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1. Introduction

A classical result of enumerative geometry is the computation by Halphen of the number 3264
of conics in the projective plane simultaneously tangent to 5 given conics in general position. One
way to perform this computation is via the study of the cohomology ring of the variety of complete
conics (see for example [DP,CX]). Indeed in [CX] the authors make a very detailed study of any type of
conditions on conics giving a basis of the so-called ring of conditions. This ring has been introduced
in [DP2] exactly to put in a general framework the study of such enumerative questions for a large
class of homogeneous spaces, including the quotient of a semisimple algebraic group modulo the
subgroup of fixpoints of an involution.

Our aim in this paper is different from the one in [CX], since we are going to give a set of gener-
ators and relations for the ring of conditions of conics tensored with the rational numbers. This will
be achieved by first computing the equivariant (with respect to PGL(3)) cohomology of this ring.

The methods and techniques we are going to employ are similar to those we have used in our
previous papers [St2,St3,St4], in which analogous results have been obtained for the ring of conditions
of semisimple groups G considered as the quotient of G × G modulo the diagonal, i.e. the fixpoints
of the involution flipping the two copies of G . A key ingredient of this computation has been the
fact that a G × G-equivariant completion of this homogeneous space has all of its T × T -fixpoints
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contained in a closed orbit, so the equivariant cohomology is detected by the equivariant cohomology
of the closed orbits (this fact has been also used by Brion and Joshua in [BJ]).

The case treated in this paper is the first not completely straightforward in which there are non-
closed orbits containing fixpoints under the action of a maximal torus and it might be of inspiration
for more general results.

The paper is organized as follows. In Section 2 we recall a few known facts and introduce the
equivariant ring of conditions for conics. We are careful to use only the minimum amount of algebraic
groups machinery at the cost of being somewhat cumbersome. In Section 3 we perform the compu-
tation of the equivariant cohomology of complete conics. It turns out that this ring has a remarkably
simple presentation, while for example, even in simple cases for the ring of equivariant cohomology
of the wonderful group compactification (see [St3] and [U]) this is not true. In Section 4 we compute
the equivariant cohomology of a general smooth equivariant compactification of the space of nonsin-
gular conics. Finally in the last section we use these results to get our description of the equivariant
ring of conditions.

In this paper the cohomology is going to be with coefficients in Q.

2. Recollections

Let us recall the classical construction of the variety of complete conics (see for example [CX] and
references in it). We shall work over the field of complex number C. Consider a three dimensional
vector space V and its second symmetric power S2 V : this is a six dimensional space which we can
think as the space of 3 × 3 symmetric matrices. The projective space P(S2 V ) is acted upon by the
group G := PGL(3) and contains 3 orbits, respectively given by rank 1, rank 2, rank 3 matrices. If we
consider the closed orbits of rank 1 matrices, this is isomorphic to the projective plane P2 via the
Veronese embedding.

The variety X of complete conics is by definition the variety obtained from P(S2 V ) by blowing up
the closed orbit, i.e. the Veronese surface.

Clearly G acts on X , and X contains 4 orbits. They are described as follows:

(1) The open orbit X0, which is nothing else than the variety of nondegenerate conics.
(2) Two codimension one orbits O1, O2, which we can think respectively O1 as the variety of rank 2

conics, O2 as the variety of rank 1 conics (double lines) together with a pair of distinct points in
the line.

(3) The closed orbit O1,2 = F , which is isomorphic to the variety of flags (p ⊂ �) with p a point
in P2 and � a line containing p.

The closure of each orbit is smooth and the closed orbit is the transversal intersection of the two
divisors O1 and O2.

Let us now see how to define the equivariant ring of conditions of conics.
Given a sequence σ = (v1, . . . , vm) of vectors vi = (ai,bi) ∈ Z2 with nonnegative entries, we say

that σ is obtained from the sequence τ = (v1, . . . , vi−1, vi+1, . . . , vm) by an elementary move if vi =
vi−1 + vi+1.

A sequence σ is admissible, if it is obtained from the sequence ((1,0), (0,1)) by a finite succession
of elementary moves.

The set Σ of admissible sequences is partially ordered by inclusion.
We now construct a G-variety Xσ for each admissible σ = (v1, . . . , vm), having the following prop-

erties:

(1) Xσ is a compactification of the variety X0 of nondegenerate conics.
(2) Xσ contains m codimension one orbits, Ov1 , . . . , Ovm .
(3) Xσ contains m − 1 closed orbits Ovi ,vi+1 , i = 1, . . . ,m − 1, each isomorphic to the flag variety F

and furthermore Ovi ,vi+1 is the transversal intersection O vi ∩ O vi+1 .
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Notice that by construction the G-orbits of Xσ are indexed by the set Bσ consisting of those subsets
in σ which have cardinality at most two and, if they have cardinality 2, they are of the form {vi, vi+1)

for some i = 1, . . . ,m − 1 (of course the open orbit X0 corresponds to the empty set).
If σ = ((1,0), (0,1)), we set Xσ = X , O(0,1) = O1 and O(1,0) = O2. We then proceed by induction

on the cardinality of σ , which we assume to have at least 3 elements. Assume that σ is obtained from
the sequence τ = (v1, . . . , vi−1, vi+1, . . . , vm) by an elementary move as above. Then Xσ is obtained
from Xτ blowing up the closed orbit Ovi−1,vi+1 .

It is immediate to see that, if τ ⊂ σ , we get a (unique) G-equivariant morphism γσ,τ : Xσ → Xτ ,
extending the identity on X0, and thus a ring homomorphism γ ∗

σ ,τ : H∗
G(Xτ ) → H∗

G(Xσ ). Under this
the rings H∗

G(Xσ ) form a directed system with respect to the partially ordered set Σ .
From the general theory developed in [DP2], we then get that the equivariant ring of conditions RG

of conics is just the direct limit

RG = lim
σ

H∗
G(Xσ ).

Thus our first step will be to compute the equivariant cohomology of X , then compute the one of a
general Xσ and finally take the limit.

The variety Xσ is what is called a regular G-embedding and a strategy to compute its
G-equivariant cohomology is developed in [BDP].

Let us recall this procedure in our special case.

Definition 1. Given an admissible sequence σ , a Stanley–Reisner system on σ is given by

(1) For each b ∈ B , a graded commutative algebra with 1, Ab .
(2) For any pair b,b′ with b′ = b \ v j , a graded commutative algebra with 1, Bb

b′ together with two
graded homomorphisms

φb′
b : Ab → Bb

b′ and ψb
b′ : Ab′ → Bb

b′

with φb′
b surjective.

Let us now see how to define a Stanley–Reisner system associated to Xσ . Given a point p ∈ X , we
shall denote by G p its stabilizer in G .

Take b ∈ B . Consider the corresponding orbit Ob in Xσ . Set

Ab := H∗
G(Ob).

Given a pair b,b′ with b′ = b \ {v j}, Ob is a codimension one orbit in Ob′ . Consider the union
Mb

b′ := Ob′ ∪ Ob .
Take the normal line bundle L to Ob in Mb

b′ . L is G-linearized, so G acts on the complement L′
of the zero section of L. We now set

Bb
b′ = H∗

G

(
L′).

One then observes that L′ is itself a G-homogeneous space and for any point p ∈ Ob the stabilizer
of a point above p is the kernel of a character χb

b′ of G p .
It turns out that we can choose a point pb in each orbit Ob in such a way that the stabilizers G pb

have the following property.
For any two orbits Ob, Ob′ with Ob of codimension one in Ob′ , there are Levi factors Lb , Lb′

of
G pb and respectively G pb′ such that, if we denote by Lb

b′ the intersection of the kernel of χb
b′ with Lb ,

then Lb
b′ ⊂ Lb′

.
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Notice that Ab is also isomorphic to H∗
Lb (pt) and Bb

b′ is isomorphic to H∗
Lb

b′
(pt).

The projection L′ → Ob induces a homomorphism

φb′
b : Ab → Bb

b′ .

Under the identification of Ab with H∗
Lb (pt) and of Bb

b′ with H∗
Lb

b′
(pt), this is the homomorphism

induced by the inclusion Lb
b′ ⊂ Lb . It follows that φb′

b is surjective with kernel the ideal generated by
the equivariant Chern class of the line bundle L.

On the other hand the inclusion Lb
b′ ⊂ Lb′

induces the homomorphism

ψb
b′ : Ab′ → Bb

b′ .

At this point one defines the graded algebra

Aσ ⊂
⊕
b∈B

Ab

consisting of the sequences (ab)b∈B such that for every pair b,b′ as before,

ψb
b′(ab′) = φb′

b (ab).

Usually in what follows we shall write Ai for Avi , Ai, j for A{vi ,v j} and so on and similarly for the
corresponding orbits, the rings B and the maps φ and ψ .

The main result in [BDP] then gives

Theorem 2.1. The algebra Aσ is isomorphic to the cohomology ring H∗
G(Xσ ).

3. The equivariant cohomology of complete conics

We are now going to explain how to use Theorem 2.1 to compute H∗
G(X). In order to obtain the

Stanley–Reisner system in this case, we may use the results in [Sc], but since our situation is quite
simple, we do it directly. Recall that for any homogeneous space G/H , H∗

G(G/H) 	 H∗
H (pt). Now X

has 4 orbits.
For X0 we have that X0 = G/PSO(3). Since PSO(3) is isomorphic to PGL(2), we deduce immediately

that

A∅ = Q[t]
with deg t = 4.

As we have already mentioned, the closed orbit O1,2 is isomorphic to the flag variety G/B , B the
Borel subgroup of G which is the image of the subgroup of upper triangular matrices in SL(3). Thus
we get that L1,2 = T is a maximal torus in PGL(3). As usual we consider T as the group of triples
(t1, t2, t3) of nonzero complex numbers such that t1t2t3 = 1, modulo the subgroup of cubic roots of 1.
It follows that we have

A1,2 = Q[x1, x2]
with deg x1 = deg x2 = 2. We may as well assume that x1 (resp. x2) is the equivariant Chern class of
the normal line bundle to O1,2 in O1 (resp. O2).

In the previous section we have seen that O1 is the variety of (unordered) pairs of distinct lines
in P2. Consider the G-equivariant projection ρ : O1 → P2 mapping such a pair of lines �1, �2 to the
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point �1 ∩ �2. Let P denote the parabolic subgroup fixing a given point in P2. We have a group
homomorphism P → PGL(2) whose kernel is the solvable radical in P . PGL(2) acts on the pencil of
lines through such a point, hence on the pairs of such lines and the stabilizer of a given unordered
pair �1, �2 is just the normalizer of a maximal torus in PGL(2). Thus the stabilizer of �1, �2 in G is
just the pre-image of such a normalizer in P .

It is then immediate to see that, in this case, L1 is obtained as follows. Consider the normalizer
N(T ). Then N(T )/T is the symmetric group S3 and L1 is the pre-image of the order 2 subgroup in S3
generated by the transposition (1,2). We deduce that

A1 = Q[y, u]

with deg y = 2 and deg u = 4. We can assume that y is the Chern class of the normal bundle to O1.
The case of O2 is completely analogous and we have that L2 is the pre-image of the order 2

subgroup in S3 generated by the transposition (2,3). So

A2 = Q[z, v]

with deg z = 2 and deg v = 4. Again we can assume that z is the Chern class of the normal bundle
to O2.

At this point it is very easy to compute the groups Lb
b′ . As a matter of fact by their definition one

has the following:

L1,2
1 ⊂ L1,2 is the kernel of the root eα1 : (t1, t2, t3) → t1t−1

2 ,

L1,2
2 ⊂ L1,2 is the kernel of the root eα2 : (t1, t2, t3) → t2t−1

3 ,

L1
∅ ⊂ L1 is the kernel of the root eα2 which is still defined on L1,

L2
∅ ⊂ L2 is the kernel of the root eα2 which is still defined on L2.

From this one sees that

B1,2
1 = Q[x1, x2]/(x1) = Q[x2]; B1,2

2 = Q[x1, x2]/(x2) = Q[x1];
B1

∅ = Q[y, u]/(y) = Q[u]; B2
∅ = Q[z, v]/(z) = Q[v],

and the homomorphisms φb′
b are the quotient homomorphisms.

On the other hand one readily sees that the maps ψb
b′ are given by

ψ
1,2
1 (u) = 0, ψ

1,2
1 (y) = x2; ψ

1,2
2 (v) = 0, ψ

1,2
1 (z) = x1,

ψ1
∅ (t) = u; ψ2

∅ (t) = v.

Using these facts, we deduce the following

Theorem 3.1. The equivariant cohomology ring H∗
G(X) is isomorphic as a graded ring to Q[q1,q2,q]/(q1q2q)

with deg q1 = deg q2 = 2 and deg q = 4.

Proof. By our previous computations, H∗
G(X) is the subring in A∅ ⊕ A1 ⊕ A2 ⊕ A1,2 consisting of the

elements of the form
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(
a + t f (t),a + u f (u) + yg(y) + uyh(y, u),a + v f (v) + zm(z) + vzk(z, v),

a + x2 g(x2) + x1m(x1) + x1x2 p(x1, x2)
)

(1)

where a ∈ Q and f , g,m,h,k, p are polynomials. Now consider (t, u, v,0) = q̃, (0,0, z, x1) = q̃1,
(0, y,0, x2) = q̃2. Notice that these elements lie in H∗

G(X) and that

q̃q̃1 = (0,0, vz,0), q̃q̃2 = (0, uy,0,0), q̃1q̃2 = (0,0,0, x1x2).

Furthermore q̃q̃1q̃2 = (0,0,0,0). These elements generate H∗
G(X), so we have a degree preserving

surjective homomorphism

γ : Q[q1,q2,q]/(q1q2q) → H∗
G(X).

By [DS] we get the Poincaré polynomial

∑
n

dim Hn/2(X)tn = 1 + 2t + 3t2 + 3t3 + 2t4 + t5. (2)

Thus

∑
n

dim Hn/2
G (X)tn = 1 + 2t + 3t2 + 3t3 + 2t4 + t5

(1 − t2)(1 − t3)
= 1 − t4

(1 − t)2(1 − t2)
(3)

which is also the Poincaré series of the ring Q[q1,q2,q]/(q1q2q) (with halved degrees). So the surjec-
tive homomorphism γ must be an isomorphism. �
Remark 3.2. A different approach to the computation of the cohomology of complete conics and
indeed complete quadrics, has been developed in [DGMP]: we leave to the reader the comparison
between the two approaches as well as with the approach developed in [LP].

4. The equivariant cohomology of Xσ

We now fix an admissible σ = (v1, . . . , vm), m � 3, and consider the corresponding variety Xσ .
Recall that

(i) Xσ contains m codimension one orbits, Ov1 , . . . , Ovm .
(ii) Xσ contains m − 1 closed orbits Ovi ,vi+1 , i = 1, . . . ,m − 1, each isomorphic to the flag variety F

and furthermore Ovi ,vi+1 is the transversal intersection O vi ∩ O vi+1 .

We begin by computing the Poincaré polynomial of Xσ . We have the following

Proposition 4.1. The Poincaré polynomial of Xσ is

∑
n

dim Hn/2(Xσ )tn = 1 + mt + (2m − 1)t2 + (2m − 1)t3 + mt4 + t5.

Proof. In the case m = 2 i.e. Xσ = X , this is just formula (2). So we proceed by induction on m.
Assume that σ is obtained from the sequence τ = (v1, . . . , vi−1, vi+1, . . . , vm) by the elementary

move vi = vi−1 + vi+1. Then by induction we have

∑
dim Hn/2(Xτ )tn = 1 + (m − 1)t + (2m − 3)t2 + (2m − 3)t3 + (m − 1)t4 + t5.
n
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We pass from Xτ to Xσ blowing up a closed orbit O, whose Poincaré polynomial equals 1 + 2t +
2t2 + t3. We claim that the restriction map H∗(Xτ ) → H∗(O) is surjective. Indeed it is easily seen
that the restriction map H∗(X) → H∗(O1,2) is surjective, since H∗(O1,2) is generated by the image of
the two equivariant classes q̃1, q̃2 considered in Theorem 3.1. The claim now follows for Xτ from the
commutativity of the diagram

O
iτ

π

Xτ

π

O1,2
i

X

where π is the G-equivariant projection and i, iτ are the inclusions, once we remark that the restric-
tion of π to O is an isomorphism.

It then follows from the formula of the cohomology of a blow up that

∑
n

dim Hn/2(Xσ )tn = 1 + (m − 1)t + (2m − 3)t2 + (2m − 3)t3 + (m − 1)t4 + t5

+ t
(
1 + 2t + 2t2 + t3)

= 1 + mt + (2m − 1)t2 + (2m − 1)t3 + mt4 + t5

as desired. �
Corollary 4.2. For the equivariant cohomology ring we have

∑
n

dim Hn/2
G (Xσ )tn = 1 + mt + (2m − 1)t2 + (2m − 1)t3 + mt4 + t5

(1 − t2)(1 − t3)
.

We are now ready to determine the ring H∗
G(Xσ). Since each closed orbit in Xσ is isomorphic to

the flag variety F , Ai,i+1 = H∗
G(Ovi ,vi+1 ) 	 Q[x(i)

1 , x(i)
2 ] and we can assume that x(i)

1 (resp. x(i)
2 ) is the

Chern class of the normal line bundle to Ovi ,vi+1 in O vi (resp. O vi+1 ).
We have already computed

A1 = H∗
G(Ov1) = Q[y, u], Am = H∗

G(Ovm ) = Q[z, v]

and

A∅ = H∗
G(X0) = Q[t].

As for the remaining codimension one orbits, it is straightforward to see that

Ai = H∗
G(Ovi ) = Q

[
y(i)]

with y(i) equal to the Chern class of the normal line bundle to Ovi in X . This follows from the fact
that Ovi is the open orbit in an exceptional divisor obtained by blowing up a closed orbit. Thus Ovi

is the complement of the zero section in a suitable line bundle on the flag variety.
We now have to determine the rings Bb

b′ and the homomorphisms φb′
b and ψb

b′ .
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Assume first b′ = ∅, b = {vi}. If i = 1 or i = m, the computations have already been done above.
Otherwise we see that

Bi
∅ = Q and φ∅

i

(
y(i)) = 0 = ψ i

∅(t).

Let b = {vi}. Again, if i = 1 or i = m, the computations have already been done above. Otherwise
reasoning in a similar way we have that

Bi
i,i+1 = Q

[
x(i)

1 , x(i)
2

]/(
x(i)

1

); Bi
i−1,i = Q

[
x(i)

1 , x(i)
2

]/(
x(i)

2

)
the homomorphism φi

i,i+1 and φi−1
i−1,i are the quotient homomorphisms, while ψ

i,i+1
i (y(i)) ≡

x(i)
2 mod x(i)

1 and ψ
i−1,i
i−1 (y(i−1)) ∼= x(i−1)

1 mod x(i−1)
2 .

We deduce

Theorem 4.3. The equivariant cohomology ring H∗
G(Xσ ) is isomorphic, as a graded ring, to Q[z1, . . . , zm, ζ ]/I ,

where I is the ideal generated by the relations

zi z j, if |i − j| > 1; ζ zi, if 1 < i < m. (4)

and deg zi = 2, deg ζ = 4.

Proof. We know that

H∗
G(Xσ ) ⊂

m−1⊕
i=1

Ai,i+1 ⊕
m⊕

i=0

Ai ⊕ A∅.

However from Theorem 2.1 and our computations, we deduce that, if we project onto the ring
A1 ⊕ ⊕m−1

i=1 Ai,i+1 ⊕ Am , we still get an inclusion (this also follows using the localization theorem
for equivariant cohomology, since the only orbits containing fixpoints under a maximal torus are ex-
actly the closed orbits, Ov1 and Ovm ).

We then get that H∗
G(Xσ ) consists of the sequences (g1, f1,2, . . . , fm−1,m, gm) with g1(y, u) ∈ A1,

gm(v, z) ∈ Am , f i,i+1(x(i)
1 , x(i)

2 ) ∈ Ai,i+1 and

g1(x,0) = f1,2(0, x); f i−1,i(x,0) = f i,i+1(0, x), ∀1 < i < m − 1;
fm−1,m(x,0) = gm(0, x); g1(0, x) = gm(x,0)

x being an auxiliary variable. Now set

dσ
i =

⎧⎪⎨
⎪⎩

(y, x1
2,0, . . . ,0), if i = 1;

(0, . . . , xi−1
1 , xi

2,0, . . . ,0), if 1 < i < m;
(0, . . . ,0, xm

1 , z), if i = m.

Also set

q = (u,0, . . . ,0, v).

The elements dσ
i and q lie in H∗

G(Xσ ) and generate it. Furthermore they satisfy the relations

dσ
i dσ

j = 0, if |i − j| > 1; qdσ
i = 0, if 1 < i < m. (5)
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Thus, defining Ãσ = Q[z1, . . . , zm, ζ ]/I , we get a surjection of graded rings Ψ : Ãσ → H∗
G(Xσ ).

As before let τ = (v1, . . . , vi−1, vi+1, . . . , vm) and assume that σ is obtained from τ by the ele-
mentary move vi = vi−1 + vi+1. Consider the subring C ⊂ Ãσ generated by the elements ζ , z j for
j �= i − 1, i + 1, zi−1 + zi , zi + zi+1. It is immediate to see that C is a quotient of Ãτ . So using Corol-
lary 4.2 and induction we get that

∑
n

dim Cn/2tn � 1 + (m − 1)t + (2m − 3)t2 + (2m − 3)t3 + (m − 1)t4 + t5

(1 − t2)(1 − t3)
.

On the other hand, using the relations (4), one immediately sees that any element in a ∈ Ãσ can be
written as a = zi f (zi, zi−1 + zi) + c, with c ∈ C and f a polynomial. It follows that

∑
n

dim Ãσ ,n/2tn

� t

(1 − t)2
+ 1 + (m − 1)t + (2m − 3)t2 + (2m − 3)t3 + (m − 1)t4 + t5

(1 − t2)(1 − t3)

= t(1 + 2t + 2t2 + t3) + 1 + (m − 1)t + (2m − 3)t2 + (2m − 3)t3 + (m − 1)t4 + t5

(1 − t2)(1 − t3)

= 1 + mt + (2m − 1)t2 + (2m − 1)t3 + mt4 + t5

(1 − t2)(1 − t3)
=

∑
n

dim Hn/2
G (Xσ )tn.

Thus the Ψ is necessarily an isomorphism, proving our claim. �
We want to give a reformulation of Theorem 4.3, which will be useful in the sequel. Fix σ =

(v1, . . . , vm). Consider the first quadrant C = {(a,b) ∈ R2 | a,b � 0}. Then σ gives a decomposition
of C into the cones C1, . . . , Cm−1 with

Ci = {v = αvi + βvi+1 | α,β � 0}.
Define Kσ as the space of continuous functions on C which take rational values on integer points and
are such that their restriction to each cone Ci is a polynomial. Kσ is clearly a graded Q-algebra. We
can give generators dσ

1 , . . . ,dσ
m , for Kσ as follows. Given a vector v ∈ C , it will lie in one of the Ci ’s

(and in only one unless it is a multiple of one of the v j ’s). We can then write v = αi(v)vi +βi(v)vi+1.
Notice that βi(v) = αi+1(v) on the multiples of vi+1. Let us then set

dσ
1 =

{
α1(v) if v ∈ C1,

0 otherwise,

dσ
m =

{
βm−1(v) if v ∈ Cm−1,

0 otherwise

and for 1 < i < m

dσ
i =

{
βi(v) if v ∈ Ci,

αi+1(v) if v ∈ Ci+1,

0 otherwise.

So that if we consider the subring D ⊂ H∗
G(Xσ ) generated by the dσ

i , we get a surjective homomor-
phism

μ : D → Kσ .
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It is clear by their definition that the dσ
i satisfy the same relations (5) as the dσ

i . Furthermore the

restriction to each of the cones Ci gives a homomorphism γi : Kσ → Q[x(i)
1 , x(i)

2 ] = Ai,i+1 such that

γi(dσ
i ) = x(i)

1 , γi(dσ
i+1) = x(i)

2 and γi(dσ
j ) = 0 for j �= i, i + 1. Thus we get a homomorphism

γ : Kσ →
m−1⊕
i=1

Ai,i+1.

Composing this with μ, we get a homomorphism

γμ : D →
m−1⊕
i=1

Ai,i+1

which clearly coincides with the restriction to D ⊂ A1 ⊕ ⊕m−1
i=1 Ai,i+1 ⊕ Am of the projection onto⊕m−1

i=1 Ai,i+1. Since this is clearly injective, we have shown the following

Theorem 4.4. The ring H∗
G(Xσ) is isomorphic as a graded ring to the ring Kσ [ζ ]/ Ĩ , where Ĩ is the ideal

generated by the relations ζdσ
j , j + 2, . . . ,m − 1.

Remark 4.5. (1) By our description it follows that Kσ 	 H∗
G(Xσ)/(ζ ).

(2) Notice that the ideal Jσ of functions f ∈ Kσ such that ζ f ∈ Ĩ coincides with the ideal of
functions whose support is contained in the open quadrant C0 = {(a,b) | ab �= 0}. So H∗

G(Xσ ) ≡
Kσ [ζ ]/ζ Jσ .

5. The equivariant ring of conditions

Theorem 4.4 allows us to determine the equivariant ring of conditions. In order to do this let us
give the following

Definition 2. A function on the quadrant C is called admissible if it lies in Kσ , for some admissible
sequence σ .

The following lemma is well known, but we give its proof for completeness.

Lemma 5.1. Let σ1, σ2 be two admissible sequences. Then there exist an admissible sequence τ such that
τ � σ1 and τ � σ2 .

Proof. We proceed by induction on the cardinality of σ , the case in which σ = ((0,1), (1,0)) being
trivial.

Remark that if v, w ∈ Q2 are such that det(v, w) = 1 and u is such that det(v, u) = det(u, w) = 1,
then u = v + w .

Now assume that σ1 = (v1, . . . , vm) and vi = vi−1 + vi+1 so that σ ′
1 = (v1, . . . , vi−1, vi+1, . . . , vm)

is also admissible. By induction there is τ ′ = (w1, . . . , wn) so that τ ′ � σ ′
1 and τ ′ � σ2. Now

we must have vi−1 = w j and vi+1 = wk for some j < k. If k = j + 1, we are done taking τ =
(w1, . . . , w j−1, vi, w j+1, wn). Otherwise the sequence (w j, . . . , wk) is obtained from the sequence
(vi−1, vi+1) by a succession of elementary moves, so, by our previous remark, it has to contain vi

and hence τ ′ � σ1. �
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Since clearly, if τ � σ , Kσ is naturally contained in Kτ , Lemma 5.1 implies that the space K of
admissible functions is a ring and

K = lim
σ∈Σ

Kσ .

We are now ready to state

Theorem 5.2. There is an isomorphism of graded rings

RG = K [τ ]/τ J

where J ⊂ K is the ideal of functions whose support is contained in the open quadrant C0 .

Proof. Let τ � σ be two admissible sequences. Denote by jτσ : Rσ → Rτ the inclusion. We have that
jτσ ( Jσ ) ⊂ Jτ , so we get an inclusion, which we also denote by jτσ , of Rσ [ζ ]/ζ Jσ into Rτ [ζ ]/ζ Jτ .

On the other hand, let us consider the G-equivariant projection

πτ
σ : Xτ → Xσ

and the corresponding homomorphism

(
πτ

σ

)∗ : H∗
G(Xσ ) → H∗

G(Xτ ).

Putting together all our previous considerations, in order to prove the theorem, the only thing we
need to show is that the diagram

H∗
G(Xσ )

iσ

(πτ
σ )∗

Rσ [ζ ]/ζ Jσ

jτσ

H∗
G(Xτ )

iτ
Rτ [ζ ]/ζ Jτ

commutes.
For this we can assume that τ = (v1, . . . , vm), vi = vi−1 +vi+1 and τ = (v1, . . . , vi−1, vi+1, . . . , vm),

so that Xτ is obtained from Xσ blowing up the closed orbit Ovi−1,vi+1 .
But then, since πτ

σ is a blow up we have

(
πτ

σ

)∗
dσ

j =

⎧⎪⎨
⎪⎩

dτ
j if j �= i − 1, i + i,

dτ
i−1 + dτ

i if j = i − 1,

dτ
i+1 + dτ

i if j = i + 1

and on the other hand by definition we also have

(
jτσ

)∗
dσ

j =

⎧⎪⎪⎨
⎪⎪⎩

dτ
j if j �= i − 1, i + i,

dτ
i−1 + dτ

i if j = i − 1,

dτ
i+1 + dτ

i if j = i + 1.

�



E. Strickland / Journal of Algebra 329 (2011) 274–285 285
6. The ring of conditions

It remains to determine the ring of conditions of conics as a quotient of RG . For this one needs to
determine the image in RG of the ring H∗

G(pt), which is a polynomial ring on two generators, one of
degree 4 and one of degree 6. These are the two generating invariants of H∗

T (pt)S3 .
A simple computation, which we leave to the reader, shows that, suitably normalizing the various

elements and setting p1 and p2 equal to the linear functions giving the dual basis to (1,0), (0,1), the
images of the two polynomial generators of H∗

G(pt) are the two elements

H1 = p2
1 + p1 p2 + p2

2 + ζ

and

H2 = 2p3
1 + 3p2

1 p2 − 3p1 p2
2 − 2p3

2 − 6(p1 − p2)ζ

of RG . Thus finally we get

Theorem 6.1. The ring of conditions for conics is the ring

R = RG/(H1, H2).

Remark 6.2. Notice that Theorem 6.1 clearly implies that R is generated by elements of degree two.
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