
related to the ξ turbulence coefficient of Voellmy 
through the equation (Federico & Favata, 2011):

(46)

γs being the specific weight of the bulk mass. The Voe-
llmy’s turbulent component of resistance describes, 
in a schematic manner, the energy dissipation due to 
granular collisions. Therefore, in the Voellmy Model, 
the term M̅x2, describes the energy dissipation in gran-
ular collisions (Ecoll). For a better comparison between 
the results obtained through the models (G-M, C-M, 
V-M), the coefficient M̅ has been determined on the 
base of the coefficient M of the General Model, re-

placing ss (t) with (ss max  ⁄2):

(47)

If the [47] applies, the energy dissipated due to col-
lisions is almost equal for both G-M and V-M models. 

The following values of the parameters are as-
signed: θ = 30°, α = 0°; L = 1000 m; γw=10 kN/m3; 
ρb=2105 Kg/m3; dw = 0; H = 25 m; V = 18750 m3; m = 
4•107 kg; k = 0,7; φb = 18°; dp = 0.05 m; Ω = 750 m2; l 
= 100 m; e = 0.3; β = 1.75; in V-M, M̅=8 x 104 Kg/m; 
in C-M, M̅ = 0 kg/m is assumed. The figures 8, 9, 10 
and 11 show the G-M, V-M and C-M results.

C-M model gets run out and velocity values great-
er than G-M and V-M models (Fig. 8); the reduction 
of the sliding rate is caused by the additional shear re-
sistance due to grains dissipation. In Fig. 9 a compari-
son among the models is shown in terms of traveled 
distance. In G-M model, the duration of the motion is 
greater than in the others cases. In Fig. 10, the energies 
concerned  with the G-M model are shown; the initial 
potential energy partly becomes kinetic energy, partly 
is stored as granular temperature, partly is dissipated 
owing to grains collisions and friction sliding. In Fig. 
8, the block and ‘shear zone’ thicknesses concerned 
with the General Model are shown. It is further in-
vestigated the influence of the volume V of the slid-
ing mass on the total runout length, for some assigned 
values of parameters: L=1630 m; θ=30°; α=-15°, 
φb=18°, dp = 0.05 m; dw = 0, γw=10 kN/m3; ρb=2105 
Kg/m3. Results of computations are shown in Fig. 11. 
C-M run out doesn’t depend on the volume of the slid-
ing mass. In G-M and V-M, the solutions depend on 
the granular volume; for small value of V, the run out 

Fig. 7	 -	 Collisional energy (Ecoll) and energy related to the 
granular temperature (Egt) for different values of dp

Fig. 8	 -	 Curves [v(t), x(t)]; [sb(x(t)), x(t)]; [ss(x(t)), x(t)]: 
comparison between General Model, Coulomb 
Model and Voellmy Model
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The separated rock mass has been shattered by 
impacts against the side of the mountain during its 
sliding, and probably long before it reached the bot-
tom, into myriads of fragments, some of which were 
flung far out into the valley. Immediately after the 
slide, an inspection was made by the Geological Sur-
vey of Canada: the slide occurred across rather than 
along bedding planes and the primary cause for the 
slide was found in the structure of the mountain. Water 
action in summit cracks and severe weather conditions 
also contributed to the disaster. In Table 2, the input 
parameters obtained from conventional back analysis 
of the event (Cruden & Hungr, 1986) are shown.

The runout length (x) and the rate of sliding 
mass (v), for the assigned parameters dp = 0.05 m; 
dw= 0; γw=10 kN/m3; ρb=2105 Kg/m3; e = 0.3; β = 
1.75 are shown in figures 12, 13; in V-M,  M̅=1.5 
x 107 Kg/m; in C-M, M̅ = 0 kg/m is assumed. The 
maximum speed and the runout length computed 
according to the Coulomb Model appear remark-
ably greater than the corresponding values obtained 
through the G-M and V-M models (Fig. 12). The 
Voellmy Model gets values of runout less than the 
values obtained by the General Model (Fig. 13) al-
though the corresponding rate appears too high. The 

length increases significantly with the volume V; for 
great values of V, G-M and V-M runout length tend 
to the C-M runout and the travelled distance progres-
sively becomes almost independent on the sliding 
mass volume.

BACK ANALYSES
Through the proposed model, the Frank slide is 

first back analysed; the comparison among solutions 
of G-M, Rickenmann’s empirical formula and Corom-
inas’s analyses are then carried out.

Frank slide. The Frank slide occurred on the morn-
ing April 29, 1903, in the south western Alberta (Brit-
ish Columbia, Canada). The original unstable rock 
mass volume was estimated as 30x106 m3. The debris 
moved down from the east face of Turtle Mountain 
across the entrance of the Frank mine, the Crowsnest 
River, the southern end of the town of Frank, the main 
road from the east, and the Canadian Pacific mainline 
through the Crowsnest Pass. 

Fig . 9 	  	 Curves [x(t), t]; comparison between General 
Model, Coulomb Model and Voellmy Model

Fig. 10	 -	 Energies concerned with G-M solution
Fig. 11	 -	 Curves: [x(t), V]; comparison between General 

Model, Coulomb Model and Voellmy Model

Tab. 2	 -	 Frank slide. Input parameters for back analysis
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mass):

(48)

being: V, volume of the mass; H, difference in eleva-
tion (see Fig. 14).

The geometry of the problem is fixed and the fol-
lowing values of the parameters are assigned: θ = 38°, 
α = 0°; L = 1000 m; γw=10 kN/m3; ρb=2105 Kg/m3; 
dw = 0; φb = 18°; e = 0.3; β = 1.75. By applying the 
(G-M) model, different values of parameters H, dp, e, 
l, and Ω are assigned. The Fig. 14 shows the (runout 
and runup) total length computed as a function of the 
volume V. Following a suitable choice of the assigned 
parameters, the travelled length estimated through the 
General-Model is quite close to that one estimated by 
the empical formula [48]. While the empirical formula 
for runout length depends explicitly on the volume V, 
in the G-M model, the runout length depends on the 
volume through the parameters H, dp, e, l, and Ω.

Scheidegger (1973) correlated the volume V of a 
sliding mass to the dimensionless variable f, this one 
defined as the tangent of the angle Ψ (Fig. 15) formed 
by the horizontal line and the straight line joining the 
point of greatest potential energy of the system under 
static conditions and the lower end of the debris flow, 
after its arrest. The Scheidegger s relationship is ex-
pressed as follows

          (49)

The constants C1 and C2 are determined through 
interpolation of data on real landslides. After a careful 
back analysis on several debris flows, Corominas (1994) 
obtained the following values: C1 = - 0.034; C2 = - 0.101.

By interpolating values of f obtained from the val-

General Model gets the runout length greater than 
that one computed through the Voellmy Model and 
close to that one in situ observed. The time interval 
of the motion is about 120 s for the General Model 
and about 70 s for the Voellmy Model (Fig. 13). The 
larger time interval for the G-M derives from the 
stored energy as ‘granular temperature’ that sus-
tained the runup phase, allowing a more gradual re-
duction of the sliding rate, if compared to the reduc-
tion pertaining to the V-M or C-M models. 

EMPIRICAL RELATIONSHIPS.
A comparison between the General-Model results 

and runout lengths obtained through some empirical 
relationships proposed in literature is carried out. Af-
ter back analyses on “160 debris flows”, Rickenmann 
(1999) proposed an empirical relation to estimate 
the length D (horizontal distance traveled by sliding 

Fig. 12	 -	 Frank slide back analysis. Curves [v(t), x(t)] ob-
tained through the General, the Coulomb and the 
Voellmy Models

Fig. 13	 -	 Frank slide back analysis. Curves [x(t), t] ob-
tained through the General, the Coulomb and the 
Voellmy Models

Fig. 14	 -	 Curves [x,V]; comparison between General Mod-
el, and RICKENMANN’s relationship



MODELING OF RUNOUT LENGTH OF HIGH-SPEED GRANULAR MASSES 

Italian Journal of Engineering Geology and Environment - Book Series (6)  www.ijege.uniroma1.it                               © 2013 Sapienza Università Editrice

161

CONCLUDING REMARKS
An original analytical model (General Model) 

based on energy-balance equations and some simplified 
assumptions, to estimate the runout length of granular 
debris flow or avalanches, is proposed. Hypotheses 
concern the geometry of the sliding mass (parallelepi-
pedal shape), sliding surface (planar surfaces) and en-
ergy dissipation (friction, collisions). The model takes 
into account several experimental results reported in 
technical literature. Specifically, in a granular material 
sliding at high rate along a basal surface, a thin (‘shear’) 
zone, with variable thickness, whose behaviour is 
characterized by a regime dominated by the presence 
of collisions, hosting the "granular temperature" phe-
nomenon, generates and develops in proximity of the 
basal surface. The material composing the shear zone 
exchanges energy and mass with the remaining upper 
material (block), characterized by a regime dominated 
by inertial forces. Through the balance of the involved 
mechanical powers, the travelling of the granular mass 
along the planar surfaces is describes by a system of 
ODE, that have been numerically integrated. Paramet-
ric analyses allowed to identify the role of geometri-
cal and mechanical parameters, such as the diameter 
of grains (dp), the coefficient of restitution (e) and the 
parameter k. Finally, comparisons between the results 
obtained through the General Model, the Coulomb and 
Voellmy Models, as well as the back analysis of a case 
and a critical examination of well known empirical re-
lationships are shown. The main limits of the proposed 
model lie in the oversimplified geometry of the debris 
body, in the assumption of constant total mass, in defi-
nition of the micro-mechanical parameters.

ues of the runout length related to cases analyzed with 
the General-Model, for different values of the micro-
mechanical parameters e and dp, the results shown in 
Fig. 15 are obtained.

In Fig. 15, the values of the parameter f as a func-
tion of the volume V related to the cases analyzed with 
the G-M and the results obtained through the [49] are 
shown (Cesali, 2013). An appreciable agreement be-
tween these results is observed. At the same time, the 
role of micromechanical parameters is highlighted; 
their influence on the definition of empirical relation-
ship cannot be neglected, although it is not easily 
knowable, since the values of the runout length, (and 
of the parameter f), were obtained by varying other 
parameters such as H and Ω (height and basal area of 
the debris flow). In particular, by decreasing e and in-
creasing dp, thanks to a suitable choice of H and Ω, the 
trends obtained by the G-M approximates the trend 
obtained by Corominas (1994).

Fig. 15	 -	 Curves [f, V]; comparison between General Mod-
el and COROMINAS’s results
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