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1 Introduction

The ad-hoc task of the microblogging track has an important theoretical impact for Information Retrieval.
A key problem in Information Retrieval is, in fact, how to compare term frequencies among documents of
different length. Apparently, term frequency normalization for microblogging can be simplified because of
the short length constraint for the composition of admissible messages. The shortness of messages reduces
the number of admissible values for the document length, and thus the length of a message can be regarded
as if it were almost small and constant. On the other hand, short messages can carry a small amount of
information, so that they are hardly distinguishable from each other for content. To overcome both problems,
we propose to use a precise mathematical definition of information as the one given by Shannon [10] to
provide an ad hoc IR model for Microblogging search. We show how to use Shannon’s information theory
and coding theory to weight the query content in Twitter messages and retrieve relevant messages.

A second major problem of the microblogging track, as well as of any new collection of TREC, is the
unavailability of a set of queries to derive and tune model parameters. Moreover, this is the first evaluation
campaign on a new released corpus ever made for the microblogging search task, and in absence of any rel-
evance data, it seems very interesting to define a retrieval methodology which is independent from relevance
data, but still highly effective for the ranking of very short messages. Indeed, the proposed information
theoretic methodology leads to the construction of a microblogging retrieval model that does not contain
parameters to learn, and evaluation has shown the effectiveness of such parameter-free approach.

In addition to these two major problems (i.e. how short length affects relevance and how to learn param-
eters in absence of any relevance data), message recency is the only criterion applied to re-rank the retrieved
messages. Thus, we regard the microblogging task more as a filtering decision task than as a ranking task.

The new microblogging search task shares several similarities with some of the previous TREC evalua-
tion campaigns, in particular with the past legal and blog TREC tracks. The legal track is basically a filtering
task, that provides a large boolean retrieved set. In the legal track of TREC 2008 [8], for example, partic-
ipants were asked to improve the quality of a given boolean baseline. This baseline was hard to improve
according to the official evaluation measure. The task was to perform a dynamic cut-off value K in the
ranking, being all evaluation measures estimated at the depth of this variable value for K, e.g. the precision
and recall at depth K, P@K or R@K or other similar official measures used to assess the quality of the
retrieved set.

Similarly to the recency re-ordering of retrieved messages, in the TREC 2008 blog track [6] participants
had to re-rank the documents by relevance according also to an opinion content dimension. An evaluation
study however showed that filtering relevant documents by a second dimension or criterion, such as the



opinionated content of documents, is often more harmful than performing a mild re-ranking strategy for the
official MAP or P@10 measures [3] or even no re-ordering at all.

As a consequence of these general remarks we made the following hypotheses and submissions:

a) We have submitted a standard TREC baseline (the run named DFReeKLIM with 1000 messages re-
trieved per query) ordered by relevance only, that is without any time analysis, in order to assess how
time re-ranking affects the precision at different depths of the retrieved set.

b) Relevance by score distribution follows a mixture of two distributions (e.g. one exponential for the non-
relevant documents, and the normal for the relevant ones [7,11]). Therefore, relevant documents have
to be found on top of the ranking, and indeed P@K is a decreasing function with respect to K. It has
been also observed that the precision at depth K, P@K, increases with collection size [5]. We assumed
that relevance is dependent of recency of the messages. However, a pure re-ranking by time of the first
K topmost messages, retrieved by relevance, hardly improve the official measure P@30 when K 6= 30
since relevance scores and relevance ranks do not distribute uniformly but follow a power law. Therefore
we submitted an official run retrieving exactly 30 messages per query (the run named DFReeKLIM30).

c) We made a preliminary recency analysis. A dynamical cut to the retrieved set was introduced. The aim
was to predict the best K documents for each query for which time reordering would have been suc-
cessful. The mean threshold value for K was 73. The effectiveness of the methodology (run DFReeK-
LIMDC) must be assessed by the evaluation measures on time re-ranking.

d) We explicitly assumed dependence of relevance with respect to time and used the time ranking as re-
cency score to reorder by relevance the first pass retrieval. The effectiveness of the methodology can be
thus assessed by the evaluation measures on relevance and not by time re-ranking, as performed by the
official TREC measures (run DFReeKLIMRA).

2 The Tweets2011 benchmark and experimentation settings

The Microblog track of TREC 2011 is based on the Tweets2011 corpus, a collection made up of messages
sampled from the Twitter public timeline over a period of 2 weeks across January and February 2011. The
Tweets2011 corpus contains approximately 16 million tweets, including replies, retweets and spam tweets.
The corpus must be downloaded directly from Twitter from an official list of tweets and by means of a
software tool provided by the track organizers, and building either a JSON or a HTML format collection. In
the first case the tool would have taken a prohibitive time since it invokes the public Twitter API whose usage
is limited to 150 API calls per hour. Because of this restriction we had to build a HMTL format collection.
In this case the tool reconstructed the original tweets crawling the Twitter Web site without any rate limit.
Unfortunately the HTML format is not as rich as the JSON format.

We parsed the constructed HTML collection to obtain a standard TREC format collection. Furthermore,
we filtered re-tweets (i.e. tweets having the RT: prefix), and we tagged in the TEXT fields all tiny urls, labels
(identified by the # character), replies and mentions (both identified by the @ character). At the end of the
process each tweet had the following format:

<DOC>
<DOCNO>28968573615472640</DOCNO>
<DATE>Sun Jan 23 00:13:40 +0000 2011</DATE>
<TEXT>

<LA>#Twitition</LA> this is a answer of a hater to me ):
<A>http://twitition.com/p6q53</A> <TO>@TwitterUserNameToReply</TO>

</TEXT>



<SCREENNAME>TwitterUserName</SCREENNAME>
<FULLNAME>Mrs. XXXX </FULLNAME>
<RETWEET_COUNT>0</RETWEET_COUNT>
<URL> http://twitition.com/p6q53</URL>
<HASHTAGS> #Twitition </HASHTAGS>
<MENTIONS> TwitterUserNameToReply </MENTIONS>
</DOC>

Microblog track addresses a search task comprising a set of 50 topics where the user information need is
represented by the topic at a specific time. An example of topic is:

<top>
<num> Number: MB001 </num>
<title> BBC World Service staff cuts </title>
<querytime> Tue Feb 08 12:30:27 +0000 2011 </querytime>
<querytweettime> 34952194402811904 </querytweettime>
</top>

where:

– the num tag contains the topic number.
– The title tag contains the user’query representation.
– The querytime contains the timestamp of the query in a human and machine readable ISO standard

form.
– The querytweettime tag contains the timestamp of the query in terms of the chronologically nearest

tweet id within the corpus.

We did not use any future evidence or external resource, that is all runs were built using Tweets2011
corpus only, and removing from the corpus information generated after the query timestamp. We thus created
50 Terrier [9] indexes, one for each topic (each index contains just tweets with a <DATE> value less than
the <querytime> value associated to the related topic). The Terrier indexes have been created using the
out-of-the-box indexing settings and skipping the following fields:

TrecDocTags.skip=DATE,SCREENNAME,FULLNAME,RETWEET_COUNT,URL,MENTIONS,A,TO,LA

3 Methodology

We have used a methodology for both first pass and query expansion which is free from parameters.

3.1 Ad-hoc component

We have defined an information retrieval model which is based on the inner product of two information
measures.

For each posting (term-message pair) there are three random variables: the size of the message l, the
relative frequency of the term in the message p̂ = tf

l , the frequency for an additional unit of information
p̂+ = tf+1

l+1 , where tf is the frequency of the term in the message, the prior probability p of the term, i.e. the
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In information theory
∑
t p̂ · log2
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p = D(p̂||p) is the Kullback-Leibler divergence. The quantity log2

p̂
p

is the additional coding cost of one token term in bits, when observing the true probability p̂ instead the
term prior p. Similarly, the quantity log2

p̂+

p̂ is the additional coding cost of a single token with respect to the

optimal encoding of the message when this token is added to the message. Therefore the quantity l · p̂ · log2
p̂
p

is the additional coding cost of the term in bits, when observing the true probability p̂ instead the term prior
p.

The query-message function is the inner product of these two information measures and is called KLIM
(for Kullback-Leibler based product of Information Measures):
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It can be shown that this model is not statistically significant different from all main information retrieval
models also on large TREC collections, like GOV2.

3.2 Query Expansion Component

We have used the parameter-free model Bo1 of query expansion [1] (QE). We have considered the first 30
messages in the ranking to expand the original query up to 10 new weighted query terms. The parameter free
QE methodology is explained in [1] and is the out-of-the-box QE component of Terrier [9].

3.3 Dynamic cut Component

In order to predict the optimal cut for the retrieval messages, we analyzed the distribution of the most recent
documents in the retrieved set. Our assumption is that the optimal cut value should keep the most relevant
(with highest scores) messages in the retrieval set as much as possible, together with the most recent ones.
Due to the evaluation of the retrieval set with P@30, as official evaluation measure, our retrieval set was
made up of the first 30 documents in the relevance ranking.If a very recent message is too far from the early
positions in the relevance ranking, then it is risky to include it in the final ranking. As a consequence, we
introduced a filtering approach based on a comparison of score and timestamps of the retrieved messages.
The main idea is to choose a particular score value as filtering threshold. We observed that the most recent
retrieved message is always before the 200th position in the ranking. Then the threshold is defined as the
mean value of the scores of the 200th and the 30th messages.

3.4 Time Re-Ranking Component

As anticipated, we have assumed that time and relevance are two dependent variables. However, time and
relevance yield two independent rankings, that need to be merged: the relevance score ranking, and the
recency ranking, i.e the ranking obtained by reordering the retrieved messages by creation time. Each re-
trieved message has three values: the relevance score (scorer), the relevance rank (rankr) and the recency
rank (rankt).

The approach described below was also successfully used in a different retrieval context, that is opinion
retrieval [2].



Boosting relevance by time. Zipf’s law easily connects ranks and probabilities, and a straight application
of Zipf’s law provides a simple but effective methodology to combine recency and relevance scores. The
hypothesis is that relevance depends on time and is obtained as posterior probability by Bayes’ Theorem:

p(q|time,m) =
p(time|q,m) · p(q|m)

p(time|m)

where q is the query and m is the observed message. Zipf’s law is then applied to the ranking by time on the
retrieved set. The rank-frequency relationship (Estoup-Mandelbrot-Zipf’s law) on the retrieved set is:

p(time|q,m) ∼ αt ·Bαt
t

(rankt +Bt)(αt+1)
with αt > 0

where rankt is the position of the message in the retrieved set re-ordered by timestamp, αt is in general a
very small constant, Bt is a parameter that needs to be learned. The factor αt does not affect the ranking and
can be deleted, moreover αt ∼ 0:

p(time|q,m) ∝ 1

rankτ +Btau

Assuming p(q|m) ∝ scorer and since p(time|m) does not depend on the query, and is thus a constant, then
we have the new ranking formula

p(q|time,m) ∝ p(time|q,m) · p(q|m) =
p(q|m)

rankt +Bt
∝ scorer

rankt +Bt

Thanks to the application of Zipf’s law that establishes the relationship between scores and ranks, the
combination of relevance score and recency rank is1:

scoret,r =
scorer

Bt + rankt

The final score is a normalization of the initial relevance score scorer by recency rank, rankt. Time is
used to obtain a moderate shifting of documents around their original positions, without thus performing a
drastic permutation of the relevance score ranking. The de facto assumption is that the relevance score must
be preferred to time for the final ranking.

At the time of run submissions, we did not have any training data to learn the parameters αt and Bt
of our approach so that we had to apply a heuristics to guess an acceptable value. As we said we made
the hypothesis that the distribution was strictly Zipfian with α = 0 (and indeed the value 0 for αt was
fully confirmed by experiments after the relevance data were available). In order to set Bt, note first that if
Bt → ∞ then the final ranking would become the relevance one. Therefore, the larger Bt is the less the
changes to the relevance ranking. Instead of using an arbitrarily large value we used a rank-based constant
that becomes large as long as the position grows in the ranking, i.e. Bt = k · rankr and k = 2. In this way
we knew in advance that possible shiftings of documents would have affected the upper part (and thus the
early precision) of the ranking and not the tail of the ranking. Indeed, as shown on Tables 3 and 2 we can
observe an improvement of both MAP@iX and P@iX (standard precision at X included) with any i and
for the first positions X ≤ 8 . This setting describes the run DFReeKLIMRA.

In Section 5 we conducted an empirical study to assess the optimal value on the released training data,
that is Bt ∼ 5000. This value for Bt largely improves official results, in particular for P@30, but also for all
X ≤ 1000.

1 We suggest to use score∗t,r = Bt·scorer

Bt+rankt
for numerical reasons being score∗t,r = scorer for very large Bt.



4 Task objective and evaluation of the official runs

The main official evaluation measure that should be used to evaluate the runs is the precision at 30 (P@30).
However, we here use a variant of the mean average precision measure as actual indicator of the quality of
the ranking. The reasons why we have slightly modified both mean average precision at depth K, MAP@X,
and precision at depth X , P@X, are for some consistency properties that their relationship should satisfy.

We recall that the average precision AP for a total ordering of the document collections is defined as

AP =
1

R

R∑
r=1

r

l(r)

where l(r) is the position of the r-th relevant document in the ordering and R is the number of relevant
documents. The ranking is optimal when r = l(r) for every 1 ≤ r ≤ R, and in such a case AP is equal to 1.
We may adapt AP truncating the ordering either at a fixed position, say X , or to a query-dependent position,
say R, that is the total number of relevant documents for a query q. In order to generalize consistently the
AP measure truncated at a certain position X , we need only to pay attention whether AP truncated at X
may (or not) achieve 1 with the optimal ranking. AP truncated at X reaches 1 with optimal ranking with the
following definition:

AP@1X =
1

M

r(X)∑
r=1

r

l(r)

where M is the minimum between X and R and r(X) is the number of relevant documents that were
retrieved in the first X positions (i.e. l(r) ≤ X). If we instead use

AP@2X =
1

R

r(X)∑
r=1

r

l(r)

as definition of AP truncated at the X-th position, then we also consider the query difficulty factor. For
difficult queries (containing in general many relevant documents) AP could be very low and in general for
R > X it cannot ever achieve the value 1.

A similar consideration holds for the other precision measures, such as the R-Precision, P@R, and the
Precision at the Xth retrieved document, P@X . The standard R-precision can be regarded the positionless
analogue 2 of the AP@1R (with X = R):

P@1R =
r(R)

R

where r(R) is the number of relevant document retrieved in the first R positions. Note that P@1R is an
upper bound for AP@1R, that is any permutation of documents applied only to the first R positions gives
P@1R ≥ AP@1R, and P@1R = AP@1R if and only if the r(X) relevant and retrieved documents occupy
the first R positions.

Analogously to AP we can generalize the notion of R-precision truncated at X retrieved documents.
Note first, that the standard definition of precision at depth X , P@X , is defined as

P@X =
r(X)

X
2 As if the optimal ranking quality condition r = l(r) were always satisfied for the relevant documents in the first R

positions.



Table 1. A comparison of the official evaluation measure, P@30, to non-official ones, P@130 and MAP@130, on rank-
ing by score (Relevance) and by time (Time). Note that the relevance scores of DFReeKLIMRA and DFReeKLIMZipf
already include a time re-ranking component.

DFReeKLIM DFReeKLIM30 DFReeKLIMDC DFReeKLIMRA DFReeKLIMZipf
Relevance Time Relevance Time Relevance Time Relevance (Time) Relevance

P@30 0.4395 0.1170 0.4401 0.4401 0.4395 0.3939 0.4476 (0.3918) 0.4537
P@130 0.5619 0.1932 0.5626 0.5626 0.5619 0.4958 0.5677 (0.4951) 0.5761

MAP@130 0.4136 0.1269 0.4138 0.4094 0.4136 0.3356 0.4192 (0.3193) 0.4311
P@130−MAP@130 0.1483 0.0663 0.1488 0.1532 0.1483 0.1602 0.1485 (0.1758) 0.1450

However, we may alternatively define P@X as a generalization of theR-precision with the truncation of the
ranking at position X , that is:

P@1X =
r(X)

M
or P@2X =

r(X)

R

P@1X can achieve 1 under optimal retrieval results, whilst both P2@X and standard P@X may not achieve
1 even with no errors in the ranking3.

It is easy to prove that AP@iX ≤ P@iX , being r
l(r) ≤ 1, but AP@iX ≤ P@X for i = 1, 2 does not

always hold. Therefore P@iX−AP@iX for i = 1, 2 can be regarded as the error in precision of the ranking.
In other words, for a given recall of the system the error of the precision in the ranking is P@iX−AP@iX ,
whilst 1 − P@1X is the margin for possible improvement for the retrieval set. However, the official mean
average precision of TREC evaluation tool is MAP@X =MAP@2X but P@X is different from P@2X .

In the following, we use both MAP@1X (the mean AP@1X over all queries) and the difference
P@1X−MAP@1X as error rate of the system to assess the quality of the document ranking with truncation
for our official runs.

4.1 Discussion of the official results

From Tables 1, 3 and 2 we derive the following conclusions:

a) The best cut value K to filter messages for any of the evaluation measures MAP@1X , P@1X or
P@X , is X itself. This result holds independently from whether none or some time re-ranking strategy
is applied, as shown in the caseX = 30 by the run DFReeKLIM30. More importantly, a pure truncation
of the original ranking at depthX = 30, that is the run DFReeKLIM30, shows thatMAP@130 does not
deteriorate significantly after reordering by timestamp the first 30 messages only (MAP@130 decreases
from 0.4145 to 0.4100). Therefore small improvements are expected by re-ranking DFReeKLIM30 (that
is the first 30 messages of the baseline DFReeKLIM) by both relevance and time. Unless we explicitly
assume the dependence of relevance to relevance (see DFReeKLIMRA below).

b) The dynamic cut strategy of DFReeKLIMDC for the K value did not work, since it worked for 14
queries out of the 49 queries.

c) Although we have observed with the remark a) above, that only small improvements can be obtained by
re-ranking the given retrieval set (X = 30) by both relevance and time, the dynamic cut and time re-
ranking strategy of the run DFReeKLIMRA improved the baseline (it increases from the baseline 0.4145

3 It is sufficient that X < R or R < X respectively.



Table 2. DFReeKLIMRA and DFReeKLIMZipf include a time re-ranking component. DFReeKLIMRA improves early
precision of the baseline without time re-ordering. Recency is thus a latent relevance indicator.

DFReeKLIM DFReeKLIMRA DFReeKLIMZipf DFReeKLIM DFReeKLIMRA DFReeKLIMZipf
Relevance Relevance Relevance Relevance Relevance Relevance

MAP@11 0.6327 0.7551 0.6735 P@11 0.6327 0.7551 0.6735
MAP@12 0.5918 0.6939 0.6429 P@12 0.6327 0.7143 0.6735
MAP@13 0.5669 0.6355 0.6122 P@13 0.6190 0.6735 0.6531
MAP@14 0.5553 0.6003 0.5816 P@14 0.6122 0.6480 0.6276
MAP@15 0.5402 0.5780 0.5749 P@15 0.6051 0.6398 0.6337
MAP@16 0.5351 0.5521 0.5616 P@16 0.6037 0.6207 0.6276
MAP@17 0.5199 0.5294 0.5368 P@17 0.5974 0.5986 0.5974
MAP@18 0.5114 0.5106 0.5179 P@18 0.5952 0.5859 0.5901
MAP@19 0.4962 0.4935 0.5080 P@19 0.5822 0.5714 0.5896
MAP@110 0.4886 0.4822 0.4966 P@110 0.5759 0.5653 0.5823

to 0.4198). Because of the remark a), the improvement is due to shifting upwards relevant documents
with time. Although this is a positive evidence that time is a relevance indicator, it is still insufficient to
show that recency is a decisive relevance boosting factor. With additional experiments and learning the
unique parameter of the time component of the retrieval model, we can claim that time is a relevance
boosting factor (see Section 5).

d) The difference P@130 −MAP@130 is constant in all the relevance rankings. Consequently, and as
observed before, the improvement obtained by DFReeKLIMRA is not due to a better quality of the re-
ordering by time, but to an effective boosting of relevance, that is able to shift homogeneously relevant
documents upwards in the ranking.

e) Finally query expansion worked very well, and this shows that the task is very ad hoc.

4.2 How time affects relevance: an early precision analysis

Since there is not much difference between P@1i and MAP@1i, with i = 1, . . . , 10, for the baseline
DFReeKLIM, we can deduce that the ranking by time of a very large retrieval set is almost optimal, in the
sense that when we select the most recent messages from the retrieval set, the relevant messages are fewer
than those in the relevance score ranking but always occupy the highest positions in time ranking. Therefore,
the filtering strategy needs to take into account also not only recency but relevance. DFReeKLIMRA intro-
duces a preliminary methodology based on the application of the Zipf law on the set of retrieved messages.
Table 3) shows that DFReeKLIMRA improves the early precision of DFReeKLIM30 which is instead based
on a pure reordering by time of the first 30 retrieved messages.

5 Evaluation of the non-official run

We have just one more non-official run to introduce, that is DFReeKLIMZipf, in order to complete the
evaluation of our study. The time re-ranking component has the Zipfian parameterBt that can be now learned
trough the TREC evaluation data. For the new run DFReeKLIMZipf we have not here used cross-validation
and results on Tables 1, 3 and 2 refers to the best matching value forBt that is also for all defferent evaluation



Table 3. Recency affects relevance. DFReeKLIMRA improves the early precision of DFReeKLIM30 boosting relevance
by recency.

DFReeKLIM DFReeKLIM30 DFReeKLIMRA DFReeKLIZipf
Time Time Relevance Relevance

P@11 0.7143 0.7755 0.7551 0.6735
MAP@11 0.7143 0.7755 0.7551 0.6735
P@12 0.4592 0.6327 0.7143 0.6735

MAP@12 0.4541 0.6276 0.6939 0.6429
P@13 0.3605 0.6020 0.6735 0.6531

MAP@13 0.3458 0.5714 0.6355 0.6122
P@14 0.3112 0.5816 0.6480 0.6276

MAP@14 0.2925 0.5344 0.6003 0.5816
P@15 0.2745 0.5857 0.6398 0.6337

MAP@15 0.2505 0.5170 0.5780 0.5749
P@16 0.2670 0.5884 0.6207 0.6276

MAP@16 0.2312 0.5010 0.5521 0.5616
P@17 0.2549 0.5797 0.5986 0.5974

MAP@17 0.2147 0.4850 0.5294 0.5368
P@18 0.2364 0.5782 0.5859 0.5901

MAP@18 0.1987 0.4795 0.5106 0.5179
P@19 0.2285 0.5680 0.5714 0.5896

MAP@19 0.1892 0.4683 0.4935 0.508
P@110 0.2201 0.5660 0.5653 0.5823

MAP@110 0.1796 0.4623 0.4822 0.4966

measures. Table 1 shows that reordering DFReeKLIM by time DFReeKLIMZipf, and truncating it at depth
30, we would have a P@30 = 0.4537, greater than our best run DFReeKLIMRA4. However, a stronger
result hold: DFReeKLIMZipf improves relevance-based measures of DFReeKLIM and DFReeKLIMRA at
any depth X ≤ 1000.

The boosting of effectiveness by time of the run DFReeKLIMZipf shows a high plausibility of the
conjecture that the distribution of the relevant documents re-ordered only by time is Zipfian.

6 Conclusions

We have indexed the html Tweets2011 corpus. We have used a new parameter free model of IR (KLIM)
and the out-of-the-box parameter free query expansion methodology of Terrier to retrieve the first 1000
messages for each query (run DFReeKLIM). Then we have just cut the ranking of DFReeKLIM to at depth
X with two approaches: X = 30 (DFReeKLIM30) and with a dynamical cut with a mean cut X = 73
(DFReeKLIMDC). Finally we have assumed that relevance is dependent on time, and that in the reordering
of the DFReeKLIM by time, relevant documents fit a Zipfian distribution. Under this assumption we have
indeed improved relevance-based measures but at early precision, i.e. P@X with X ≤ 8 (DFReeKLIMRA).

With the acquisition of the official relevance data of TREC assessment, we tuned the unique parameter
Bt of the Zipfian distribution. We obtained a new run (DFReeKLIMZipf) that improves DFReeKLIMRA

4 DFReeKLIMRA is obtained with a dynamic truncation that did not work, and this is the reason why P@30 = 0.3912
and not 0.4476 that would be obtained if the cut were done at depth 30.



at any depth X ≤ 1000. Therefore we have proved that time can provide a uniform boosting of relevance.
This outcome confirms a similar result obtained with a different collection (the Blog06 collection), where we
applied query expansion selecting the pseudo relevant set with time distribution over documents [4]. Also in
this work, time was shown to improve the performance of the first pass retrieval.
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