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background: Implantation and early embryo development are finely regulated processes in which several molecules are involved. Evidence
that thyroid hormones (TH: T4 and T3) might be part of this machinery is emerging. An increased demand for TH occurs during gestation, and any
alteration in maternal thyroid physiology has significant implications for both maternal and fetal health. Not only overt but also subclinical hypo-
thyroidism is associated with infertility as well as with obstetric complications, including disruptions and disorders of pregnancy, labor, delivery, and
troubles in early neonatal life.
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methods: We searched the PubMed and Google Scholar databases for articles related to TH action on ovary, endometrium, trophoblast
maturation and embryo implantation. In addition, articles on the regulation of TH activity at cellular level have been reviewed. The findings are
hereby summarized and critically discussed.

results: TH have been shown to influence endometrial, ovarian and placental physiology. TH receptors (TR) and thyrotropin (thyroid-stimu-
lating hormone: TSH) receptors (TSHR) are widely expressed in the feto-maternal unit during implantation, and both the endometrium and the
trophoblast might be influenced by TH either directly or through TH effects on the synthesis and activity of implantation-mediating molecules.
Interestingly, due to the multiplicity of mechanisms involved in TH action (e.g. differential expression of TR isoforms, heterodimeric receptor part-
ners, interacting cellular proteins, and regulating enzymes), the TH concentration in blood is not always predictive of their cellular availability and
activity at both genomic and nongenomic level.

conclusions: In addition to the known role of TH on the hormonal milieu of the ovarian follicle cycle, which is essential for a woman’s
fertility, evidence is emerging on the importance of TH signaling during implantation and early pregnancy. Based on recent observations, a
local action of TH on female reproductive organs and the embryo during implantation appears to be crucial for a successful pregnancy. Further-
more, an imbalance in the spatio-temporal expression of factors involved in TH activity might induce early arrest of pregnancy in women consid-
ered as euthyroid, based on their hormonal blood concentration. In conclusion, alterations of the highly regulated local activity of TH may play a
crucial, previously underestimated, role in early pregnancy and pregnancy loss. Further studies elucidating this topic should be encouraged.

Key words: thyroid hormones / thyrotropin / pregnancy / implantation window / trophoblast

Introduction
Data from the literature support the hypothesis that thyroid hormones
(TH: T4 and T3) play an important role during implantation and the
early stages of embryo development. Successful implantation is the
result of reciprocal interactions between the implantation-competent
blastocyst and the receptive uterus (Franchi et al, 2008; Altmäe et al.,
2012; Koot and Macklon, 2013). During implantation, the free-floating
blastocyst attaches to the endometrium through the trophoblast cell
layer, invades the stroma and becomes intimately connected to the
endometrial tissue (Aplin et al., 2000; Kaneko et al., 2013). Implantation
involves spatiotemporally regulated endocrine, paracrine and juxtacrine
modulators, and depends on a coordinated cellular and molecular cross-
talk between the blastocyst and the receptive endometrium (Sharkey
and Smith, 2003; Franchi et al., 2008; Cuman et al., 2013; Sharkey and
Macklon, 2013). The embryo functions as an active unit, with its own
molecular program of cell growth and differentiation and, in order to
implant, it has to interact with the uterus during a well-defined period,
which is called ‘the implantation window’. This transient and unique
period of uterine receptivity is of short duration, lasting �4 days, and
it is interposed between the pre-receptive and the refractory endomet-
rial phases (Sharkeyand Smith, 2003; Deyet al, 2004; Franchi et al., 2008;
Zhang et al., 2013). Recently, in vivo and in vitro evidence has been
reported concerning TH activity around implantation, a process that
begins with apposition, continues through attachment and ends with
the invasion. Apposition denotes the initial, still unstable, adhesion of
the blastocyst to the uterine wall. Micro-protrusions of the apical
uterine epithelium, named pinopodia, interdigitate with microvilli of
the apical trophectoderm of the blastocyst (Norwitz et al., 2001; Dey
et al, 2004; Cheong et al., 2013). Adhesion coincides with a localized in-
crease in endothelial proliferation induced by angiogenic factors secreted
by the blastocyst (Staun-Ram and Shalev, 2005; Demir et al., 2010).

After implantation, stem cells of the trophectoderm fuse to form the
peripherally located primitive syncytium. Then, cytotrophoblasts eman-
ating from the trophectodermal layer generate primary villi by prolifer-
ation and invasion through the primitive syncytium, migrating up to the

inner third of the myometrium (Hamilton and Boyd, 1960; Staun-Ram
and Shalev, 2005; Huppertz et al., 2013; Ji et al., 2013).

To allow implantation, morphological and biochemical reprogram-
ming of the endometrial stromal compartment is needed (Gellersen
et al., 2007; Lee et al., 2013; Palomino et al., 2013; Pawar et al., 2013;
Shen et al., 2013); such phenomenon, named decidualization, is
controlled by the convergence of progesterone and cAMP signal
transduction pathways, and consists of the transformation of stromal
fibroblasts into epithelioid-like secretory cells, an increase in the
numberof local macrophages and lymphocytes, the elongation and thick-
ening of spiral arteries and the production of molecules essential for
blastocyst-endometrium interplay (Lea and Sandra 2007; van Mourik
et al., 2009). All steps of implantation are finely regulated by a plethora
of cytokines, which includes leukemia inhibitory factor (LIF) and
interleukin-11 (IL-11) (Marwood et al., 2009; Paiva et al., 2009; Salamon-
sen et al., 2010; Sherwin et al., 2010; Terakawa et al., 2011; Pawar et al.,
2013; Wu et al., 2013), adhesion molecules (Aplin, 1997; Singh and Aplin
2009; Lecce et al., 2011; Sharma and Kumar, 2012; Taylor et al., 2014),
including the primary adhesion molecule Muc-1 (Carson et al., 1998;
Meseguer et al., 2001; Goulart et al., 2004; Marwood et al., 2009; Mar-
garit et al, 2010), and growth factors activating several signaling pathways
(Raab et al, 1996; Lim and Dey, 2009; Altmäe et al., 2012, 2013; Leach
et al., 2012). Interestingly, the overlapping expression of steroid recep-
tors and several growth factors at the site of implantation suggests that
redundant mechanisms might be at work, in order to achieve a successful
implantation even if the expression of one or more of these factors is
compromised (Boelen et al., 2012; Leach et al., 2012; Garrido-Gomez
et al., 2013; Vilella et al., 2013).

Hallmark events during implantation and decidualization are repre-
sented by tissue remodeling and angiogenesis, considered as the rate-
limiting steps of these processes (Dey et al., 2004; Plaisier, 2011).
Tissue remodeling depends on the critical balance between the activity
of matrix metalloproteinases (MMPs) produced in the trophoblast and
their inhibitors (tissue inhibitor of metalloproteinases: TIMPs) produced
in decidual stromal cells. Angiogenesis is strictly associated with tissue
remodeling and plays a crucial role in successful implantation,
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decidualization and placentation, with vascular endothelial growth factor
(VEGF) and angiogenic factors (angiopoietins) being the main players
(Cross et al., 1994; Hess et al., 2006; Kim et al., 2013).

Molecular pathwaysconnecting the above described mechanisms with
(Sun et al., 2010) TH signaling have been proposed. A failure of thyroid
function often complicates pregnancy, causing a serious risk for maternal
and fetal health; this event is generally a consequence of the physiologically
increased demand forTH, whichmightmake manifest a hithertoundetect-
ed subtle thyroid disorder. Subclinical hypothyroidism is frequently related
to infertility and pregnancy loss, although the molecular mechanisms
governing these events have not been elucidated yet. However, a clinical
association between pregnancy complications and thyroid disease has
been extensively reported (Kilic et al., 2008; Stagnaro-Green and
Pearce, 2012; Granfors et al., 2013).

Studies on the spatio-temporal distribution of nuclear thyroid hormone
receptors (TR), acting as ligand-dependent transcription factors, and the G
protein-coupled TSHreceptors (TSHR)have demonstrated their wide ex-
pression in the feto-maternal unit during the implantation window, sug-
gesting a local action of TH and TSH on both the endometrium and the
embryo. TH might directly regulate implantation or act through the regu-
lation of a plethora of factors involved in the process (Aghajanova et al.,
2011; Stavreus, 2012).

The main focus of this review is to highlight the evidence indicating that
the TH and TSH are new potential players in the implantation process
and in early embryo development. The possibility that alterations of
the highly regulated local activity of TH may play a crucial and underesti-
mated role in early pregnancy and pregnancy loss will be discussed.

Methods
In preparation for this review, relevant and up-to-date studies focused on the
involvement of TH in endometrium preparation for implantation and in pla-
centation were identified by extensive PubMed and Google Scholar inquiries
using the following key words: thyroid, implantation window, early embryo
development, thyroid hormone, embryo implantation, trophoblast, placen-
tation, deiodinases, coactivators, thyroid transporters and receptors, ovary,
endometrium, sodium iodide symporter, pendrin, regulation, invasion, integ-
rins, uterine NK cells, immune system, nongenomic, surface receptors,
MAPK, ERK 1/2 pathways, SUMO, TRE, VEGF, bFGF. Almost 300 articles
in English language published from 1960 to date were analyzed. Of these
250 are discussed in the present review.

Molecular Regulation of Thyroid
Hormone Activity in the Female
Reproductive System
While adequate TH serum levels are crucial to activate intracellular
thyroid-dependent pathways, it is also fundamental that all mem-
brane/nuclear receptors and signal transducers work at the appropriate
time, to ensure their biological effect. Therefore, in order to understand
the causes of an abnormal hormone action, it is important not only to
consider TH serum levels but also to dissect what happens from secre-
tion into blood to cellular access. The cellular metabolism and gene tran-
scription linked to TH are influenced by the expression of several factors
acting at multiple steps of TH-dependent pathways, including hormone
blood transporters, deiodinases, nuclear transcription factors associated

with the thyroid response element (TRE), TH receptors (TR), and coac-
tivators and coinhibitors essential to TR-modulated transcription.

TH binding proteins in blood
The blood transport of the hydrophobic TH is accomplished by three
binding proteins, synthesized and secreted by the liver: thyroxine-binding
globulin (TBG), transthyretin (TTR) and albumin (Schussler, 2000). All
three binding proteins can transport both T4 and T3, although T4 is
bound with higher affinity (McKinnon et al., 2005; Feldt-Rasmussen
and Krogh Rasmussen, 2007; Richardson, 2009; Landers et al., 2013a).
TTR and albumin, together with the low-affinity TH binding proteins
a-1-antitrypsin and b-1-acid glycoprotein, are also produced by
human placental trophoblasts, and secreted into the maternal and fetal
circulation (Landers et al., 2009). These proteins may locally modulate
the maternal-fetal hormonal transport, thus affecting TH uptake, efflux
and deiodination (McKinnon et al. 2005; Landers et al., 2013b). In add-
ition, trophoblast cells are able to uptake maternal TTR-TH complexes
and to transfer them from mother to fetus (Mortimer et al., 2012;
Landers et al. 2013a, b). It has been hypothesized that TTR-TH is inter-
nalized througha low-density lipoprotein receptor-dependent endocytic
process, but further research is required to confirm this mechanism
(Landers et al., 2013b).

TTR appears to protect maternal TH from active deiodination within
the placenta, allowing higher concentrations of TH to pass to the fetal cir-
culation, as demonstrated by the increased D3 (type 3 deiodinase) activ-
ity after treating placental tissue with mefenamic acid, an inhibitor of
TH-TTR binding (McKinnon et al., 2005). During the first trimester, pla-
centa and fetus areexposed to relatively low hypoxic conditions. The cel-
lular response to changes in oxygen tension during normal development
is finely regulated (Greeret al., 2012). In mammals, the hypoxia-inducible
factora (HIF1a), a DNA-binding transcription factor that activates many
genes by associating with specific nuclear cofactors under hypoxia, reg-
ulates the metabolic and phenotypic changes of the blastocyst before
and after implantation (Greer et al., 2012). In primary trophoblast cul-
tures, HIF1a up-regulates TTR mRNA and protein levels (Patel et al.,
2012), a process critically involved in TH-mediated embryonic neuro-
logical development early in gestation (Morreale et al., 2004; Bernal,
2005; Patel et al., 2011b; Greer et al., 2012).

Albumin, a protein with low affinity but high binding capacity for TH,
can be detected in the trophoblast glycocalyx, where it might be part
of a TH uptake pathway, although albumin binding to trophoblast
appears weak (Douglas et al., 1998; Landers et al., 2013a, b). Albumin
is internalized by placental explants, and in the syncytiotrophoblast it is
either transferred to the maternal side of the explant or degraded
(Lambot, et al., 2006), suggesting that it might play a protective role for
TH or act as a vehicle for the hormone in fetal circulation. However,
the full role played by albumin at placental level remains to be elucidated.
In summary, placental tissue has the ability to synthesize, secrete and in-
ternalize molecules involved in TH binding and transport, thus regulating,
through a fine-tuned local mechanism, TH supply to fetus (Table I).

Active iodine uptake in thyroid follicle and
placenta
As pregnancy occurs, several physiological changes influencing thyroid
function take place (Krassas et al., 2010). In particular, during pregnancy
thyroid function increases by about 50% as a consequence of two stimuli:
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Table I Thyroid-dependent molecules at the endometrium, ovary and blastocyst level around the implantation window.

Localization Molecules Evidence and possible role (PR) Species Ref.

Ovary
OSE
Primordial follicle:
Primary follicle:
Secondary follicle:
Antral follicle:
Follicular fluid:
Oocyte:

TRa1, TRa2, TSHR, TRb1, DIO2, DIO3
(mRNAs)
TRa1, TRa2, TRb1, TSH (proteins)
O: TSHR, TRa1, TRb1 (mRNAs, proteins)
c-erbAa-2 (mRNA)
O:TSHR, TRa1, TRb1 (mRNAs, proteins)
GC: TSHR (mRNAs, proteins)
O: TSHR, TRa1, TRb1 (mRNAs, proteins)
GC: TSHR, TRb1 (mRNAs, proteins)
O: TRa1, TRb1, TRb2, c-erbAa-2 mRNAs
GC: TSHR, TRa-1, TRb-1 (mRNA, proteins)
TRb-2, c-erbAa-2, DIO2, DIO3 mRNAs
CC: TRa-1, TRb-1, TRb-2, c-erbAa-2
mRNAs
FT3, FT4, TSH
Thyrostimulin

T3 ¼ dose-dependent mRNA expression of inflammation-associated genes:
COX-2, MMP9, 11bHSD1, ERa.
PR: Chronic hyperthyroidism might contribute to low-level of inflammation
rendering OSE more susceptible to neoplastic transformation.
TSH ¼ production of cAMP by luteinized GC
T4 ¼ production of ERK 1/2 in luteinized GC (maturation of pre-ovulatory
follicle and OCC; meiotic oocyte maturation)
Gonadotrophins ¼ increase TSHr
Estradiol ¼ decrease TSHr
Thyrostimulin acts through TSHr to increase cAMP
T3 ¼ stimulation of
GC proliferation and hCG-induced cAMP in GC; synergy with FSH
to induce differentiation of GC increasing LH receptors and
progesterone secretion by GC from porcine follicles ; synergy with FSH to inhibit
apoptosis of GC
T3 inhibits in a time- and dose-dependent manner FSH-induced aromatase
activity in GC
high T3 concentrations can impair preantral follicle development
PR: T3, T4 in FF ¼ regulation of human GC and steroid production
PR: T3, T4, TSH ¼ oocyte maturation and development
PR: Thyrostimulin ¼ paracrine modulator of ovarian function controlled by a
different system from HPT axis.

Human
Human
Pigs Cattle
Mice
Bovine
Rat Human
Human
Human
Human
Porcine
Mice
Mice
Mice

Du and Li (2013)
Fedail et al. (2013)
Sun et al. (2010)
Aghajanova et al. (2009)
Rae et al. (2007)
Zhang et al. (1997)
Su et al. (2003)
Tomek et al. (2002)
Cecconi et al. (1999)
De Silva (1994)
Wakim et al. (1993)
Goldman et al. (1993)
Maruo et al. (1992)
Maruo et al. (1987)

Blastocyst (in vitro) TH receptors mRNA and proteins
DIO2 and DIO3 mRNAs
(T3 produced in the bovine follicular fluid is an
indirect indicator of DIO1 mRNA)
TRa ¼ expressed in oocyte, zygote and all the
cleavage stages from the 2 cell to 16 cell stage
and blastocyst stage embryos in different
culture condition (IVC medium alone and IVC
medium supplemented with TH)
(in matured oocytes higher
than in the germinal vesicle stage oocyte)

TH on Early Embryo development ¼
increase blastocyst formation and hatching rate; improve embryo quality (greater
total cell counts and reduced proportions of apoptotic cells); improve
post-cryopreservation viability.

Bovine
Human

Costa et al. (2013)
Degrelle et al. (2013)
Loubiere et al. (2012)
Ashkar et al. (2010)

Endometrium
Glandular epithelium
Luminal epithelium
Stroma
Oviduct and uterine horn

TSHR,TRa1, TRb1,(mRNA and proteins),
TSHR,TRa1, TRb1 (mRNA and proteins)
TSHR,TRa1, TRb1 (mRNA and proteins)
(TRa2: +ve WB, 2ve immunostaining, +ve
RT–PCR)
NIS (sodium-iodide symporter)
P4HB (a TG molecular chaperone),
TG (thyroglobulin ),
TPO (Thyroid peroxidases),
factors involved in thyroid hormone signalling
D1, D2 (most abundant), D3
THR

Mifepristone: down-regulation of TRa1 and TRa2; up-regulation of TRb1 and
DIO2 mRNA (regulation by PR)
TSHR in the luminal epithelium and TRa1 and TRb1 in the glandular and
luminal epithelium increase on LH days 6 to 9 (WOI, appearance of pinopodes)
Expression of DIO 1,2,3 mRNAs lower in the mid-secretory phase of the cycle
TSH ¼ increase LIF, LIFr mRNA in endometrial stromal cells, decrease LIF, LIFR
in Ishikawa cells; increase Glucose transporter 1 in Ishikawa cells; increase
secretion FT3 and T4 by Ishikawa cells IL-6 suppresses thyroid peroxidase gene
expression and T3 secretion from cultured human thyrocytes
T3 and GH ¼ required for decidual response of the endometrium
PR: endometrium site of thyroxine production
PR: generation of appropriate T3 level to contribute to decidual response to
implantation

Human
Human
Human
Human
Human
Rat

Li et al. (2014)
Scoccia et al. (2012)
Dimitriadis et al. (2010)
Aghajanova et al. (2011)
Catalano et al. (2007)
Kennedy and Doktorcik
(1988)

Continued

R
ole

ofthyroid
horm

one
in

im
plantation

887

 by guest on November 29, 2015 http://humupd.oxfordjournals.org/ Downloaded from 

http://humupd.oxfordjournals.org/


(i) the secretion by syncytiotrophoblast cells of hCG capable to bind and
activate the TSHR in the thyroid gland; (ii) the increased secretion of TBG
secondary to the hyperestrogenism occurring in pregnancy or to ovarian
hyperstimulation during the assisted reproductive technologies. The
increased TBG serum level leads in turn to a temporary decrease of
free TH, resulting in increased TSH release which in turn stimulates
thyroid function (Fig. 1). Iodine is essential for TH biosynthesis and, as
recommended by the World Health Organization (WHO), the United
Nations Children’s Fund (UNICEF) and the International Council for
the Control of Iodine Deficiency disorders (ICCIDD), its dietary intake
should be 150 mg/day for adults (Abalovich et al., 2007). Intake should
be raised to 200–300 mg/day during gestation because of the above
described increased maternal T4 requirement and of fetal thyroid func-
tion, and to compensate for the enhanced pregnancy-related urinary
iodide excretion (Hetzel, 1983; The Public Health Committee of the
American Thyroid Association, 2006; Marchioni et al., 2008). Iodine de-
ficiency during pregnancy has been shown to cause maternal and fetal
goiter, miscarriages, stillbirths, reduced fetal growth, neonatal hypothy-
roidism and reduced fertility in adult life (Delange, 2001; Ferri et al.,
2003), as well as inadequate mental development of the fetus, with sever-
ity varying from mild intellectual blunting to frank cretinism (Delange,
2001).

Iodine transport in the thyroid follicle and through placental tissue
shares common features. Thyrocytes actively capture iodine through
the sodium-iodide symporter (NIS) present on their basal cell membrane
and release it into the follicle for TH synthesis through the apically located
ionic transporter, pendrin (Manley et al., 2005).

TSH increases NIS expression and iodine uptake. NIS is a membrane-
bound glycoprotein and a member of the solute carrier family (SLC5A5)
(Dohán and Carrasco, 2003; Darrouzet et al., 2013), and mediates
iodine transport from extracellular fluid into the cell through an active
mechanism. Pendrin is an anion exchanger, activated by high concentra-
tions of intracellular iodide (Yoshida et al., 2004). Both NIS and pendrin
are expressed in placenta, where they seem to carry out iodide transport
from maternal to fetal circulation (Mitchell et al., 2001; Chan et al., 2009;
Degrelle et al., 2013). In the trophoblast iodine is taken up at the apical
membrane and effluxes through the basal membrane. In BeWo human
choriocarcinoma cells used as a placental model NIS is expressed, as
expected, at the apical level while pendrin is expressed basally (Manley
et al., 2005; Karatas et al., 2013). In thyroid follicular cells NIS is regulated
byserum levelsofTSH(Saitoetal., 1997) (Fig. 2B),while insyncytiotropho-
blasts its expression is regulated by hCG (Fig. 3B). Exposure of JAR chorio-
carcinoma cells to hCG, which express high levels of NIS mRNA, leads to a
further increase in NIS expression and iodide uptake (Arturi et al., 2002).
NIS mRNA and membrane protein are up-regulated by hCG in BeWo
choriocarcinoma cells as well, and this is accompanied by increased
levels of iodide uptake (Li et al., 2007, 2011). Even though JAR and
BeWo cells may represent an excellent in vitro model suitable to analyze
iodine transport throughplacenta, it should beconsidered that theproduc-
tion of hCG by the trophoblast in vivo implies an autocrine control that ma-
lignant placental cells lack, so the self-regulation of hCG biosynthesis and
the increase in NIS may differ (Li et al., 2012; Akturk et al., 2013).

The paired-domain transcription factor Pax8, along with the homeo-
domain thyroid transcription factor-1 (TTF-1), has a fundamental role in
thyroid development and, in the adult gland, in the maintenance of the
differentiated thyroid follicular cell phenotype, as it controls and activates
the expression of thyroid-specific genes, such as those encoding
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thyroglobulin, thyroperoxidase and NIS (Di Palma et al., 2003). The ex-
pression of Pax8 in thyroid follicular cells is induced by TSH with a con-
sequent increase in intracellular cAMP (Mascia et al., 2002). PAX8 is
expressed in the human placenta as well, in a cAMP-dependent fashion
(in this case, hCG-mediated) (Kozmik et al., 1993). However, at variance
with the situation occurring in the thyroid, in which one of the main PAX8
functions is the regulation of NIS gene expression, variations in this tran-
scription factor do not appear to have any effect on the expression of NIS
in the JAR placental cell line (Ferretti et al., 2005).

One more shared feature between thyroid and placental cells appears
to be the feedback mechanisms regulating intracellular iodide concentra-
tion and iodide uptake. In BeWo cells intracellular iodide causes a down-
regulation of NIS mRNA and protein expression, followed by a decrease
in iodide uptake (Li et al., 2007).

Additional regulatory factors, such as O2, are involved in NIS synthesis
at placental level, but their role has not been fully elucidated. As men-
tioned above, during pregnancy O2 tension gradually increases in the pla-
centa from very low levels (�1% in the first 6 weeks) to a plateau of 8% by
the 16th week of gestation, a value which is maintained until birth. Li et al.
(2011) have shown that in BeWo cells cultured under different O2 con-
centrations (1, 8, 21%) the expression of NIS and hCG (mRNA and
protein) and iodine uptake by the cells are directly related to O2 concen-
tration. In particular, cells grown in 1% oxygen do not respond to exogen-
ous hCG by increasing NIS expression or iodine uptake suggesting that
oxygen concentration plays a major role in regulating placental NIS ex-
pression. Thus, the O2 increase at the end of the first trimester inducing
NIS synthesis and iodine uptake by trophoblast is well timed to meet the
increased iodide requirements of the developing fetal thyroid, beginning
at 10–12 weeks of gestation (Di Cosmo et al., 2006).

The iodine needs of the embryo are thus clearly ensured at the
maternal-fetal interface by NIS and pendrin, and the fine regulation of
their synthesis and activity by various factors shows analogies with the
mechanisms operating in the thyroid gland. However, the evidence is
still limited, and models other than the currently used choriocarcinoma
cell lines are needed, considering that in neoplastic cells the ability to
regulate the synthetic machinery and to respond to physiological feed-
back is generally altered (Orendi et al., 2011).

Membrane TH transporters in placental cells
Thyroid hormone action in target tissues requires its active transport
across the plasma membrane. Different types of TH transporters exist,
showing different affinity for T3 and T4, namely, monocarboxylate trans-
porters (MCT), L-type amino acid transporters (LAT) and organic anion
transporting polypeptides (Oatp) (Fig. 3C). Among them, only MCT8,
MCT10 and Oatp1c1 show a high degree of specificity towards TH
(Visser et al., 2008, 2013; Karapanou and Papadimitriou, 2011).

The mRNA for six different types of TH transporter are expressed at
placental level, localized in different placental cell types: MCT8, MCT10,
LAT1, LAT2, Oatp1a2 and Oatp4a1 (Loubière et al., 2010; Patel et al.,
2011a). From 6 weeks gestation onwards, the whole set of TH transport
proteins can be immunohistochemically detected in villous syncytiotro-
phoblasts and cytotrophoblasts, and also in extravillous cytotrophoblasts
(EVT), with varying patterns of expression and intensity throughout preg-
nancy (Ritchie and Taylor 2001; Okamoto et al., 2002; Sato et al., 2003;
Loubière et al., 2010). It is worth noting that the maternal-facing apical
microvillous plasma membrane of human syncytiotrophoblast, which
serves as the first plasma membrane barrier to the transplacental

Figure 1 Schematic representation of the relationship between pregnancy, ovarian hyperstimulation and thyroid function. It is hypothesized that a tran-
sient impairment of thyroid function during early pregnancy may cause implantation failure or miscarriages. TSH, thyroid-stimulating hormone; TBG,
thyroxine-binding globulin; hCG, human chorionic gonodotropin.
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passage of maternal TH, is capable of rapid, saturable T4 and T3 uptake
from the maternal circulation (Loubière et al., 2010) (Fig. 3A and C). In
this site the expression of MCT8, MCT10, Oatp1a2 and LAT1 mRNA
gradually increases with gestation, while that of Oatp4a1 and CD98
reaches a minimum at mid gestation, before increasing towards term.
The preferential localization of Oatp4a1 and LAT2 at the apical surface
of syncytiotrophoblast (Lewis et al., 2007; Loubière et al., 2010) suggests
their direct involvement in the uptake of TH from maternal blood.

The redundant expression of TH transporters has been suggested
to help ensure proper hormone availability to the fetus, and it may
represent a critical point of regulation for the transplacental transfer of
TH from mother to fetus (Loubière et al., 2012). It should be underlined
here that, in addition to TH, these transporters may mediate the delivery
of other maternal molecules to the fetus, a role that needs to be better
clarified. Nonetheless, MCT8, MCT10 and Oatp1a2 in villous cytotro-
phoblast and EVT have a higher affinity to TH than to other molecules

Figure 2 Systemic and local regulation of TSH and thyroid hormone plasma levels. (A) TSH plasma levels are regulated by the circulating thyroid hor-
mones (TH) T3 and T4, actively transported into the thyrotroph where thyroninodeiodinase 2 (D2) converts T4 to the active form T3. The intracrine role of
D2 is represented in the figure by its ubiquitinated inactive and deubiquitinated active isoforms, whose ratio defines the variable rate of T3 availability inside
the nucleus able to saturate the TR at the level of TRE on DNA, activating transcription of TSH and its release. (B) At the level of the basal membrane of the
thyroid follicular cell the binding of TSH to TSHR activates Ac to form cAMP which modulates the expression of NIS and activates PLC that form DAG and
IP3 and the phosphorylation cascade that triggers TG transcription in the nucleus. At the apical membrane the oxidation by TPO allows the iodination
of tyrosine residues of TG, through the formation of H2O2 by THOX2, necessary for the biosynthesis of TH. TRE: TSHR: TRs, thyroid receptors; RXR,
retinoid X receptor; TG, thyroglobulin; TPO, thyroidperoxidase; Ub, ubiquitine; NIS, sodium-iodide symporter; Ac, adenylate cyclase; PLC, phospholipase
C; DAG, diacylglycerol; IP3, phosphatidylinositol; THOX2, thyroid oxidase 2.
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Figure 3 Thyroid hormone signaling is involved in the bi-directional dialogue between competent blastocyst and endometrium. (A) Before the window
of implantation (WOI), in the early luteal phase, trophoblast cells express TRs, thyroid hormone transporters, mainly MCT8, and deiodinases. Both T3 and
EGF may act synergistically to regulate the production of hCG and, later, human placental lactogen (hPL). (B) Endometrial cells also express TRs, TG, TPO
and deiodinases both D2 and D3, the formeractivating and the latter inactivating T4, forming respectively T3 and rT3. During the WOI, TSH increasesLIFand
LIFR expression and regulates glucose transport increasing the expression of GLUT-1. TH may also influence angiogenesis and immune function during
decidualization and implantation. At this time hypoxia induces D3 through HIFa, possibly controlled by nongenomic pathways. (C) Past the WOI and
during the early weeks of pregnancy, membrane polarization of NIS and Pendrin on syncitiotrophoblast cells resembles that present in the thyroid follicular
cells. TH transporters, such as MCT8, MCT10, OATP4A1, LAT1 and OATP1A2, can be detected in villous cytotrophoblasts and syncytiotrophoblast.
Preferential localization of MCT8, OATP4A1 and LAT1 at the apical membrane of syncytiotrophoblasts suggests that these transporters play a key role
in TH uptake directly from maternal blood while MCT10 at the basal membrane may have a key role in TH efflux from the trophoblast cell barrier to
the fetus. TTR and albumin are present at trophoblast level protecting T4 deiodination by D3. Furthermore, TH exert a protective mechanism at placental
level, reducing trophoblast apoptosis and Fas/Fas-ligand expression (see text). rT3, reverse T3; MCT8, monocarboxylase transporter 8; MCT10, mono-
carboxylase transporter 10; EGF, epidermal growth factor; OATP4A1, organic anion transporting polypeptide 4A1; OATP4A2, organic anion transporting
polypeptide 4A2; LAT, large aminoacid transporter; LIF, leukemia inhibitory factor; LIFR, leukemia inhibitory factor receptor; GLUT-1, glucose
transporter-1; HIFa, hypoxia-inducible factora; Ub, ubiquitine; TTR, transthyretin; 3bHSD, 3bhydroxysteroidodehydrogenase; VEGF, vascular endothe-
lial growth factor.
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(James et al., 2009; Vasilopoulou et al., 2013), suggesting a primary role of
TH in early placentation.

The association between untreated maternal hypothyroidism and
pregnancy complications, such as malplacentation, intrauterine growth
restriction (IUGR), placental abruption and pre-eclampsia, has been
described, while subclinical hypothyroidism is strongly associated with
miscarriage and preterm labor (Abalovich et al., 2002; Chan et al.,
2006; Vissenberg et al., 2012). In the case of hypothyroxinemia, IUGR
fetuses show high placental expression of MCT8 (Loubière et al.,
2010). Up-regulation of MCT8, associated with a down-regulation of
MCT10, induces a sort of intracellular ‘poisoning’ by T3 without
changes in deiodinase activity. It is known that intracellular accumulation
of T3 induces apoptosis in trophoblastic cells (Vasilopoulou et al., 2010).
It is important to remember that the balance between proliferation and
the apoptotic process is an important regulator of placentation, and is
involved in syncytiotrophoblast renewal. We may speculate that the
excessive T3 placental influx and reduced efflux might be involved in
the increased sensitivity to apoptotic stimuli. In conclusion, TH transpor-
ters appear to contribute to fetal-maternal exchange of TH in early preg-
nancy, and it can be safely hypothesized that they are involved in the fine
regulation of trophoblastic activity (Loubière et al., 2010; Vasilopoulou
et al., 2010).

Deiodinases
The modern paradigm of TH action is based on the evidence that
hormone signaling in individual cells can change as a consequence of
intracellular activation or inactivation of the hormone (Wondisford,
2003; Bianco and Cand Kim, 2006; Aranda et al., 2013). Iodothyronine
deiodinases are important mediators of TH action, being present in
tissues throughout the body (Dentice et al., 2013), where they catalyze
T3 production and degradation via outer and inner ring deiodination
(Darras and Van Herck, 2012). In particular, type 1 deiodinase (D1) is re-
sponsible for generating most of the circulating T3, type 2 deiodinase
(D2) is considered as the source for intracellular T3 and type 3 deiodinase
(D3)—which deiodinates the inner ring of iodothyronines—is believed
to be a TH-inactivating enzyme. Thus, independently of TH circulating
levels, deiodinases may alter TH signaling in the target cells by regulating
the cytoplasmic T3 pool, nuclear T3 concentration and TR saturation
(Guadano-Ferraz et al., 1997; Arrojo et al., 2013). In the rat uterus the
expression of D2 and D3 varies significantly during the estrous cycle
and during early pregnancy in response, at least in part, to gonadal
steroid hormone levels. In humans, after implantation, D3 expression
increases by 200-fold over a period of 48–72 h (Huang, 2005). In rats,
D3 activity maximally increases on Day 8–10 of pregnancy (Galton
et al., 1999; Wasco et al., 2003), while the increase in D2 activity is
minimal, and occurring over a more protracted time course (Wasco
et al., 2003). D2 is mainly controlled by estrogen, while D3 expression
is modulated by the synergic action of estrogen and progesterone and
by the implantation and decidualization processes themselves (Wasco
et al, 2003). Uterine cytokines and growth factors, more than the pres-
ence of the blastocyst itself, seem to be involved in D3 stimulation
(Wasco et al., 2003).

The changes in uterine expression of deiodinases appear to provide
the embryo with an optimal TH environment for early development.
The main deiodinase isoform expressed at the beginning of human preg-
nancy is D3, which can be found in villous syncytiotrophoblast and

cytotrophoblast. D3 is also expressed in uterine decidua, umbilical
cord vessels, perivascular myocytes of uterine arteries and in non-
pregnant endometrium (Huang et al., 2003). The villous syncytiotropho-
blast layer is directly exposed to maternal blood in the intervillous space
and thus it is ideally placed to protect the fetus from excessive maternal
TH transfer. On the other hand, during the first trimester the relatively
undifferentiated villous cytotrophoblast layer expresses D2 protein
more consistently than syncytiotrophoblasts, suggesting that at this
stage D2 plays a primary role in supplying the fetoplacental unit (Chan
et al., 2003). In addition to placental tissue, TH can reach the fetus
through the amniotic fluid, and T4 can be exchanged through fetal re-
spiratory epithelium, amniotic fluid swallowing and umbilical cord
blood, but free T4 concentration in amniotic fluid is higher than that in
both maternal and fetal serum (Sack, 2003). Deiodinases are almost ubi-
quitous in the fetus, being present in umbilical vessels, respiratory and in-
testinal epithelium, urinary tract and the skin, reflecting a need to
precisely control within narrow ranges the TH concentration during
embryo development (Huang et al., 2003). The coordinated expression
of activating and inactivating deiodinases is thus crucial to protect the
fetus against exposure to TH at inappropriate times or concentrations.

Intrauterine growth restriction (IUGR), usually caused by placental in-
sufficiency in delivering oxygen and nutrients to the baby, is associated
with mild neurodevelopmental deficits which have been partly attributed
to reduced circulating fetal TH concentrations and decreased cerebral
TR expression (Chan et al., 2006). Despite the described up-regulation
of placental TR expression in pregnancies complicated by IUGR (Kilby
et al., 1998), no difference in deiodinase expression in normal versus
IUGR placentas was detected (Chan et al., 2003), suggesting that these
enzymes are not responsible for the hypothyroxinemia in circulating
fetal TH observed in this condition (Chan et al., 2003). It is interesting
to note that in the rat uterus D3 mRNA can be detected prominently
in the decidual tissue present in the central portion of the deciduoma,
while D2 is seen at the periphery of the specimen, in a nearly circular
pattern surrounding the D3-expressing decidualized cells, suggesting
that active T3 is involved more in placentation and uterine processes
than embryo development (Wasco et al., 2003). In the placenta the
D2 gene has multiple transcription start sites and a transcriptional regu-
latory component involving cAMP, several cytokines and transcription
factors (Kim et al., 1998b; Bartha et al., 2000, Canettieri et al., 2000;
Dentice et al. 2003; Kurlak et al., 2013). In JEG3 cells, a human placental
choriocarcinoma cell line highly responsive to cAMP treatment, the re-
sponse to cAMP involves binding of the cAMP response element (CRE)-
binding protein (CREB) to the CRE locus in the D2 promoter (Canettieri
et al., 2004). During its early development, trophoblast expresses
epidermal growth factor (EGF) receptors and produces EGF, which
induces D2 transcription (Song and Oka, 2003). Treatment of trophoblast
cell cultures with EGF induces a threefold increase of D2 mRNA and an in-
crease in enzymatic activity (Canettieri et al., 2008). In JEG3 cells, EGF pro-
motes the expression of D2 mRNA in synergy with cAMP, and this
regulation occurs through a composite transcription factor module,
which includes CREB, c-Jun, and c-Fos (Canettieri et al., 2008). EGF regu-
lation ofD2 transcription resembles thatplayed by the hCGa subunit tran-
scriptional complex, recruiting c-Jun-c-Fos (AP-1) to the CRE binding
complex (Robertson et al., 2000).

D2 has a short half-life (about 40 min) and its substrate, T4 at physio-
logical concentration or T3/rT3 (reverse T3) at high level, causes signifi-
cant post-translational down-regulation through substrate-accelerated
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selective proteolysis via the ubiquitin/proteasome pathway (Baqui et al.,
2000). The balance between ubiquitinated and non-ubiquitinated D2 reg-
ulates the concentration of available intracellular TH; in turn, several
factors regulate this balance, including WSB-1, part of an E3 ubiquitin
ligasewhich mediates ubiquitination and subsequent proteosomal degrad-
ationofD2,andVDU1/VDU2,D2deubiquitinating enzymes(St Germain,
1988; Zavacki et al., 2007; Gereben et al., 2008). Thus, D2 activity appears
to be controlled at various levels and the reason for such a fine mechanism
is that it is responsible for T3 availability to the nucleus. In addition, D2 ac-
tivity is not only involved in thyroid metabolism, but it is a complex intra-
crine mechanism regulated by molecular events that might be involved in
thyroid disease (Bianco and Cand Kim, 2006) and in the imbalance of
thyroid function in the early pregnancy of healthy women experiencing re-
current miscarriage (Burrow et al., 1994; Visser et al., 1998; Kanou et al.,
2007; Dal Lago et al., 2011; Kurlak et al., 2013) (Fig. 2).

In conclusion, considering the implantation process as strictly con-
trolled machinery, it can be hypothesized that deiodinase regulation is
atwork at the maternal-fetal interface to control TH activationand inacti-
vation. However, identification and function of deiodinase regulatory
factors in the feto-placental unit (Table II) have been only partially
demonstrated and further studies are needed.

Thyroid hormone receptors, coactivators,
corepressors and modulators of T3 nuclear
binding
In a given cell type TH may exert genomic and/or nongenomic actions
(Cheng et al., 2010). The genomic effects of TH are mediated by the
nuclear TR which are encoded by two different genes, THRA, present
on chromosome 17, and THRB, located on chromosome 3 (Lazar,
1993). By alternative splicing each gene generates two TR isoforms:
THRA encodes TRa1 and TRa2; THRB encodes TRb1 and TRb2.
TRa1, TRb1 and TRb2 bind TH, while the TRa2 does not (Harvey and
Williams, 2002). The expression of the different TR is tissue-dependent
and developmentally regulated (Cheng et al., 2010). Nuclear TR act as
hormone-dependent transcription factors by binding to a DNA motif
located in the promoter regions of TH target genes, known as the TRE.
TR may bind to the TRE as homodimers or as heterodimers with other
members of the nuclear receptor superfamily such as RXR (9cis-retinoic
acid receptor), vitamin D receptor and RAR (retinoic acid receptor). Het-
erodimerization of TR is thought to represent a means by which TR func-
tions are modulated. For example, TR heterodimerization with RXR
considerably increases TR binding to TRE, responsiveness to TH and its
transcriptional activity (Zhang and Kahl, 1993). After binding to DNA,
TR/RXR heterodimers alter the promoter transcriptional activity by inter-
acting with corepressors (CoRs) or coactivators (CoAs) which connect
the TR/RXR heterodimer with the basal transcription machinery (Cheng
et al., 2010). According to a widely accepted molecular model, in the
absence of TH the TR/RXR complex binds to TRE where it interacts
with CoR, thus inhibiting the basal transcriptional activity of the pro-
moter. Following the binding of TH, structural changes in the TR occur
resulting in the release of CoR and the recruitment of CoA and asso-
ciated proteins capable of modifying the chromatin structure and to in-
crease the transcriptional activity of the promoter (Cheng et al., 2010).

In additionto the classical genomic pathway, THcan activate faster, non-
genomicpathways (Moellerand Broecker-Preuss, 2011). T4 promotes this
non classical effect without entering the cell, by binding to a cell surface

receptor and activating the mitogen-activated protein kinase MAPK-
ERK1/2, which enters the nucleus and associates with TRb1 inducing
its stabilization and reduction of affinity for CoR (Lin et al., 2003).
Davis and colleagues identified a structural plasma membrane protein,
the integrin avb3, as a TR capable of activating the ERK1/2 pathway, in-
ducing angiogenesis and promoting cell growth (Davis et al., 2000, 2004;
Moeller et al., 2006).

At variance with the genomic action of TH, this faster mechanism
takes place in 10 min, reaching maximal activity in 30–40 min.

During embryo implantation an up-regulation of CoR and cofactors
involved in TR transcriptional activity, such as TRIP, TR-associated
protein 220 (TRAP220), nuclear receptor co-repressor (NCor) and
silencing mediator for retinoid and TR (SMRT), occurs (Gereben et al.,
2008). Recently a new activator of TR, TRAM1 (Monden et al., 1997;
Lim et al., 2004), has been described, which is highly expressed in placen-
tal tissue (Takeshita et al., 1997). TRAP220, a subunit of the TRAP CoA
complex, is essential for embryo survival, as evidenced by the fact that
the placenta of TRAP 2202/2 null mice is histologically quite normal
but there are villous alterations, blood circulation defects and growth
defects (Takeshita et al., 1997; Landles et al., 2003).

As far as the post-translational modification of TR is concerned, TRa
and TRb conjugation with small ubiquitin-like modifier (SUMO) has been
described (Liu et al., 2012). In particular, it has been demonstrated that
TRa and TRb sumoylation modulates T3 action and TR activity (Liu et al.,
2012). SUMO1 has been shown to be essential for T3-induced recruit-
ment of CoA CREB-binding protein (CBP) and release of NCoR from
the TRE of TH positively regulated promoters. SUMO1 and SUMO3
are also required for T3-mediated recruitment of NCoR and release of
CBP from the TRE of TH negatively regulated promoters (Liu et al.,
2012). These observations are of interest as increased placental sumoy-
lation has been hypothesized to contribute to the pathogenesis of serious
placental pathologies that cause extreme preterm birth (Baczyk et al.,
2013).

Thyroid Hormone Activity
Before the Implantation
Window

TSHR and TR in the endometrium
TR and TSHR are present in endometrium and their expression varies
during the menstrual cycle (Aghajanova et al., 2011). TRa1 and TRb1
are both expressed in the mid-luteal phase in glandular and luminal epi-
thelium, and show an increase during the secretory phase and a subse-
quent dramatic decrease. It has been also demonstrated that TSHR,
TRa1, TRa2 and TRb1 expression in endometrial cells is increased at
the same time as pinopodes appear and endometrial receptivity is estab-
lished (Aghajanova et al., 2011). Interestingly, transcripts involved in TH
synthesis, including NIS, prolyl 4-hydroxylase beta (P4HB), a molecular
chaperone involved in endocytosis of immature thyroglobulin (Tg) mole-
cules, D2, thyroid peroxidase (TPO) and Tg, are also expressed in the
endometrium (Catalano et al., 2007). This suggests the hypothesis that
TSH may induce TH secretion also in this tissue. The administration of
mifepristone (RU486), an antiprogestin that makes the endometrium un-
receptive and induces menstrual bleeding, reduces the expression of
TRa1, TRa2 and Tg, while inducing that of TRb1 and D2 (Catalano
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Table II Intracellular regulation of thyroid hormone activity at placental level.

Molecules Localization Evidence and possible role Species Ref.

TH binding proteins
TTR (HA)
Albumin (HA)
a-1-antitrypsin (LA)
b-1-acid glycoprotein (LA)

ST
Synthesis (TTR, Alb,a1AT,b1gpa)
Secretion (TTR, Alb)
Internalization (TTR)

Binding TH to prevent deiodination
Regulation of T3 access to the nucleus
(1) Low oxygen ¼ incr TTR

Hum
Hum
JEG3

Landers et al. (2013a)
Landers et al. (2013b)
Patel et al. (2012)
Patel et al. (2011a)
Landers et al. (2009)
McKinnon et al. (2005)

Iodide transport
NIS
Pendrin

ST
Apical membrane (maternal side)
Basal membrane (fetal side)

Iodium influx into cells from mat. circulation
Iodium efflux to the extracellular space towards the fetus
(1) TSH, hCG ¼ incr NIS
(2) Low oxygen ¼ decr NIS

BeWo
Hum

Degrelle et al. (2013)
Manley et al. (2005)
Mitchell et al. (2001)
Li et al. (2011)
Arturi et al. (2002)

Membrane transporters
MCT 8
MCT 10
LAT 1
OATP1A2

ST (apical), CT, EVT, decidual
stroma
CT (basal), ST, EVT, decid strom,
villous strom
ST
ST (apical) CT EVT

TH uptake from maternal blood and passage through the cellular
membrane/efflux to the fetus
alteration in IUGR

Hum
Hum

Visser (2013)
Loubiere et al. (2012)
Vasilopoulou et al. (2010)
Loubiere et al. (2010)
Visser et al. (2008)
Chan et al. (2006)

TH receptors
TR a1
TR a2
TR b1

Endovascular/interstitial EVT Regulation of differentiated trophoblast (endocrine function, invasion and
motility); interaction with factors involved in proliferation and stabilization.
(1)T3 (1028M) ¼ EGF-like molecules, hPL, hCG
(2)T3 (1028 m)/ T4 (1027 m): Progesterone; (incr 3Bhsd) 17bestradiol;
(incr aromatase)
(3)T3 in synergy with EGF: incr motility and influence invasion SGHPL-4 (EVT
cell)
(4)T3 (1027/29): decrem apoptosis
(inhibit Fas-FasL, Casp3 cleav and PARP)
(5)T3 (1028M): MMP2-MMP3 incr

Hum
SGHPL-4
Hum
Hum
Hum
Hum
Hum

Maruo (2010)
Barber et al. (2005)
Oki et al. (2004)
Maruo et al. (1991)

Deiodinases
D2
D3

Villous CT ; ST (weak)
Villous ST; CT (weak) uterine
decidua, umbilical cord vasa,
perivascular myocities of uterine
arteria, fetus: umbilical vasa,
respiratory and intestinal
epithelium, urinary tract, skin

Decrease during gestation
Conversion inactive T4 to T3
Conversion T4 to rT3, T3 to T2
Regulate maternal TH to fetal circulation. D3 protects the fetus from
excessive mater TH

Hum
Rodent

Kurlak et al. (2013)
Patel et al. (2011b)
Chan et al. (2009)
Gereben et al. (2008)
Wasco et al. (2003)
Huang et al. (2003)
Chan et al. (2003)

3bHSD= 3bhydroxysteroidodehydrogenase; Alb, albumin; BeWO, choriocarcinoma cell line; Casp3, Caspase 3; cleav, cleavage; CT, cytotrophoblast; D, deiodinases; Decid strom, decidual stroma; decr, decrement; EVT, extravillous trophoblast;
Fas-FasL, Fas-Fas ligand; HA, high affinity; hCG, human chorionic gonadotropin; hPL, human lactogen placentar; Hum, evidence on Human models; incr, increment; IUGR, intrauterine growth restriction; JEG3, Human placental choriocarcinoma cell
line; LA, low affinity; LAT, L-type amino acid transporters; MCT, monocarboxylate transporters; MMP, metalloproteinases; NIS, sodium-iodide symporter; OATP, organic anion transporting polypeptides; PARP, Poly (ADP-ribose) polymerase;
SGHPL-4=extravillous-like cell line; ST, syncitiotrophoblast; T3, Triiodothyronine; TH, thyroid hormones; TR, Thyroid receptors; TSH, Thyroid-stimulating hormone; TTR, transthyretin; Villous strom, villous stroma;a1AT,a-I-antitrypsin;b1gpa,
b-I-acid glycoprotein.
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et al., 2007). According to this evidence, progesterone seems to be im-
portant for the transcriptional regulation of factors involved in TR synthe-
sis and metabolism, and explains, at least in part, the menstrual
abnormalities and subfertility in women with primary hypothyroidism
(Poppe and Velkeniers, 2004; Scoccia et al., 2012; Li et al., 2014).

TH may interfere with estrogen activity in its target tissues, including
the reproductive tract. A possible explanation of this phenomenon could
be derived from the observation of a crosstalk between estrogen receptor
(ER) and TR on estrogen-responsive physiological promoters: interactions
between different ER/TR isoforms have been shown to elicit different tran-
scriptional effects (Vasudevan et al., 2001). Hypothyroidism is known to
reduce the uterine cells’ estrogenic response, resulting in development of
reduced endometrial thickness (Inuwa and Wiliams, 1996).

It is also worth mentioning the well-known stimulatory effects of TH
on hepatic expression of SHBG (sex hormone-binding globulin). In hypo-
thyroidism conditions SHBG serum level is reduced leading to decreased
level of total estradiol and increased level of free estradiol while, vice versa,
in hyperthyroidism conditions the increased level of SHBG leads to an in-
crease of circulating total estradiol, with normal or reduced free estradiol
level (Redmond, 2004). In addition, the metabolic clearing rate of estradiol
is reduced in both hypo- and hyperthyroidism conditions (Redmond,
2004).Thus,bymodulatingestradiolmetabolism,THcouldhave profound
effects on regulation of the hypothalamic-pituitary-ovarian axis, as well as
on the proliferation and maturation of endometrial tissue and consequent-
ly on implantation and early development of the blastocyst.

TSHR and TR in the ovary
Both T3 and T4 have been found in human follicular fluid (Wakim et al.,
1993). Moreover, granulosa cells and ovarian stromal cells express TR,
thus representing a potential target for TH (Wakim et al., 1993, 1994;
Zhang et al., 1997). Activation of the ERK1/2 pathway by a nongenomic
TH action is involved in maturation of pre-ovulatory follicle and oocyte-
cumulus cell (CC) complexes in mice (Su et al., 2003), as well as in meiotic
maturation of bovine, pig and cattle oocytes (Tomek et al., 2002,
Ellederová et al., 2008). In vitro exposure of human ovarian surface epi-
thelial cells to T3 was shown to cause a dose-dependent increase of
expression of inflammation-related genes, i.e. cyclo-oxygenase-2,
MMP-9, 11b-hydroxysteroid dehydrogenase type 1, and also of ERa
(Rae et al., 2007). The evidence that severe hypothyroidism is associated
with development of polycystic ovaries (Van Voorhis et al., 1994 Du and
Li., 2013) and that treatment with levothyroxine can reduce the number,
dimension and shape of ovarian cysts, and prevents their enlargement
(Lindsay et al., 1983) indicates that ovarian follicles are influenced not
only by LH, FSH and ovarian hormones but also by TH (Fitko et al.,
1996). The presence of TRa1, TRb1, and TRb2 mRNAs in mature
oocytes from IVF patients suggests that the human oocyte may be direct-
ly responsive to T3 (Zhang et al., 1997). TRa1 and TRa2 transcripts have
been observed in immature oocytes as well (Zhang et al., 1997). As
above mentioned, TRa2 is an alternatively spliced mRNA of the TRa
gene which cannot function as a TR but, when very highly expressed,
acts as a ligand-independent inhibitor of TH action (Koenig et al.,
1989). Considering that maturation of the oocyte involves complex
interactions between oocyte and surrounding CC and that TRa1,
TRb1, TRb2, and TRa2 isoforms are expressed in CC samples
(Zhang et al., 1997), it may be hypothesized that T3 may influence mat-
uration of the oocyte and the secretion of hyaluronic acid causing pre-

ovulatory cumulus expansion. However, T3 has no detectable effects
on the process of cumulus expansion and meiotic maturation of the
oocyte in the mouse (Cecconi et al., 1999), and TSH or T4 added to
cultures of human ovarian tissue have no effect on the development of
follicles and oocytes (Aghajanova et al., 2009). Nevertheless, TH
potentiates FSH-induced granulosa cell (GC) survival by inhibiting cell
apoptosis and promoting cell proliferation (Zhang et al, 2013). TR
mRNAs have been detected in human GC (Wakim et al., 1994), and
mural GC have important roles in folliculogenesis, steroidogenesis and
synthesis of follicular fluid. T3 increases proliferation of human luteinized
GC in vitro, and T3 and free T4 in follicular fluid potentiate the hCG-
induced cAMP response (Goldman et al., 1993) and synergize with
FSH to increase LH receptors and progesterone secretion by GC from
small porcine follicles (Maruo et al., 1992). Human GC stimulated by
TSH show a significant increase in cAMP concentration, and exposure
to T4 results in increased ERK1/2 activation (Aghajanova et al., 2009).

TSH may also affect ovarian steroidogenesis as well as oocyte matur-
ation, being present in human follicular fluid with levels positively corre-
lated to blood concentration (De Silva, 1994). TSHR mRNA has been
identified in oviducts and ovaries of mature and immature rats and the
transcript increases immediately after the injection of pregnant mare’s
serum gonadotrophin or hCG, and may be regulated by steroid feed-
back, suggesting its function to be involved in the regulation of folliculo-
genesis and luteinization (Sun et al., 2010).

However, the findings that TSHR and TR are expressed by GC and the
oocyte at different stages of follicular development, and that TSH and TH
can be detected in follicular fluid have not been followed by a clarification
of their local role. These molecules apparently have no role in oocyte
maturation in the short term, but seem to influence GC survival and ster-
oidogenesis (Wakim et al., 1994; Cecconi et al., 1999; Rae et al., 2007;
Aghajanova et al., 2009; Zhang et al., 2013).

To conclude, clinical evidence that hypothyroidism deeply alters
ovarian function and can be associated with polycystic ovary syndrome
(Benetti-Pinto et al., 2013) or to ovulation alterations (Poppe and Velke-
niers, 2004) confirms that TH play an important role in ovarian physiology.
In neonatal and immature rats, TH seem to play an important role in the
regulation of nitric oxide synthase (NOS) activity, whose signaling
pathway is involved in ovarian follicular development (Fedail et al., 2013).

Thyrostimulin and ovarian functions
The receptors for TSH, FSH (FSHR) and LH (LHR), are all members of a
G protein associated (GPA) receptor family that can be activated by het-
erodimeric glycoprotein hormones (TSH, FSH, LH, hCG). The latter
share a commona subunit, which pairs with a uniqueb-subunit to estab-
lish receptor specificity, forming TSH (GPA1/TSHb), LH (GPA1/LHb),
FSH (GPA1/FSHb), and choriogonadotrophin (GPA1/CGb). More re-
cently, a new heterodimeric glycoprotein hormone, composed of a2
(GPA2) and b5 (GPB5) subunits, called thyrostimulin owing to its
ability to activate TSHR in vitro and in vivo, has been added to the family
(Nakabayashi et al., 2002). The exact role of thyrostimulin in thyroid
physiology is still largely unknown. Transcripts GPA1/TSHb for TSH
and GPA2/GPB5 for thyrostimulin have been quantified in rat ovaries
and, as compared with the negligible expression level of the TSHb

subunit, both GPA2 and GPB5 appear to be expressed in the ovary of
gonadotrophin treated rats. Thyrostimulin is present in the oocyte
and, as a paracrine factor, can activate cAMP and the c-fos nuclear
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cascade in GC through TSHR (Sun et al., 2010). The action of thyrostimu-
lin can take place immediately after gonadotrophin stimulation, because
gonadotrophins not only stimulate follicle growth and luteinization but
also increase TSHR in GC via cAMP, while estradiol is likely to play the
opposite role, by inducing a decrease in ovarian TSHR expression (Sun
et al., 2010). Hence, the finding that oocyte-derived thyrostimulin acts
on GC-expressed TSHR indicates that a paracrine thyrostimulin-based
system, tightly regulated by gonadotrophins, is present in the ovary and
is involved in pre-ovulatory follicle maturation. In conclusion, since thyros-
timulin is considered as the most ancestral glycoprotein hormone, its pres-
ence in the ovary may have some, yet to be discovered, primitive function
in reproduction (Nakabayashi et al., 2002; Sun et al., 2010).

Thyroid Hormone Function
During the Implantation Window
While direct evidence of the influence of TH on the implantation process
is lacking, clinical findings indicate that TH could be involved in regulation
of the implantation mechanism. Several data on TH involvement in early
embryo development have been obtained in assisted reproduction tech-
nology studies. Supplementation of maturation, fertilization and culture
media with TH increases bovine embryo cleavage, blastocyst formation
and hatching rates (Ashkar et al., 2010; Costa et al., 2013). TH supple-
mentation increases embryo quality as well, by reducing the level of
apoptotic bodies. Furthermore, TH can increase the expansion rate of
the blastocoel cavity of cryopreserved bovine embryos, probably by
acting at a metabolic level (Ashkar et al., 2010).

Concerning the role of TH in endometrial receptivity, an associa-
tion between thyroid function and LIF expression has been highlighted
(Stavreus, 2012) (Fig. 3B). An inverse correlation between grade of hypo-
thyroidism and LIF levels has been proposed, since in the monkey admin-
istration of methimazole increases LIF and TSH serum levels, reducing at
the same time T3 and T4 levels (Ren et al., 1999). The expression of LIF
and its receptor (LIFR) in endometrial stromal cells is increased also by
TSH, which might be further involved in endometrial glucose transport,
since TSH stimulation causes increased expression of the glucose trans-
port protein GLUT1 in the Ishikawa cell line (Aghajanova et al., 2011)
(Fig. 3B). Furthermore, it should be recalled here that the leptin/leptin
receptor system appears to be a fine regulator of the implantation
process, as suggested by the differential expression of leptin receptors
in implantation and inter-implantation sites (Yoon et al., 2005), and the
clinical association between a significantly lower expression of leptin
and higher expression of leptin receptors in the endometrium of
women with unexplained recurrent implantation failure, as compared
with fertile women (Menendez et al., 2003; Dos Santos et al., 2012;
de Oliveira et al., 2013).

Several studies indicated that in primary hypothyroidism circulating
leptin increases in parallel with TSH, while the opposite is true with
primary hyperthyroidism. Leptin itself directly stimulates TRH and sub-
sequently TSH and thyroid function, and it can stimulate T3 production
via an activation of T4 to T3. Nevertheless, leptin appears to have a
direct inhibitory effect on several components involved in TH production
by thyrocytes. Peripherally, both TH and leptin might be involved in adap-
tive thermogenesis, with TH acting as possible mediators of the effect of
leptin on energy expenditure. In recent years the relationship between
TH and leptin has been extensively studied but conflicting results have

emerged, and further studies are still needed to clarify their combined
effects on different tissues (Feldt-Rasmussen, 2007). TH may influence
angiogenesis and immune function during implantation as reported for
other systems (Pinto et al., 2011; De Vito et al., 2012). Angiogenesis is
considered as a crucial event for successful implantation, decidualization
and placentation. Increased vascular permeability and neoangiogenesis
are mostly regulated by the VEGF, and genes encoding VEGF isoforms
and their receptors are differentially expressed in the mouse uterus fol-
lowing a precise spatio-temporal regulation (Dey et al., 2004). Their
effects are complemented and coordinated by another class of angio-
genic factors, the angiopoietins (Maisonpierre et al., 1997; Dey et al.,
2004). While VEGF takes part in the attachment phase and the early
stages of vessel development, the angiopoietins act later in the implant-
ation process, to promote angiogenic remodeling, vessel maturation and
stabilization (Smith, 2000; Cöl-Madendag et al., 2014). It has been clearly
demonstrated that TH, through both genomic and nongenomic mechan-
isms, exert a proangiogenic role in a variety of animal models, including
(limb ischemia, myocardial ischemia, and the neovascularization required
by tumor masses (Tomanek and Busch, 1998; Tomanek et al., 2004;
Yalcin et al., 2010). The pro-angiogenic role of TH is initiated nongeno-
mically at the cell surface through integrin avb3, which can bind at its
Asp-Gly-Asp (RGD) recognition site a number of extracellular matrix
(ECM) proteins and also TH (Bergh et al., 2005). Through the MAPK
ERK1/2, this binding induces the transcription of several angiogenesis-
relevant genes, such as fibroblast growth factor (bFGF) and VEGF
(Luidens et al., 2010). In the chorioallantoic assay, the addition of
anti-bFGF protein blocks the proangiogenic effect of TH (Davis et al.,
2009). MAPK is also known to activate TRb1 and ERa thus creating a bi-
directional molecular connection between an ‘outside-in’ (integrin –
MAPK) and an ‘inside-out’ (MAPK – TRb1, ERa) signaling’ (Shen
et al., 2012). Furthermore, TH-activated ERK1/2 in turn activates
members of the signal transduction and activator of transcription
(STAT) family, which are involved in vascular growth, as demonstrated
for STAT1, which transduces the VEGF signal, and STAT3, which is
involved in VEGF gene expression. A TH analog, tetraiodothyroacetic
acid, has been demonstrated to block T4 and T3 binding on the integrin
receptor (Mousa et al., 2008) and to interfere with crosstalk between
avb3 and the adjacent plasma membrane receptors for vascular
growth factors (VEGF-R and bFGF-R). It is interesting to note that T3

has been shown to induce expression of HIF1a, which is involved in
angiogenesis through the activation of phosphatidylinositol 3-kinase
after binding to cytoplasmic TRb and p85 (Moeller et al., 2005, 2006).

Another important aspect of implantation in which the TH machinery
might play a role, involves the immune system. Natural killer (NK) cells
emerge as crucial modulators of implantation and placental angiogenesis
(Xiong et al., 2013). In women with recurrent spontaneous abortion or
IVF failure the peripheral blood NK cell concentration and the level of NK
cell cytotoxicity are higher than normal (Karami et al., 2012). In addition,
NK cell concentration is higher in patients with thyroid autoimmunity and
recurrent spontaneous abortion or unexplained infertility (Kim et al.,
2011; Lazzarin et al., 2012). Peripheral blood NK cells comprises 15%
of blood lymphocytes (Robertson and Ritz, 1990), while uterine NK
(uNK) cells are the predominant leukocyte population present at the
time of implantation and early pregnancy (Fig. 3B), providing appropriate
cytokine support and immunomodulation to regulate the process of
decidualization (King, 2000), placental trophoblast growth (Jokhi et al.,
1994) and invasion (Saito et al., 1993; Seshadri and sunkara, 2013).
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Addition of TSH to NK cells augments their response to IL2, increasing
their proliferation and response to various stimuli without modifying the
basal level of cytotoxicity (Migita et al., 1989; Provinciali et al., 1992). Fur-
thermore, the increased tumor necrosis factor-a release and TSH levels
described in women with thyroid autoimmunity is accompanied by a 40%
elevation in the peripheral mass of NK cells (Kim et al., 2011). The im-
portance of this evidence emerges from the consideration that peripheral
NK cells, normally not present in substantial numbers in the uterus, could
infiltrate the endometrium and, by altering the balance between NK and
uNK cells, could compromise local immune and hormonal responses. A
functional defect of a subpopulation of NK immune cells, involving both
NK cytotoxicity and secretory activity, has been demonstrated in newly-
diagnosed Graves’ disease and Hashimoto thyroiditis patients (Solerte
et al., 2000) suggesting again their possible involvement in increased preg-
nancy losses (Konova, 2010). To make the issue more complex, TRa and
TRb are expressed on macrophages and dendritic cells (De Vito et al.,
2011), and TSH can be produced by T cells, B cells, splenic dendritic
cells and bone marrow hematopoietic cells suggesting a role in the recip-
rocal modulation of immune system and thyroid function (Klein, 2006).
Furthermore, nongenomic signals via the plasma membrane binding site
avb3 may activate the mammalian target of rapamycin, mTOR, involved
in immune regulation of chemotaxis, phagocytosis, generation of reactive
oxygen species, and cytokine synthesis and release (De Vito et al., 2012).
The involvement avb3 in angiogenesis and immune regulatory activity of
TH could create a link between thyroid and maternal-fetal dialogue, con-
sidering that functional blockade of avb3 on the day of implantation
reduces in rabbit the number of implantation sites compared with controls
(Illera et al., 2003; Weetman, 2010; Carp et al., 2012). Thus, integrinavb3
may play a critical role in the cascade of events regulated by TH leading to
successful implantation.

Thyroid Autoantibodies and
Implantation
As previously mentioned, transcripts required for TH synthesis, such as
TPO and Tg, are expressed in the endometrium where they may be re-
sponsible for local thyroxine production (Catalano et al., 2007). On the
other hand, the expression of such thyroid-specific genes makes the
endometrium susceptible to the action of anti-TPO and anti-Tg autoanti-
bodies. The relationship between antithyroid antibodies and fertilization
rate, implantation and pregnancy rate following IVF and embryo transfer
(IVF-ET) in patients positive for antithyroid antibodies, in comparison to
patients without thyroid autoimmunity, has been evaluated in different
studies (Kim et al., 1998a; Revelli et al., 2009; Zhong et al., 2012). The
results obtained clearly indicate that patients with antithyroid antibodies
show significantly lower fertilization, implantation and pregnancy rates as
well as a higher risk for abortion following IVF-ET.

Thyroid Hormone Activity Past
the Implantation Window

Thyroid hormone action on trophoblast cells
Differentiation of cytotrophoblast to syncytiotrophoblast or EVT cells is
precisely controlled by different agents, such as specific genes, transcrip-
tional factors, hormones, growth factors, cytokines and O2 levels, whose

altered expression increases the risk of developing pre-eclampsia, IUGR
and premature rupture of membranes (Aplin, 1997). TH are now emer-
ging as factors involved in the proliferation, stabilization, survival, endocrine
and invasive function of trophoblast cells. TR are present in the villous pla-
centa, within the nuclei of villous cyto- and syncytiotrophoblast, and their
inappropriate expression is associated with obstetrical complications
(Kilby et al., 1998). Furthermore, deiodinases, which regulate TH effect
within cells, have also been localized in villous syncytiotrophoblast cells.
TRa1, TRa2, and TRb1 isoforms can be immunohistochemically localized
in both interstitial trophoblast and extravillous trophoblast, showing a
more pronounced nuclear than cytoplasmic staining in extravillous tropho-
blast cells (Barber et al., 2005) (Fig. 3C).

Differentiation and survival of the trophoblast
Implantation of the blastocyst, hemochorial placentation, and differenti-
ation and invasion of the trophoblast cell lineage occur in a microenviron-
ment with reduced oxygen concentration (Aplin., 1997, 2000). During
the first trimester the trophoblastic villous layer is thicker compared
with later in development and EVT cells invade spiral arteries and partially
occlude them lowering the oxygen concentration to 2–3%, which has a
protective role toward the embryo (Jauniaux et al., 2003). Hypoxia
induces deiodinase D3 via the HIF-1-dependent pathway (Simonides
et al., 2008) (Fig. 3B). Considering the D3 involvement in inactivation
of both T3 and T4, its up-regulation would create a sort of local hypothy-
roidism, reducing T3 dependent energetic expenditure (Simonides et al.,
2008). This D3 role is important not only during early pregnancy at
uterine level but also in many other ischemic conditions, such as myocar-
dial infarction, stroke and cardiomyopathies, when cells need to survive
in a hypoxic environment (Paulding and Czyzyk-Krzeska, 2000; Lash
et al., 2002). HIF-1 stimulates NOR1 transcription as well, which
reduces the endothelial cell apoptotic rate in hypoxic environments
(Martorell et al., 2009). An additional way by which TH play a protective
role against oxidative stress is by inducing mitochondrial antioxidant
defenses (Chattopadhyay et al., 2010). T3-induced up-regulation of indu-
cible nitric oxide synthase (iNOS) expression in rat liver protects against
ischemia-reperfusion injury (Simonides et al., 2008). In hypothyroid
mice, in which mitochondria become susceptible to oxidative injury
and the mitochondria-dependent antioxidant defence system is
impaired, oxidative stress conditions in the testis heavily damages its
function, leading to infertility (Zamoner et al., 2008; Chattopadhyay
et al., 2010). The main protective mechanism by which TH act at placen-
tal level is, however, their influence on trophoblast apoptosis. Apoptosis
is an important determinant in regulating placental growth, which is more
evident in the invasive EVT than in its proliferative counterpart, and is
associated with increased Fas and Fas ligand expression and reduced
Bcl-2 protein expression (Murakoshi et al., 2003) (Fig. 3C). At the physio-
logical concentration of 1028 M, T3 suppresses apoptosis of early placen-
tal EVT in culture by inhibiting Fas and Fas ligand expression and
caspase-3 and PARP cleavage (Laoag-Fernandez et al., 2004).

An additional factor intervening in regulation of the placental apoptosis
process is EGF. Human early placental trophoblast is capable of produ-
cing an EGF-like substance, and its local production is enhanced by TH
(Matsuo et al., 1993) (Fig. 3A). These observations suggest that an auto-
crine/paracrinecontrol system,which includes TH, plays a role in placen-
tal growth and function in humans (Table I).
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Production of steroids and glycoprotein
hormones
Treatment with 1028 M T3 was shown to enhance the secretion of an
EGF-like substance by cultured early placental explants (Barber et al.,
2005), while treatment with higher (1025 M) or lower (10210 M) concen-
trations had no stimulatory effect (Matsuo et al., 1993). These results are
interesting, considering that EGF, via its receptors on the syncytiotropho-
blast, was found to stimulate the release of both hCG and human placen-
tal lactogen (hPL) in normal early placenta (Maruo et al., 1991) and inhibit
cytokine-induced apoptosis of primary trophoblasts (Garcia-Lloret et al.,
1996). Addition of T3 (1028 M) or T4 (1027 M) to cultures of tropho-
blasts obtained from normal early placentas raised daily secretion of pro-
gesterone, 17b-estradiol, hCG and hPL (Maruo et al., 1991). With the
concomitant addition of pregnenolone and testosterone to 1028 M,
T3 further increases progesterone and estradiol secretion, respectively,
suggesting that T3 enhances 3b-hydroxysteroid dehydrogenase and aro-
matase activity in the placenta (Maruo et al., 1991) (Fig. 3C). Higher or
lower T3/T4 concentrations gave attenuated responses. Thus, TH
stimulation of trophoblast endocrine function may not only be mediated
through the induction of an EGF-like substance but also be a conse-
quence of TH direct action. Unlike early placental tissues, term placental
tissues in culture did not respond to the addition of T3 or T4 with
increased endocrine activity, probably as a consequence of a lower
binding capacity of their nuclear TR (Maruo et al., 1991). Since TH con-
centrations stimulating trophoblast endocrine activity in vitro are within
the physiological range of TH in human plasma, it is very likely that TH
plays a physiological role as an enhancer of trophoblast endocrine func-
tion. The presence of such TH concentrations in the placenta then
appears to be an important factor in the mechanisms regulating the in-
creasing levels of progesterone and hCG that are required in early preg-
nancy. In conclusion, the frequent occurrence of spontaneous abortion
in early pregnancy might, in certain instances, be a direct consequence of
inadequate TH availability at placental trophoblast level (Maruo et al.,
1991).

Extravillous trophoblast invasiveness and
metalloprotease expression
The establishment of anchoring villi and subsequent invasion of maternal
uterine stroma and blood vessels play a critical role in pregnancy success,
as inadequate vascular invasion is associated with common pathological
conditions of pregnancy including pre-eclampsia and growth retardation
(Robertson et al., 1985). The invasion of maternal uterine tissues by EVT
cells anchors the placenta and the fetus to the endometrium, enabling the
conceptus to gain access to the maternal circulation (Robertson et al.,
1985). Invasion is based on the degradation of endometrial ECM and
the expression of cell adhesion molecules by EVT (Bischof and Martelli,
1992; Aplin, 1997). The invasive potential of EVT begins with polar deg-
radation of ECM in the direction of migration, followed by the suppres-
sion of the degradation to moderate the invasion, the binding of cells
to ECM, and finally the active movement through the matrix (Oki
et al., 2004). ECM digestion is achieved by specific enzymes, the
MMPs, and is limited by their tissue inhibitors (TIMPs). The distribution
pattern of MMPs and TIMPs in invading EVT has been extensively
investigated, and a pre-eminent role of MMP-2, MMP-3 and TIMP-1
has emerged (Maruo et al., 1991; Takino et al., 1995; Oki et al., 2004).
EVT anchoring to ECM is established through integrins, which are cell

surface receptors for matrix proteins. The plasma membrane pheno-
types of cytotrophoblast change during the invasion, with a decrease in
a6b4 integrin and a rapid increase in a5b1 integrin (Oki et al., 2004).

Using the in vitro Matrigel invasion assay it was observed that treatment
with T3 significantly increases the number of cell projections of invading
EVT (Oki et al., 2004). In addition, T3 stimulates mRNA expression
of MMP-2, MMP-3, oncofetal fibronectin (onfFN) and integrin a5b1,
and the synthesis of MMP-2 and MMP-3 (Oki et al., 2004). This molecular
deployment facilitates EVT migration through uterine ECM. MMP-2
hydrolyzes collagen IV, which is abundant in any ECM, while the main
targets of MMP-3 are fibronectin, expressed more in the depths of
ECM, and collagen IV. The onfFN is synthesized and deposited at sites
of trophoblast-ECM contact and, together with integrins, favors cell
migration into the matrix. The evidence that the expression of TIMP-1
protein in EVT cultures is not affected by T3 treatment (Oki et al., 2004)
strengthens the hypothesis that TH promote trophoblastic invasion of ma-
ternal tissue. As a consequence, higher than normal TH concentrations
during early pregnancy might be associated with uncontrolled and dan-
gerous penetration of EVT into uterine stroma. As previously described,
T3 suppresses apoptosis by down-regulating the expression of Fas and
Fas ligand (Laoag-Fernandez et al., 2004), and these findings are consist-
ent with the hypothesis that T3 promotes EVT decidual invasion also by
suppressing apoptosis in early pregnancy (Fig. 3C).

The EVT-derived cell line SGHPL-4 (immortalized EVT-like cell line), a
suitable in vitro model for studying EVT invasion mechanisms, exhibits
increased motility and invasive characteristics when subjected to stimula-
tion with EGF, and T3 seems to have modulating effects on SGHPL-4 mi-
gration and invasion stimulated by EGF (Barber et al., 2005). However,
the reduction of the number of invasive processes caused by T3 on
SGHPL-4 cells in vitro is in contrast with the evidence that T3 increases
the expression of molecules involved in invasion (Oki et al., 2004).

Cell line models give contrasting results concerning TH effects on pla-
cental cell proliferation. SGHPL-4 cells become less proliferative when
exposed to T3, while JEG3 choriocarcinoma cells show increased prolif-
eration; in addition, the survival of primary cultures of nonproliferative
term cytotrophoblast is not influenced by T3 (Barber et al., 2005). In
our opinion, the apparently conflicting data may be due to the different
cell populations used as models for EVT cells: neoplastic cells and cul-
tures from anchoring chorionic villi. In addition, TH might act late in
the differentiated functions of nonproliferative EVT and villous syncytio-
trophoblast, enhancing endocrine activity rather than proliferation, as
previously described, and regulating invasion and motility.

Conclusion and Perspectives
The increased incidence of pregnancy loss in women with slightly abnor-
mal TSH levels and hypothyroxinemia suggests the possibility that TH
might be involved in endometrium preparation to pregnancy and initial
trophoblast development. In the present paper we have reviewed data
showing that TH may have a potential paracrine and intracrine role at
uterine level during embryo implantation and early EVT development
through their TR present in these tissues (Tables I and II). TH appear
to be transported through placental tissue by membrane transporters
detected on the syncytiotrophoblast. Molecules present in the cyto-
plasm or on the surface of the syncytium are involved in regulating
access of T3 to the nucleus, where it activates gene transcription.
Among these are the deiodinases and molecules involved in
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ubiquitination or inactivation of deiodinases, which determine the ratio
between T3, T4 and rT3, as well as the TH-binding proteins TTR and
albumin, upon which depends the availability of free TH. Furthermore,
placental transport of TH appears to be polarized from the maternal cir-
culation to the fetus; different factors and molecules (e.g. oxygen) modu-
late this process, suggesting that a fine regulation of TH supply is essential
during early pregnancy. Based on the presence of thyroid-specific genes
involved in TH production (i.e. NIS, pendrin, Tg and TPO) in endometrial
and syncytiotrophoblast cells, it may be speculated that a mechanism of
local synthesis of TH, at the uterine level, exists. Other molecules im-
portant for implantation and early embryo development might regulate
this machinery beyond the classical hypothalamic–pituitary–thyroid
axis. Alteration of some of these factors may locally alter the TH
effects even when systemic TH levels are normal and exerting their
physiological role in other tissues. If this hypothesis is proven, TH
blood concentrations would not necessarily indicate the real hormone
availability and function at endometrial level, and different tests would
be required to evaluate the local efficacy of TH. Another fundamental
TH related event, angiogenesis, occurs in the endometrium during pla-
centation, and alterations in the formation of the vascular network
may be involved in obstetric complications such as pre-eclampsia and
IUGR. Finally, based on the available data, a role of TH in the modulation
of feto-maternal tolerance might be speculated, although this aspect
needs to be further investigated.

In conclusion, all the experimental and clinical evidence reported in the
present review clearly suggest that TH are essential players in the
mechanisms regulating implantation and early fetal development. This
warrants further studies aimed to better define the molecular details
of TH action in these fundamental biological processes, which would
help in solving infertility problems associated with thyroid dysfunction.
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