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Summary. We propose a model-based strategy for ranking scientific journals starting from a
set of observed bibliometric indicators that represent imperfect measures of the unobserved
‘value’ of a journal. After discretizing the available indicators, we estimate an extended latent
class model for polytomous item response data and use the estimated model to cluster journals.
We illustrate our approach by using the data from the Italian research evaluation exercise that
was carried out for the period 2004–2010, focusing on the set of journals that are considered
relevant for the subarea statistics and financial mathematics. Using four bibliometric indicators
(IF, IF5, AIS and the h-index), some of which are not available for all journals, and the information
contained in a set of covariates, we derive a complete ordering of these journals. We show that
the methodology proposed is relatively simple to implement, even when the aim is to cluster
journals into a small number of ordered groups of a fixed size. We also analyse the robustness
of the obtained ranking with respect to different discretization rules.

Keywords: Clustering; Finite mixture models; Graded response model; Item response theory
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1. Introduction

There is growing interest in issues surrounding the classification of scientific journals as an
intermediate step towards evaluating research institutions or individual researchers. In fact,
evaluation systems partially based on journal rankings have recently been introduced in vari-
ous countries, e.g. in Australia by the Australian Research Council, in France by the Agence
d’Évaluation de la Recherche et de l’Enseignement Supérieur and in Italy by the Agenzia di
Valutazione del Sistema Universitario e della Ricerca. Since many of these evaluation systems
aim at clustering journals into merit classes, the problem arises of how many classes should be
considered and how they should be constructed given the available information.

A large number of bibliometric indicators is now available, typically derived from either cita-
tion or usage log data, and any of them can in principle be employed to rank journals. Recently
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Zimmermann (2012) considered seven indicators, five of which—four different versions of the
impact factor (see, for example, Garfield (2006)) plus the h-index (Hirsch, 2005)—are based
on alternative transformations of the number of citations that a journal receives, and the other
two are based on the number of abstract views and downloads. Chang et al. (2012) considered
a larger set of 15 indicators for 299 leading international journals in economics. Bollen et al.
(2009) considered an even larger set of 39 indicators that include traditional measures based on
citation counts and other measures based on social network analysis and usage log data. Many
of these bibliometric indicators are now routinely computed in commonly available citation
databases such as the ISI–Thomson Reuters Web of Science, SciVerse Scopus, Google Scholar
or Microsoft Academic Search, which helps to explain their widespread use.

Although rankings of journals generally differ depending on what indicator or database is
used, there is disagreement on whether there is a single best general indicator or, more generally,
on how to combine the information that is contained in the available indicators to rank journals.
One approach is principal component analysis, which aims at extracting from the data the
orthogonal components that account for most of the observed correlation between the indicators
considered (see, for example, Bollen et al. (2009)). The problem with principal component
analysis is that interpretation is not simple, especially when more than one component is needed
to account for a significant fraction of total variance, so the association of the components with
elusive concepts such as ‘value’, ‘popularity’ or ‘prestige’ of a journal remains rather speculative.
An alternative approach is to take some kind of average of the rankings induced by the different
indicators. For example, the ‘Research papers in economics’ ranking of economic journals
(which is available from https://ideas.repec.org/top/top.journals.all.html)
employs the harmonic mean of ranks after dropping the best and worst values. An important
drawback of both approaches is that they are based neither on an explicit model for measuring
intellectual influence (Palacios-Huerta and Volij, 2004) nor on a well-defined statistical model,
which makes it difficult to interpret the results that are obtained and to carry out inference.

In this paper we propose a model-based strategy for ranking scientific journals starting from
a set of observed bibliometric indicators that represent imperfect measures of the unobserved
scholarly influence of a journal, treated initially as a unidimensional latent trait. After discretiz-
ing these indicators to avoid strong parametric assumptions, we estimate several latent class
models for polytomous item response data and use them to cluster journals. Our models are
latent class versions of the graded response model (Samejima, 1969, 1996), which is commonly
used in educational research and is one of the most popular item response theory (IRT) models
(Hambleton and Swaminathan, 1985). Relative to other approaches, our strategy offers several
advantages. First, it is based on a well-defined statistical model and is easy to implement.
Second, it produces a complete ordering of the journals. Third, it is semiparametric in nature,
since it requires no parametric assumption on the distribution of the latent traits. Fourth, it pro-
vides a measure of the reliability of each indicator for classifying or clustering journals. Finally,
it can be applied even when the bibliometric indicators contain missing values.

We illustrate our approach by using data from the recent Italian research evaluation exercise
(‘Valutazione della Qualità della Ricerca’ (VQR)). The VQR involved all state universities, all
private universities granting publicly recognized academic degrees and several public research
centres. Researchers affiliated to these institutions were asked to submit for evaluation a number
of research products published during the period 2004–2010 and participating institutions were
then ranked on the basis of the average score received by the products submitted by their
researchers.

The VQR was co-ordinated by a public agency (the Agenzia di Valutazione del Sistema
Universitario e della Ricerca) through groups of experts (‘Gruppi di Esperti della Valutazione’
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(GEV)), one for each of 14 broadly defined scientific areas. In most areas, journal papers were the
main type of research products submitted for evaluation. For these areas, an important input to
the evaluation process was the ranking of the journals where these papers were published. In our
application, we focus on the set of journals that were considered relevant for the subarea statistics
and financial mathematics, as defined in the VQR. We discuss the robustness of the estimated
journal ranking to different rules for discretizing the available indicators, and how to handle
the VQR requirement that journals must be classified in ordered groups of a priori fixed size.

To be as close as possible to the actual problems that are faced in the VQR, we base our
ranking of journals on exactly the same bibliometric indicators as used by GEV 13, namely the
2-year and 5-year impact factors IF and IF5, the article influence score AIS and the h-index.
IF and IF5 measure the average number of citations to papers published in a given journal
during the 2 and 5 previous years respectively. AIS uses the same information as IF5, but it also
considers which journals have contributed to these citations (highly cited journals influence the
indicator more than lesser cited journals) and removes journal self-citations. A journal has an
h-index of h if h of the N papers that it published during a given period receive at least h citations
each, and the other N −h receive no more than h citations each.

The remainder of the paper is organized as follows. Section 2 describes the ranking strategy
proposed, focusing in particular on the statistical models on which the strategy is based. Section
3 deals with estimation of these models and selection of the proper model specification. Section
4 illustrates our methodology by presenting the results that were obtained by using the data
from the Italian VQR. Finally, Section 5 provides some conclusions.

2. Ranking strategy proposed

Let n denote the number of journals to be ranked and let r denote the number of available
indicators on which the ranking is to be based. In our application (Section 4), the available
indicators are IF, IF5 and AIS obtained from the Web of Science plus the h-index obtained from
Google Scholar, so r = 4. Also let xij be the value of indicator j for journal i, with i= 1, : : : , n

and j = 1, : : : , r. Note that the value of an indicator may be missing for some journals; in
our application this occurs for IF, IF5 and AIS, but never for the h-index. Our strategy for
ranking scientific journals is based on a preliminary discretization of the available indicators
in s categories. A statistical model for polytomous item response data is then applied to the
discretized indicators.

Denoting by qj1, : : : , qj,s−1 the cut-offs or threshold values for the jth indicator (e.g. its
quartiles), the discretized value of indicator j for journal i is defined as

yij =
s−1∑
v=0

v1{qjv <xij �qj,v+1}, i=1, : : : , n, .1/

where qj0 =−∞, qjs =∞ and 1{A} is the indicator function of the event A. Thus, yij is equal
to 0 if xij �qj1, is equal to 1 if qj1 <xij �qj2, and so on until yij = s−1 if xij >qj,s−1. Clearly,
if the value of xij is missing for some i and j, then the value of yij is also missing. We collect the
r indicators corresponding to the ith journal in the r-dimensional vector yi = .yi1, : : : , yir/.

Discretizing the available indicators, rather than working directly with their original values,
implies some loss of information but allows us to avoid strong parametric assumptions. It also
offers some robustness to measurement errors. However, since the way in which the available
indicators are discretized is essentially arbitrary, it is important to asses the sensitivity of the
results to the discretization assumed.

In Section 2.1 we first describe a baseline model, relying on typical IRT assumptions, to
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analyse the data that were described above. These assumptions may be relaxed, giving rise to
the extended models that are described in Section 2.2. Then, in Section 2.3, we show how to
use these models to cluster journals into ordered groups and to predict their latent scientific
impact.

2.1. Baseline item response theory model
Our baseline IRT model assumes the existence of n latent variables u1, : : : , un, which we interpret
as the scholarly impact of each journal. In interpreting these latent variables we may take into
account that IF, IF5 and AIS are measures of the immediate impact of a journal (respectively 2
and 5 years after publication for IF and IF5, and 5 years after for AIS), whereas the h-index may
be seen as a measure of lifetime impact. Consequently, in this baseline IRT model, a journal has
a high impact (i.e. a high value of ui) if it has both a high immediate impact and a high lifetime
impact. Distinguishing between these two dimensions may be important but would require two
latent variables and, therefore, a bidimensional model of the type that is described in detail in
Section 2.2. Note, however, that, whereas the unobserved impact of a journal may be multi-
dimensional, as argued for example by Bollen et al. (2009), unidimensionality is essential if we
want to obtain a unique ranking of journals.

Our baseline IRT model relies on the following three assumptions.

Assumption 1. For every sample unit (i.e. journal) i=1, : : : , n, the discretized values yi1, : : : , yir

are conditionally independent given the latent variable ui.

Assumption 2. The conditional distribution of every yij given ui satisfies

log
{

p.yij �v|ui/

p.yij <v|ui/

}
=αj.ui −βjv/, v=1, : : : , s−1, .2/

as in the graded response model (Samejima, 1969).

Assumption 3. The latent variables u1, : : : , un are independent and have the same discrete
distribution with k support points ξ1, : : : , ξk and corresponding probabilities π1, : : : , πk, with
πh =p.ui =ξh/. We then denote by λj|h.v/=p.yij =v|ui =ξh/ the probability of the vth category
for the jth discretized indicator yij conditionally on the latent variable ui taking value ξh.
Obviously, these conditional probabilities satisfy condition (2).

Assumption 1, which is known as local independence, is typical of IRT models (Hambleton
and Swaminathan, 1985). It also characterizes latent class models (Lazarsfeld and Henry, 1968;
Goodman, 1974) in which the conditional response probabilities λj|h.v/ are not constrained
to take a specific parametric form but are free parameters to be estimated. In practice, this
assumption means that, if we knew the value of ui, then knowing the value of one indicator
would not be useful to predict the value of any other indicator, as all the relevant information
to capture the latent impact of a journal is already contained in ui.

Assumption 2 formalizes our interpretation of the latent variable ui. In particular, if the
parameter αj, which is known in the IRT literature as the discriminating index, is positive, then
the distribution of yij stochastically increases with ui. In fact, parameterization (2) is based on
a version of cumulative (or global) logits (see Agresti (2002) among others), which generalize
the standard logits for binary outcomes to the case of ordinal outcomes. Therefore, assumption
2 means that the probability distribution of yij moves its mass towards higher categories as ui

increases. It is worth noting that, in terms of the original indicators xij, it may equivalently be
expressed as
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log
{

p.xij �qjv|ui/

p.xij <qjv|ui/

}
=αj.ui −βjv/, v=1, : : : , s−1:

This shows that the parameter αj measures the sensitivity of the distribution of xij to changes
in ui that, in our context, represents the latent impact of a journal. The interpretation of the
parameters βjv, which are known in the IRT literature as the difficulty parameters, is context
specific. In fact, in the educational context they are interpreted as the levels of difficulty of the
various test item categories. In the present context, βjv is interpreted as a measure of severity in
reaching category v for indicator j, in the sense that, with αj > 0, the probability that journal
i falls in category v or in a higher category is larger than the probability that it falls in one
of the previous categories if and only if ui >βjv. Consequently, these difficulty parameters are
in increasing order, i.e. βj1 <: : : < βj,s−1, for all j. For another interpretation of the model
parameters, suppose that the original indicators satisfy the linear model xij = γj + δjui + "ij,
where δj �= 0 and "ij is a zero-mean random variable distributed independently of ui with a
logistic distribution. Combining this linear model with the discretization rule (1) gives model
(2) with αj = δj and βjv = .qjv −γj/=δj.

According to assumption 3, the latent variables u1, : : : , un follow the the same discrete distri-
bution. Since both the support points ξ1, : : : , ξk and the corresponding probabilities π1, : : : , πk

are parameters to be estimated, this assumption avoids the need to specify a parametric distri-
bution for the latent variables. Thus, our model is semiparametric in nature; see Lindsay et al.
(1991) for a simpler semiparametric model for binary outcomes formulated along the same lines.

Assuming a discrete distribution for the latent variables is quite natural if the aim of the model
is to cluster journals, giving rise to a model-based clustering (Fraley and Raftery, 2002). In this
case, k may be fixed a priori, provided that the size of each cluster is not constrained in advance.
When not fixed a priori, k may be chosen through some statistical criterion, such as the Bayesian
information criterion BIC that was introduced by Schwarz (1978).

Assuming a discrete distribution for the latent variables makes sense even if we believe that
their distribution is continuous. In fact, the discrete distribution assumed is better seen as a
convenient approximation to the unknown continuous distribution, the quality of the approx-
imation increasing with k. In this regard, it has been established that even moderate values of k

may provide an adequate approximation and even a better fit with respect to alternative models
based on a parametric continuous distribution (Heckman and Singer, 1985; Lindsay et al., 1991).

By assumption 3 the latent variables u1, : : : , un are mutually independent, so the response
vectors y1, : : : , yn are also independent across sample units. This independence assumption may
be restrictive in some cases, e.g. when the discretized indicators yij are constructed by using as
cut-offs a set of sample quantiles, which necessarily depend on the joint distribution of the data.
However, such minor failures are unlikely to matter much, especially when the sample size n is
large. In contrast, relaxing the independence assumption would lead to a much more complex
model.

Given the above three assumptions, the model parameters are the support points ξh and the
corresponding probabilities πh, h = 1, : : : , k, the discriminant indices αj, j = 1, : : : , r, and the
difficulty parameters βjv, j = 1, : : : , r, v = 1, : : : , s − 1. However, because of the identifiability
constraints α1 =1 and β11 =0 and the fact that Σk

h=1 πh =1, the number of free parameters is

#par=k +k −1+ r −1+ r.s−1/−1=2k + rs−3: .3/

To make the model identifiable we can alternatively impose, as we do in our application, that the
latent distribution has zero mean and unit variance. This identifiability constraint is equivalent
to that directly expressed on the parameters (α1 =1, β11 =0), in the sense that the same maximum
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of the likelihood is reached under both constraints. However, fixing the mean and the variance
of the latent distribution makes the interpretation of the results easier and helps in comparing
results that are obtained under different model specifications, as will be clear in our application
(see in particular Section 4.4).

2.2. Extended item response theory models
In our application to the Italian VQR, the assumptions of the baseline IRT model may be too
restrictive. In this section we show how to relax these assumptions, while retaining the main
features of the proposed IRT model in terms of interpretability.

Local independence (assumption 1) is certainly restrictive, as some of the observed indicators
(in particular IF and IF5) are constructed starting from the same information and using a similar
method. Relaxing this assumption requires allowing for dependence between the indicators
even after conditioning on the latent journal impact. This in turn raises the issue of how to
model the conditional association between the indicators. For this aim, we adopt a Plackett
formulation (Plackett, 1965). Its main advantage is that the association between each pair of
indicators depends on only one parameter that has a straightforward interpretation and is the
analogue of the correlation coefficient for the bivariate normal distribution. Further, in the
resulting extended IRT model, the interpretation of the latent variables that was suggested at
the beginning of Section 2.1 does not change.

For each pair .j1, j2/ of discretized indicators, the Plackett association parameter corresponds
to the following global log-odds ratio (Douglas et al., 1991):

log
{

p.yij1 <v1, yij2 <v2|ui/p.yij1 �v1, yij2 �v2|ui/

p.yij1 <v1, yij2 �v2|ui/p.yij1 �v1, yij2 <v2|ui/

}
=τj1j2 , v1, v2 =1, : : : , s−1: .4/

Note that expression (4) does not depend on the specific categories v1 and v2 but only on the
pair of indicators that are involved. When τj1j2 is equal to 0, we have conditional independence
between the pair of indicators given the latent variable ui, so local independence holds when
τj1j2 =0 for all possible pairs .j1, j2/. Moreover, τj1j2 > 0 corresponds to a positive association
(as the first indicator increases, the second also tends to increase), whereas τj1j2 <0 corresponds
to a negative association. Testing the null hypothesis that τj1j2 = 0 against the alternative that
τj1j2 �=0 may be performed by using a standard likelihood ratio test, whose test statistic has an
asymptotic χ2.1/ distribution under the null hypothesis. It is clear that the result of this test, as
well as the results of testing all the other assumptions that were discussed in Section 2.1, may
depend on the chosen number of classes k. Moreover, relative to expression (3), the number
of additional parameters that are required by this extension is equal to the number of pairs
of responses for which the association parameter defined in expression (4) is not constrained
to be 0.

Another assumption that may be problematic is unidimensionality, which has already been
discussed at the beginning of Section 2.1. This assumption may be tested against multi-dimen-
sionality (see Bartolucci (2007), among others). In particular, given the number k of support
points, we can use a likelihood ratio test to compare the unidimensional model against a multi-
dimensional model. The multi-dimensional model may be formulated by assuming that for each
journal i there is a latent vector ui = .ui1, : : : , uit/ of t > 1 (instead of a single latent variable ui)
such that

log
{

p.yij �v|ui/

p.yij <v|ui/

}
=αj.uidj −βjv/, v=1, : : : , s−1,
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where the index dj denotes the latent variable measured by indicator j and ranges from 1 to t.
The latent vector ui is still assumed to have a discrete distribution with support points ξ1, : : : ,ξk

and mass probabilities π1, : : : , πk. Considering the identifiability constraints, the number of
additional free parameters that are required by this extension is equal to .k − 2/.t − 1/, which
therefore makes sense only when k > 2. Further details on this extension may be found in
Bacci et al. (2014).

Finally, the assumption that all latent variables ui (or vectors of latent variables ui in the multi-
dimensional case) have the same distribution may be relaxed by introducing a vector of covariates
wi, for i = 1, : : : , n. In the unidimensional case, there is no loss of generality in reordering the
support points of the latent distribution so that ξ1 <: : :<ξk. We then assume a parameterization
of the conditional distribution of each latent variable ui given wi based on cumulative logits:

log
{

p.ui > ξh|wi/

p.ui � ξh|wi/

}
= log

(
πh+1,i +: : :+πki

π1i +: : :+πhi

)
=φh +w′

iψ, h=1, : : : , k −1, .5/

where πhi = p.ui = ξh|wi/, φ1, : : : , φk−1 are ordered intercepts and ψ is a vector of regression
coefficients. In practice, this is a proportional odds model (McCullagh, 1980) for the probability
of belonging to the different latent classes. Unlike the multinomial logit parameterization, the
vector ψ is the same for each latent class h, making the interpretation easier. Moreover, the ad-
ditional number of free parameters due to the inclusion of covariates in expression (5) is simply
equal to the dimension of the vector wi.

2.3. Manifest and posterior distributions
As already mentioned, our model is of the IRT type. In fact, it may be seen as a finite mixture
version of the graded response model. Its finite mixture nature derives from considering the
distribution of the latent variables as discrete.

Under the basic assumptions 1–3 in Section 2.1, the manifest distribution of yi may be ex-
pressed as

p.yi/=
k∑

h=1
πh

r∏
j=1

λj|h.yij/: .6/

This manifest distribution is key for maximum likelihood estimation of the model parameters.
The posterior distribution of the latent variable ui, namely its conditional distribution given the
vector yi of observed indicators, has probability mass function

p.ui = ξh|yi/=
πh

r∏
j=1

λj|h.yij/

p.yi/
: .7/

This is used to assign every sample unit (i.e. journal) to a given latent class or cluster. Specifically,
once the model has been estimated, unit i is assigned to latent class h if

h=arg max
g=1,:::,k

p.ui = ξg| yi/: .8/

Moreover, we can predict the value of ui by using the mean of the posterior distribution of ui,
or posterior mean, defined as

ûi =
k∑

h=1
ξh p.ui = ξh|yi/: .9/
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It is worth noting that posterior probabilities also provide a measure of the classification
error when a journal is assigned to a particular latent class by using rule (8). In particular,
the amount of classification error for journal i may be directly measured by the distance of
maxg=1,:::,kp.ui = ξg|yi/ from 1. Moreover, even if the latent journal impact is modelled as
discrete, its predicted value computed by equation (9) ranges on a continuous scale. To clarify
this point, let i be a journal for which we do not have a ‘neat’ assignment, i.e. for this journal
there are two latent classes, say the first two, with posterior probabilities that are significantly
greater than 0. Then, the predicted value ûi will be intermediate between the support points ξ1
and ξ2, closer to ξ1 when p.ui = ξ1|yi/>p.ui = ξ2|yi/ and closer to ξ2 when the opposite is true.
This is of particular interest when we regard the discrete distribution assumed for the latent
variables as an approximation to a continuous distribution.

When there are missing data, we compute the manifest distribution of the discretized indica-
tors as

p.yi/=
k∑

h=1
πh

r∏
j=1

mij=0

λj|h.yij/, .10/

where mij is a binary indicator equal to 1 if yij is missing and to 0 if it is observed. This amounts
to assuming that the data are missing at random in the sense of Little and Rubin (2002). In
our context, missingness at random implies that the event that the value of an indicator—say
IF5—is missing may be predicted by the observable indicators, in our case the h-index, and the
available covariates. We consider this assumption to be sufficiently realistic because, as discussed
in Section 4, missing values of certain indicators tend to be observed for journals with a lower
level of the h-index or for specific covariate values.

The manifest distribution (10) may be simply modified to take into account failure of some of
the model assumptions, as discussed in Section 2.2. For example, when we allow for conditional
dependence between a pair .j1, j2/ of indicators, the manifest distribution becomes

p.yi/=
k∑

h=1
πh λj1j2|h.yij1 , yij2/

r∏
j=1

j �=j1,j �=j2

λj|h.yij/, .11/

where λj1j2|h.yij1 , yij2/ refers to the conditional (bivariate) distribution of .yij1 , yij2/ given ui =
ξh. This distribution depends on the conditional (univariate) probabilities λj1|h.yij1/ and
λj2|h.yij2/ and the association parameter τj1j2 that is defined in expression (4). A similar
extension is available for the posterior distribution of ui. More complex expressions arise when
more than one pair of responses are allowed to be conditionally associated, in which case we
may use the rules in Colombi and Forcina (2001), or when some indicators have missing values.

Finally, in the multi-dimensional case the above expressions for the manifest and posterior
distributions remain unchanged, because we essentially have the same finite mixture model,
except that a vector of supports points ξh is now associated with each latent class h= 1, : : : , k.
Moreover, when the distribution of the latent variables depends on covariates, we only need
to replace the probabilities πh with unit-specific probabilities πhi. Given the parameters φh and
ψ, these probabilities are obtained by simply inverting expression (5), and the manifest and
posterior distributions are denoted by p.yi|wi/ and p.ui|yi, wi/ respectively.

3. Likelihood inference

Given n vectors of discrete indicators y1, : : : , yn, one for each journal, inference is based on the
sample log-likelihood
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l.θ/=
n∑

i=1
log{p.yi/},

where θ is the vector containing all the model parameters and p.yi/ is the manifest probability
of yi, which depends on θ and is computed according to expression (6), or its extended version
which depends on the specific model formulation. When unit-specific covariates collected in the
vector wi are available, we substitute p.yi/ with p.yi|wi/ in the above expression for l.θ/.

To maximize l.θ/ with respect to θ, we use the version of the EM algorithm (Dempster et al.,
1977) that was described in Bacci et al. (2014), to which we refer for details. This implementation
is available in the R package MultiLCIRT (available from http://CRAN.R-project.org/
package=MultiLCIRT) that, in its current version, also addresses multi-dimensionality and
allows for covariates. We also implemented an R extension of some of the functions that are
included in this package to deal with the model that allows for local dependence; the extended
functions are available from

http://wileyonlinelibrary.com/journal/rss-datasets

In the remainder of this section we first provide a brief description of the EM algorithm.
Then, we address the problem of model selection.

3.1. Estimation algorithm
The EM algorithm is based on the complete-data log-likelihood. For the baseline IRT model
that was described in Section 2.1, this log-likelihood is equal to

lÅ.θ/=
k∑

h=1

n∑
i=1

zhi log
{

πh

r∏
j=1

λj|h.yij/

}
, .12/

where zhi is an (unobserved) binary indicator equal to 1 if ui = ξh and to 0 otherwise. Slightly
more complex versions of this expression are used for the complete-data log-likelihood of the
extended IRT models that were described in Section 2.2, taking into account the results that
were derived in Section 2.3.

The EM algorithm alternates between the following two steps until convergence.

(a) E-step: compute the conditional expected value of lÅ.θ/ given the observed data and the
current value of the parameters.

(b) M-step: maximize the above expected value with respect to θ to obtain an updated estim-
ate of the parameter vector.

The E-step computes the expected value of zhi given yi (and possibly wi) for every h and
i through the posterior probabilities, defined in expression (7) for the initial model, and then
substitutes these expected values in equation (12). At the M-step, the resulting function is
maximized with respect to θ. When the distribution of the latent variable is the same for i =
1, : : : , n, the existence of a closed form solution for the probabilities πh makes the maximization
problem easier, whereas updating the other parameters requires only simple iterative algorithms.
In contrast, with unit-specific covariates we need an iterative algorithm also to update the
parameters in expression (5).

A crucial point is the initialization of the EM algorithm, as the likelihood function may
present several local maxima. For the IRT model that was defined in Section 2.1, we rely on two
different types of initialization: deterministic and random, both based on guessing initial values
of the class weights πh and the conditional response probabilities λj|h.v/. In the deterministic
initialization, we set πh = 1=k, h = 1, : : : , k, and choose λj|h.v/ so that, for j = 1, : : : , r, these
probabilities are increasingly ordered in h for v > .s − 1/=2 and are decreasingly ordered in h
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for v < .s−1/=2, with h=1, : : : , k and v=0, : : : , s−1. This rule guarantees that the adding-up
constraint Σs−1

v=0 λj|h.v/=1 is satisfied for all h and j. In the random initialization, first we draw
every πh and λj|h.v/ from a uniform distribution between 0 and 1; then we normalize them in a
suitable way. Similar rules are implemented when an extended model, formulated as described
in Section 2.2, is adopted.

3.2. Model selection
To apply the ranking strategy proposed, we must select the number k of support points (or
latent classes) of the distribution of ui. Of course, this is not needed when this number is fixed a
priori. Among the model selection criteria that are available in the literature on finite mixture and
latent class models (McLachlan and Peel (2000), chapter 6), we suggest the Bayesian information
criterion (BIC) of Schwarz (1978). This criterion is based on minimization of the index

BIC=−2 l.θ̂/+ log.n/#par, .13/

where θ̂ is the maximum likelihood estimate of θ under the model of interest and #par is
the associated number of parameters, which is defined in equation (3) for the baseline IRT
model. The BIC aims at selecting the model that is the best compromise between goodness of
fit (measured by the log-likelihood) and complexity (measured by the number of parameters).

In practice, the BIC is similar to the Akaike information criterion (AIC) of Akaike (1973),
which is based on the index

AIC=−2 l.θ̂/+2 #par: .14/

The main difference of the AIC with respect to the BIC is the smaller penalty for lack of
parsimony when log.n/>2. Consequently, the AIC tends to select larger models with respect to
the BIC, and for this reason the latter is usually preferred. Moreover, many simulation studies
(e.g. Dias (2006)) show that the BIC tends to outperform the AIC in selecting the correct number
of classes of a latent class model.

A different principle is behind another selection criterion, the normalized entropy criterion
(NEC) that was proposed by Celeux and Soromenho (1996), which is specifically applied to the
choice of the number of latent classes. This criterion takes into account the separation between
the latent classes or, equivalently, the quality of the classification. For k �2, the NEC is based
on minimization of the index

NEC=−

n∑
i=1

k∑
h=1

p̂.ui = ξh|yi/ log{p̂.ui = ξh|yi/}

l.θ̂/− l̂1
, .15/

where the numerator is an entropy measure based on the posterior probabilities of the latent
classes and l̂1 is the log-likelihood of the model with only one latent class, i.e. the independence
model. For k =1, we conventionally set NEC=1; see also Biernacki et al. (1999). The use of the
NEC typically leads to selecting a very small number of latent classes that are strongly separated.

Finally, in selecting a suitable model for the analysis of the available data, we suggest beginning
from the choice of the number of latent classes, k, under the initial assumptions that were
described in Section 2.1. Then, using the same model selection criterion, say BIC, we suggest
selecting some of the possible extensions that were described in Section 2.2.

4. Empirical application

We illustrate our approach by considering the problem that is faced in the Italian VQR of ranking
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the journals that are considered relevant for a given scientific area. In most areas covered by
the VQR, journal papers were the main type of research products submitted for evaluation. For
these areas, an important input to the evaluation process was the ranking of the journals where
these papers were published.

4.1. The Italian research assessment exercise
The VQR involved all state universities, all private universities granting publicly recognized
academic degrees and several public research centres. Researchers who were affiliated to these
institutions were asked to submit for evaluation various research products (i.e. journal papers,
books, book chapters and patents) produced during the period 2004–2010. The typical num-
ber of products submitted by each researcher was six for public research centres and three for
universities (under the convention that half of the time of the academic staff is devoted to teach-
ing). The evaluation process assigned each product to one of six merit classes, namely ‘excellent’
(corresponding to ‘the highest 20% of the quality ranking shared by the international scientific
community’), ‘good’ (corresponding to the top 20–40% segment), ‘acceptable’ (corresponding
to the top 40–50% segment), ‘limited’ (corresponding to the lowest 50%), ‘not assessable’ and
‘fraud or plagiarism’. On the basis of its classification, each product received a numerical score
equal to 1 for excellent, 0.80 for good, 0.50 for acceptable, 0 for limited, −1 for not assessable
and −2 for fraud or plagiarism. Finally, participating institutions (and their departments) were
ranked on the basis of average score received by the products that were submitted by their
researchers. Individual researchers were not ranked.

In our application, we focus on a subset of the journals that were considered relevant for
the area economics and statistics, whose products were evaluated by one of the groups of ex-
perts formed by Agenzia di Valutazione del Sistema Universitario e della Ricerca: GEV 13 as
the area economics and statistics is 13 in the Italian classification of scientific areas. Journal
papers in this area were evaluated via a bibliometric analysis based on a preliminary classifi-
cation of the journals where they had been published and the number of citations that they
had received. For a random sample of journal papers, the bibliometric analysis was com-
plemented by informed peer review. (We refer to Bertocchi et al. (2014) for more detail on
the procedures that were adopted by GEV 13.) To avoid different rankings across subareas,
GEV 13 associated each journal with one and only one of its four subareas: business, manage-
ment and finance; economics; economic history and history of economic thought; statistics and
financial mathematics. For simplicity we focus on the set of n=445 journals that were associated
with the subarea statistics and financial mathematics.

Some of the journals are listed in Tables 1 and 2, along with the four bibliometric indicators
that we used. The full data set is available from http://www.anvur.org/index.php?opti
on=com content&view=article&id=92&Itemid=390&lang=it.

4.2. Data
To be as close as possible to the actual problems that are faced in the VQR, we base our ranking on
exactly the same bibliometric indicators as used by GEV 13, namely IF, IF5, AIS and the h-index.

GEV 13 obtained IF, IF5 and AIS from ISI–Thomson Reuters with reference to the year
2010 and collected the h-index from Google Scholar in April 2012 with reference to the period
2004–2010. Whereas IF, IF5 and AIS have missing values for some journals, the h-index is
available for all journals considered by GEV 13. Note that IF, IF5 and AIS are based on the
particular selection of journals by one specific commercial supplier and measure visibility in
recent years (2 years for IF and 5 years for IF5 and AIS), not lifetime impact. In addition,
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Table 1. List of journals assigned to the third class under model1†

Title IF IF5 AIS h-index post3 post4 Predicted value

Model 1 Model 2

Advances in Applied Probability 0.720 0.967 0.980 29 0.9591 0.0362 0.9036 0.4352
Algorithmica 1.239 1.227 0.721 34 0.9157 0.0828 0.9398 0.6275
American Mathematical Monthly —‡ —‡ —‡ 19 0.4871 0.1026 0.5500 0.3358
Annales de l’Institut Henri 0.759 0.900 1.083 18 0.5712 0.0007 0.4642 0.2881

Poincaré—Probabilités et Statistiques
Annals of Operations Research 0.675 1.223 0.741 48 0.9641 0.0301 0.8981 0.6283
Applied Mathematics & Optimization 0.881 1.061 0.822 20 0.9188 0.0034 0.8090 0.6270
Applied Mathematics Letters 1.155 1.127 0.481 41 0.8649 0.0118 0.7704 0.5974
Applied Psychological Measurement 1.137 1.497 0.854 24 0.9360 0.0630 0.9263 0.6265
Biometrical Journal 1.438 1.273 0.822 24 0.9392 0.0284 0.8711 0.6278
British Journal of Mathematical 1.419 1.413 0.920 21 0.9304 0.0691 0.9309 0.6254

and Statistical Psychology
Canadian Journal of Statistics– 0.689 1.175 1.163 20 0.5395 0.0007 0.4331 0.6217

Revue Canadienne de Statistique
Chaos, Solitons & Fractals 1.268 1.729 0.538 83 0.8984 0.1009 0.9533 0.7165
Combinatorics Probability & 0.990 1.008 1.465 28 0.7059 0.2935 1.0894 0.6305

Computing
Complexity 1.367 1.190 0.528 43 0.9668 0.0165 0.8780 0.6260
Computational Optimization 1.274 1.470 0.916 34 0.6216 0.3784 1.1501 0.6365

and Applications
Computational Statistics & Data 1.089 1.363 0.754 55 0.5562 0.4437 1.1963 0.6378

Analysis
Demographic Research 1.531 1.582 0.708 38 0.8730 0.1267 0.9718 0.6722
Differential and Integral Equations —‡ —‡ —‡ 18 0.4595 0.0770 0.4792 0.3070
Discrete Event Dynamic Systems 0.872 1.011 0.719 24 0.5196 0.0004 0.4132 0.6020
Econometric Theory 1.015 1.264 1.541 40 0.7217 0.2776 1.0781 0.6877
Econometrics Journal 0.691 1.166 1.253 30 0.8656 0.1312 0.9722 0.6540
Educational and Psychological 0.831 1.434 0.658 34 0.8402 0.1573 0.9914 0.6269

Measurement
Electronic Journal of Probability 0.946 1.044 1.343 13 0.5582 0.0052 0.4592 0.6085
Electronic Journal of Statistics 1.025 1.208 1.411 21 0.9074 0.0150 0.8173 0.6221
Environmental and Ecological 1.645 1.641 0.872 22 0.9372 0.0622 0.9260 0.6486

Statistics
European Journal of Ageing: Social, 1.119 —‡ —‡ 24 0.7299 0.0380 0.6822 0.5937

Behavioural and Health Perspectives
European Journal of Population 1.049 1.966 1.088 27 0.6473 0.3518 1.1303 0.7252
Extremes 1.053 —‡ —‡ 17 0.7830 0.0562 0.7650 0.4911
IEEE Transactions on Reliability 1.288 1.698 0.701 38 0.8012 0.1985 1.0227 0.7716
IIE Transactions 1.186 1.535 0.777 42 0.6875 0.3125 1.1034 0.8038
IMA Journal of Management 0.608 1.980 1.006 16 0.7544 0.2377 1.0430 0.7232

Mathematics
Informs Journal on Computing 1.172 1.450 0.903 34 0.5562 0.4437 1.1963 0.6378
Insurance: Mathematics and 1.178 1.451 0.780 41 0.6397 0.3603 1.1373 0.6351

Economics
International Migration 0.556 1.047 0.520 33 0.6853 0.0024 0.5786 0.6130
International Statistical Review 0.860 0.852 0.625 20 0.5492 0.0004 0.4422 0.3074
Journal of Agricultural, Biological 0.722 1.220 0.744 20 0.9299 0.0044 0.8214 0.6173

and Environmental Statistics
Journal of Applied Probability 0.768 0.866 0.767 29 0.9591 0.0362 0.9036 0.3814
Journal of Biopharmaceutical 1.073 1.285 0.602 26 0.9769 0.0124 0.8809 0.6001

Statistics
Journal of Biosocial Science 1.217 1.330 0.454 25 0.8981 0.0078 0.7961 0.5070

(continued)
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Table 1 (continued )

Title IF IF5 AIS h-index post3 post4 Predicted value

Model 1 Model 2

Journal of Chemometrics 1.377 1.858 0.539 29 0.8773 0.1221 0.9684 0.6416
Journal of Classification 1.100 1.225 0.704 18 0.7908 0.0015 0.6804 0.5061
Journal of Computational 1.030 1.299 0.571 51 0.8556 0.1440 0.9840 0.6261

and Applied Mathematics
Journal of Empirical Finance 0.807 —‡ —‡ 46 0.7506 0.1375 0.8702 0.6368
Journal of Ethnic and 1.041 1.424 0.646 45 0.8773 0.1221 0.9684 0.6239

Migration Studies
Journal of Financial Econometrics 0.846 —‡ —‡ 36 0.7148 0.2298 0.9909 0.6808
Journal of Forecasting 0.655 0.866 0.525 28 0.9446 0.0073 0.8407 0.3219
Journal of Global Optimization 1.160 1.433 0.698 38 0.8688 0.1307 0.9746 0.6260
Journal of Mathematical 1.174 1.345 0.718 66 0.8556 0.1440 0.9840 0.6261

Analysis and Applications
Journal of Mathematical Psychology 1.582 1.833 1.017 27 0.9304 0.0691 0.9309 0.6853
Journal of Mathematical Sciences —‡ —‡ —‡ 23 0.4595 0.0770 0.4792 0.5834
Journal of Multivariate Analysis 1.010 1.180 0.917 37 0.9380 0.0599 0.9229 0.6351
Journal of the Operational 1.102 1.481 0.603 46 0.8556 0.1440 0.9840 0.6261

Research Society
Journal of Optimization Theory 1.011 1.209 0.706 36 0.9623 0.0270 0.8913 0.6294

and Applications
Journal of Quality Technology 1.377 2.132 1.026 26 0.5081 0.4914 1.2295 0.9763
Journal of the Royal Statistical 0.645 1.284 0.961 29 0.5689 0.4309 1.1870 0.6283

Society Series C—Applied Statistics
Journal of Time Series Analysis 0.678 0.888 0.871 25 0.9188 0.0034 0.8090 0.4481
Lifetime Data Analysis 0.873 1.014 0.857 18 0.8982 0.0026 0.7873 0.5917
Networks 0.991 1.167 0.728 32 0.9157 0.0828 0.9398 0.6283
Networks and Heterogeneous 0.909 1.381 0.836 17 0.9406 0.0253 0.8672 0.5422

Media
Nonlinear Analysis, Theory, 1.279 1.409 0.565 44 0.8773 0.1221 0.9684 0.6239

Methods & Applications
Operations Research Letters 0.743 1.007 0.661 34 0.9446 0.0073 0.8407 0.6283
Operations Research—Spektrum 2.030 1.864 0.714 33 0.8474 0.1523 0.9901 0.6772
Pharmaceutical Statistics 1.630 1.467 0.729 19 0.9394 0.0599 0.9243 0.4037
Population Bulletin 1.182 1.741 1.007 6 0.9381 0.0426 0.8938 0.6990
Population Studies 0.974 1.723 0.902 28 0.5949 0.4051 1.1689 0.7101
Population, Space and Place 1.429 1.500 0.581 30 0.8730 0.1267 0.9718 0.7165
Probabilistic Engineering 1.252 1.306 0.721 28 0.6397 0.3603 1.1373 0.5938

Mechanics
Probability in the Engineering 0.971 0.966 0.754 20 0.9521 0.0051 0.8444 0.3669

and Informational Sciences
Quantitative Finance 0.590 0.968 0.687 38 0.9276 0.0056 0.8212 0.3806
Queueing Systems 0.802 1.207 0.855 28 0.9538 0.0421 0.9084 0.6270
Set-valued Analysis 1.418 1.120 0.860 19 0.9147 0.0126 0.8204 0.5736
Social Indicators Research 1.000 1.239 0.409 48 0.8240 0.0080 0.7238 0.5838
Statistical Modelling 0.714 1.021 0.756 20 0.8941 0.0024 0.7832 0.6271
Statistica Sinica 0.956 1.020 0.969 32 0.9549 0.0276 0.8851 0.6274
Stochastic Environmental Research 1.777 1.700 0.460 22 0.9279 0.0086 0.8266 0.6274

and Risk Assessment
Studies in Family Planning 1.778 1.818 0.698 27 0.9702 0.0262 0.8976 0.6401
System Dynamics Review 0.667 1.586 0.506 26 0.9211 0.0120 0.8258 0.6445
Systems & Control Letters 1.412 1.768 1.022 54 0.5789 0.4211 1.1803 0.9193
Test 1.036 1.108 1.176 18 0.7323 0.0018 0.6237 0.5373

†post3 and post4 stand for the posterior probability that a certain journal is in the third and in the fourth class
respectively.
‡Not applicable.
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Table 2. List of journals assigned to the fourth class under model 1†

Title IF IF5 AIS h-index post3 post4 Predicted value

Model 1 Model 2

Ageing and Society 1.309 1.900 0.559 39 0.3858 0.6140 1.3164 0.7253
American Statistician 0.981 1.322 0.924 29 0.4994 0.5006 1.2364 0.6282
Annals of Applied Probability 1.120 1.447 1.595 44 0.2143 0.7857 1.4380 0.6972
Annals of Applied Statistics 1.746 2.443 2.072 28 0.0211 0.9789 1.5746 0.9896
Annals of Probability 1.470 1.665 1.996 45 0.1388 0.8612 1.4914 0.9826
Annals of Statistics 2.940 3.274 3.260 76 0.0061 0.9939 1.5851 1.0016
Bayesian Analysis 1.213 2.756 2.237 25 0.3744 0.6245 1.3230 0.9813
Bernoulli 1.000 1.284 1.577 33 0.2675 0.7325 1.4003 0.6817
Biometrics 1.764 2.204 1.594 47 0.0090 0.9910 1.5831 1.0014
Biometrika 1.833 2.352 2.393 47 0.0090 0.9910 1.5831 1.0014
Biostatistics 2.769 3.303 2.312 45 0.0134 0.9866 1.5800 1.0012
Chaos, an Interdisciplinary Journal 2.081 2.134 1.082 37 0.0576 0.9424 1.5487 0.9997

of Nonlinear Science
Chemometrics and Intelligent 2.222 2.415 0.645 44 0.2109 0.7891 1.4404 0.9752

Laboratory Systems,
Computational Biology and Bioinfor- 1.664 2.171 0.950 33 0.0598 0.9402 1.5472 0.9924

matics, IEEE, ACM Transactions
Computers & Operations Research 1.769 2.250 0.886 75 0.0620 0.9380 1.5457 0.9923
Decision Support Systems 2.135 2.573 0.708 68 0.2109 0.7891 1.4404 0.9752
Demography 2.465 3.817 2.207 57 0.0061 0.9939 1.5851 1.0016
Ecological Modelling 1.769 2.439 0.753 61 0.0620 0.9380 1.5457 0.9923
Econometric Reviews 1.088 1.400 1.346 31 0.1722 0.8278 1.4677 0.6553
European Journal of Operational Research 2.159 2.513 0.886 108 0.0620 0.9380 1.5457 0.9923
Finance and Stochastics 1.326 1.870 2.016 43 0.0310 0.9690 1.5676 0.9717
Fuzzy Sets and Systems 1.875 2.250 0.591 67 0.2109 0.7891 1.4404 0.9752
Games and Economic Behavior 1.017 1.503 1.817 63 0.1722 0.8278 1.4677 0.9826
International Family Planning Perspectives 2.118 2.575 0.902 30 0.0446 0.9554 1.5580 0.9951
International Migration Review 1.188 2.145 1.236 47 0.0519 0.9481 1.5528 0.9931
Journal of the American Statistical 2.063 3.439 3.280 73 0.0061 0.9939 1.5851 1.0016

Association
Journal of Applied Econometrics 1.341 2.268 2.172 55 0.0179 0.9821 1.5768 1.0011
Journal of Business & Economic Statistics 1.693 2.433 2.804 50 0.0077 0.9923 1.5840 1.0015
Journal of Computational Biology 1.600 2.033 0.907 45 0.0576 0.9424 1.5487 0.9939
Journal of Computational and 1.206 1.848 1.576 39 0.2143 0.7857 1.4380 0.9793

Graphical Statistics
Journal of Econometrics 1.815 2.823 3.016 91 0.0108 0.9892 1.5818 1.0013
Journal of Educational and 1.644 2.474 1.862 27 0.0840 0.9160 1.5301 0.9965

Behavioral Statistics
Journal of Risk and Uncertainty 1.558 1.953 1.317 36 0.0134 0.9866 1.5800 0.8382
Journal of the Royal Statistical Society, 2.570 2.527 1.822 40 0.0090 0.9910 1.5831 1.0014

Series A—Statistics in Society
Journal of the Royal Statistical Society, 3.500 5.086 4.822 53 0.0090 0.9910 1.5831 1.0014

Series B—Statistical Methodology
Journal of Statistical Mechanics: 1.822 2.169 1.088 39 0.0778 0.9222 1.5345 0.9984

Theory and Experiment
Journal of Statistical Physics 1.447 1.534 0.950 47 0.4358 0.5642 1.2814 0.8683
Journal of Statistical Software 2.647 3.654 1.735 36 0.0100 0.9900 1.5824 1.0014
Mathematical Finance 1.052 1.801 1.892 47 0.2143 0.7857 1.4380 0.9793
Mathematical Programming 1.970 2.781 1.951 55 0.0108 0.9892 1.5818 1.0013
Mathematics of Computation 1.382 1.565 1.276 42 0.1137 0.8863 1.5091 0.9508
Mathematics of Operations Research 1.145 1.478 1.423 34 0.1722 0.8278 1.4677 0.6553
Multivariate Behavioral Research 1.290 3.295 2.062 28 0.0143 0.9857 1.5794 0.9947

(continued)
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Table 2 (continued )

Title IF IF5 AIS h-index post3 post4 Predicted value

Model 1 Model 2

Nonlinear Analysis Real World 2.138 2.039 0.625 40 0.2488 0.7512 1.4136 0.9718
Applications

Operations Research 2.000 2.708 1.928 61 0.0061 0.9939 1.5851 1.0016
Oxford Bulletin of Economics and 1.182 1.622 1.225 46 0.1960 0.8040 1.4509 0.9309

Statistics
Pattern Recognition Letters 1.235 1.897 0.696 67 0.3073 0.6926 1.3721 0.7517
Perspectives on Sexual and 2.075 3.842 1.367 35 0.0104 0.9896 1.5821 0.9993

Reproductive Health
Population and Development Review 1.507 2.381 1.362 43 0.0077 0.9923 1.5840 1.0001
Probability Theory and Related Fields 1.590 1.625 1.985 40 0.1588 0.8412 1.4772 0.9517
Psychometrika 1.778 1.804 1.181 28 0.4358 0.5642 1.2814 0.7058
Reliability Engineering & System Safety 1.899 2.023 0.660 52 0.2109 0.7891 1.4404 0.9752
Risk Analysis 2.096 2.344 0.788 57 0.0446 0.9554 1.5580 0.9951
Scandinavian Journal of Statistics 0.835 1.326 1.354 28 0.2094 0.7905 1.4414 0.6292
SIAM Journal on Applied Mathematics 1.529 1.824 1.062 37 0.4358 0.5642 1.2814 0.8982
SIAM Journal on Control and Optimization 1.297 1.666 1.270 39 0.1421 0.8579 1.4890 0.9508
SIAM Journal on Imaging Sciences 4.500 4.500 2.661 16 0.2197 0.7801 1.4339 0.9691
SIAM Journal on Mathematical Analysis 1.797 1.744 1.454 36 0.1137 0.8863 1.5091 0.8982
SIAM Journal on Optimization 2.091 2.566 1.686 47 0.0100 0.9900 1.5824 1.0014
Sociological Methods & Research 2.000 2.448 1.722 30 0.0077 0.9923 1.5840 1.0015
Stata Journal 2.000 3.142 1.964 37 0.0104 0.9896 1.5821 1.0013
Statistical Applications in Genetics 1.842 2.182 1.100 30 0.0778 0.9222 1.5345 0.9984

and Molecular Biology
Statistical Methods in Medical Research 1.768 2.541 1.535 29 0.0100 0.9900 1.5824 0.9955
Statistical Science 2.480 3.504 3.383 41 0.0077 0.9923 1.5840 1.0015
Statistics and Computing 1.851 2.339 1.838 31 0.0100 0.9900 1.5824 1.0014
Statistics in Medicine 2.328 2.334 1.330 62 0.0077 0.9923 1.5840 1.0001
Stochastic Processes and Their 0.951 1.381 1.368 38 0.2094 0.7905 1.4414 0.6505

Applications
Structural Equation Modeling 2.738 5.611 2.633 40 0.0134 0.9866 1.5800 1.0012
Technometrics 1.560 1.985 1.424 34 0.0061 0.9939 1.5851 0.8982

†post3 and post4 stand for the posterior probability that a certain journal is in the third and in the fourth class
respectively.

the selection of journals by ISI–Thomson Reuters is not completely transparent and does not
follow quality criteria alone. In contrast, the h-index is based on a much larger but also much
more heterogeneous set of indexed sources, also including books, book chapters and publicly
available conference proceedings. Although the h-index may better measure the impact of a
journal, it does favour older journals.

Table 3 shows descriptive statistics for our r =4 indicators. Note that IF is available for only
56.2% of the journals and IF5 and AIS for only 47.4%, whereas the h-index is always available.
Also note the lower mean h-index for journals with IF missing compared with those with IF5
and AIS missing. All four indicators are available for a subset of 211 journals. For this subset of
journals Table 3 shows also the mean, the variance, the index of skewness, the quartiles and the
deciles of the available indicators. Fig. 1 presents their distribution and their scatter plot matrix.
In general, we note large differences between the distribution of the h-index for ISI–Thomson
Reuters and non-ISI–Thomson Reuters journals, suggesting that the h-index, together with the
covariates that are included in the data set, may be a good predictor of the probability that
another indicator is missing for a certain journal.
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Table 3. Descriptive statistics for the indicators observed

Results for the following indicators:

IF IF5 AIS h-index

Missing values (%) 43.8 52.6 52.6 0
Mean 1.056 1.472 0.946 19.766
Mean (given IF missing) — — — 8.446
Mean (given IF5 or AIS missing) 0.492 — — 9.509
Variance 0.418 0.751 0.480 267.585
Skewness index 1.325 1.526 1.938 1.575

Quartiles
1st 0.586 0.840 0.506 7.0
2nd 0.954 1.284 0.721 14.0
3rd 1.381 1.867 1.203 28.0

Deciles
1st 0.370 0.590 0.313 4.0
2nd 0.521 0.766 0.454 6.0
3rd 0.643 0.967 0.553 9.0
4th 0.754 1.108 0.660 12.0
5th 0.954 1.284 0.721 14.0
6th 1.088 1.467 0.871 19.0
7th 1.257 1.741 1.026 24.0
8th 1.561 2.132 1.362 32.0
9th 1.906 2.513 1.892 42.6

As for the covariates, we include the age of each journal (i.e. the number of years since the
journal was first published), its language and the country of the publisher. For age, we consider
six classes (1–3, 4–6, 7–10, 11–20, 21–40 and 41 or more years), for language we distinguish
only between English and other languages, and for the country of the publisher we consider
three categories: one for the USA (USA), one for the UK, Germany or the Netherlands (UK,
D, NL), and one for all other countries (other). Table 4 shows how the distribution of the four
indicators depends on these covariates. As expected, the percentage of missing values of IF,
IF5 and AIS is much higher for more recent than for older journals. The mean value of the
available indicators does not show a clear pattern but tends to be lower for journals in the age
class 4–6 years. In this regard note that IF, IF5 and AIS are available for only two of the 17
journals in the first age category (1–3 years), so, the exceptionally high value of the mean of
these indicators is better regarded as an anomaly. The pattern for the h-index shows instead
a clear tendency for this indicator to increase with the age of a journal. Another clear dif-
ference also emerges in connection with language, as English journals have on average much
higher values of all indicators compared with journals in other languages. The percentage of
missing values is also much higher for this second category. Similarly, for journals that are
published in the USA, the UK, Germany or the Netherlands we observe a smaller percent-
age of missing values and a higher mean for all indicators compared with journals that are
published in other countries. However the comparison between journals that are published
in the USA and those published in the UK, Germany or the Netherlands is not so clear, as
the first perform better in terms of IF, IF5 and AIS, but perform a little worse in terms of
h-index.
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Fig. 1. Scatter plot of the indicators observed: (a) IF; (b) IF5; (c) AIS; (d) h-index

4.3. Model fitting
As discussed at the beginning of Section 2, the first step of our strategy consists of discretizing
the indicators observed. We present two alternative types of discretization: the first uses as
cut-offs the sample quartiles (s=4); the second is based on fixed cut-offs giving s=5 categories.
In the latter case, the cut-offs are (0.50, 0.75, 1.00, 1.50) for IF and AIS, (0.75, 1.00, 1.50, 2.00)
for IF5 and (5, 10, 20, 30) for the h-index. To avoid categories containing too few journals, these
sets of cut-offs are not equally spaced, i.e. the relationship between the value of the discretized
indicators yij and the cut-offs qjv is not restricted to be linear.

Given the discretized indicators yij, to select an appropriate model for our data we proceed
as discussed in Section 3.2. First we choose the number k of latent classes for the baseline
IRT model which assumes local independence, unidimensionality and no covariates. To avoid
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Table 4. Descriptive statistics for the indicators observed given the available covariates

Covariate Category Number Results for the following indicators:

IF IF5 AIS h-index

Age (years) 1–3 17 Missing values (%) 88.2 88.2 88.2 0
Mean 2.487 2.487 1.586 5.412

4–6 43 Missing values (%) 74.4 79.1 79.1 0
Mean 0.791 1.324 0.905 9.605

7–10 50 Missing values (%) 66.0 78.0 78.0 0
Mean 1.112 1.731 0.903 13.680

11–20 112 Missing values (%) 48.2 59.8 59.8 0
Mean 1.082 1.516 0.991 18.500

21–40 138 Missing values (%) 26.8 36.2 36.2 0
Mean 0.982 1.362 0.834 25.428

� 41 85 Missing values (%) 28.2 34.1 34.1 0
Mean 1.137 1.549 1.077 23.835

Language English 430 Missing values (%) 42.8 51.2 51.2 0
Mean 1.065 1.475 0.949 20.186

Other 15 Missing values (%) 73.3 93.3 93.3 0
Mean 0.490 0.992 0.250 7.733

Country USA 130 Missing values (%) 27.7 31.5 31.5 0
Mean 1.286 1.694 1.159 25.185

UK, D, NL 143 Missing values (%) 27.3 36.4 36.4 0
Mean 1.091 1.483 0.886 27.161

Other 172 Missing values (%) 69.8 82.0 82.0 0
Mean 0.568 0.804 0.509 9.523

Table 5. Fit of the baseline IRT models with discretization based on quartiles .sD4/ and fixed cut-offs .sD5/
as a function of the number k of latent classes†

k Results for quartiles Results for fixed cut-offs

l(θ̂) #par AIC BIC NEC l(θ̂) #par AIC BIC NEC

1 −1544.9 12 3113.8 3163.0 1.000 −1761.0 16 3554.0 3619.6 1.000
2 −1343.8 17 2721.5 2791.2 0.241 −1568.6 21 3179.2 3265.2 0.298
3 −1293.0 19 2624.1 2702.0 0.421 −1482.9 23 3011.8 3106.1 0.366
4 −1273.6 21 2589.1 2675.2 0.500 −1457.2 25 2964.5 3066.9 0.480
5 −1271.0 23 2588.0 2682.3 0.659 −1447.6 27 2949.3 3059.94 0.451
6 −1271.0 25 2592.0 2694.5 0.752 −1446.7 29 2951.5 3070.3 0.452

†The smallest values of AIC, BIC and NEC are in italics.

spurious estimates due to multimodality of the sample log-likelihood, we use two types of
initialization (deterministic and random) of the EM algorithm. The results, in terms of the
AIC, BIC and NEC, are reported in Table 5 for the cases of s = 4 (quartiles) and s = 5 (fixed
cut-offs). As shown in Table 5, the BIC suggests two models for the data: one with k =4 latent
classes in the case of quartiles, and one with k =5 latent classes in the case of fixed cut-offs. The
AIC gives a similar result for the first type of discretization and exactly the same result for the
second. The NEC suggests instead only two latent classes for both types of discretization.



Ranking Scientific Journals 1043

Next we select the covariates on the basis of the parameterization (5) for the latent class
probabilities and a stepwise forward covariates selection scheme based on the BIC; the results
are displayed in Table 6. For both discretizations that were considered (quartiles and fixed
cut-offs), the specification preferred includes a journal’s age and country, but not its language.

To check the unidimensionality assumption, we look for evidence of bidimensionality. Table 7
shows the values of the BIC for various specifications of bidimensionality. For instance, the first
model considered, which is denoted by {1},{2, 3, 4}, assumes that the first indicator measures
a latent trait that is different from that for the other three, whereas the fifth model considered,
which is denoted by {1, 2} {3, 4}, assumes that the first two indicators measure a latent trait
that is different from that for the other two. Under both discretizations, the smallest value of
the BIC in Table 7 is greater than the smallest value of the BIC in Table 6. We conclude that the
assumption of unidimensionality is consistent with the data, so our four indicators represent
different measurements of the same latent trait.

Finally, we consider the assumption of local independence by fitting some extended mod-
els that include a set of association parameters for specific pairs of responses, as defined in
expression (4), under Plackett’s formulation of local dependence. The results are presented in
Table 8. For the first type of discretization (quartiles), there is evidence of conditional asso-
ciation (given the latent trait) between IF and IF5. In fact, the extended model that includes

Table 6. Allowing for covariates in the model with k D4 latent classes and discretization
based on quartiles and the model with k D5 latent classes and discretization based on
fixed cut-offs†

Covariate Results for quartiles Results for fixed cut-offs

l(θ̂) #par BIC l(θ̂) #par BIC

Age −1259.0 26 2676.6 −1426.4 32 3047.9
Language −1269.7 22 2673.5 −1441.9 28 3054.6
Country −1203.4 23 2547.0 −1375.1 29 2927.0
Age + country −1180.0 28 2530.7 −1345.9 34 2899.1
Language + country −1203.3 24 2552.9 −1374.8 30 2932.5
Age + language + country −1179.1 29 2535.1 −1344.0 35 2901.4

†The smallest values of the BIC in each column are in italics.

Table 7. Allowing for bidimensionality†

Groups of items Results for quartiles Results for fixed cut-offs

l(θ̂) #par BIC l(θ̂) #par BIC

{1}, {2, 3, 4} −1178.7 30 2540.4 −1344.9 37 2915.4
{2}, {1, 3, 4} −1179.2 30 2541.4 −1345.9 37 2917.4
{3}, {1, 2, 4} −1179.9 30 2542.7 −1345.9 37 2917.4
{4}, {1, 2, 3} −1179.9 30 2542.7 −1345.0 37 2915.6
{1, 2}, {3, 4} −1179.7 30 2542.4 −1344.9 37 2915.4
{1, 3}, {2, 4} −1179.2 30 2541.4 −1345.0 37 2915.6

†The smallest values of the BIC in each column are in italics.
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Table 8. Inclusion of local dependence between certain pairs of indicators†

Pairs of responses Results for quartiles Results for fixed cut-offs

l(θ̂) #par BIC l(θ̂) #par BIC

{1, 2} −1161.6 29 2500.1 −1330.6 35 2874.6
{1, 3} −1179.9 29 2536.7 −1344.6 35 2902.5
{1, 4} −1179.7 29 2536.3 −1345.8 35 2905.0
{2, 3} −1176.8 29 2530.4 −1344.4 35 2902.2
{2, 4} −1179.3 29 2535.5 −1345.5 35 2904.5
{3, 4} −1179.8 29 2536.5 −1345.6 35 2904.6
{1, 2}, {1, 3} −1161.1 30 2505.1 −1330.3 36 2880.1
{1, 2}, {1, 4} −1161.1 30 2505.2 −1329.3 36 2878.2
{1, 2}, {2, 3} −1160.0 30 2503.0 −1325.1 36 2869.7
{1, 2}, {2, 4} −1160.9 30 2504.7 −1330.1 36 2879.7
{1, 2}, {3, 4} −1160.1 30 2503.2 −1328.8 36 2877.1

†The smallest values of the BIC in each column are in italics.

this association has a lower BIC (namely 2500.1) compared with the model with local inde-
pendence, and no association between other pairs of indicators needs to be considered. In
contrast, for the second type of discretization (fixed cut-offs), there is evidence of conditional
association both between IF and IF5 and between IF5 and AIS. However, although the larger
model including these two associations and the model including only the association between
IF and IF5 have a very similar BIC, the former seems to have some numerical instability in the
estimation.

In conclusion, although the two types of discretization imply some differences in terms of local
independence and some changes in the ranking of journals in terms of predicted impact, the IRT
models that were selected by the procedure that was suggested in Section 3.2 are based on exactly
the same features and differ only in the number of latent classes, namely k =4 for the quartiles
case and k = 5 for the fixed cut-offs case. The features that are common to both models are
unidimensionality, local dependence only between IF and IF5, and latent distribution affected
by two covariates: age of the journal and country of the publisher.

4.4. Latent distributions, clustering and prediction of journal impact
The maximum likelihood estimates that were obtained for the parameters of the selected models
under the two different discretizations are presented in Tables 9–11. In particular, Table 9
shows the estimated distribution of the latent variable (support points and probabilities). Note
that the support points correspond to classes of journals characterized by increasing impact,
whereas the mass probabilities are averaged over all the sample units. Also note that we use the
standardization of the latent variables as an identifiability constraint. The first discretization
(quartiles) selects four classes of journals, the class with highest impact being the smallest (it
includes 15.8% of the journals) and the class of journals with lowest impact being the largest
(it includes 33.6% of the journals). The second discretization (fixed cut-offs) selects five classes,
with the added class consisting of a relatively small number of journals with very low impact
(9.8% of the total) and the top two classes having size and support that are comparable with the
top two classes estimated under the first model.

Table 10 reports the estimated intercepts and regression coefficients for the covariates in-
cluded, namely the age of the journal (the reference category is aged 41 or more years) and the
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Table 9. Estimated distribution of the latent variable
under the models selected

h Results for quartiles Results for fixed cut-offs

ξ̂h π̂h ξ̂h π̂h

1 −1.158 0.336 −2.763 0.098
2 −0.096 0.317 −0.172 0.340
3 0.883 0.190 0.279 0.219
4 1.589 0.158 0.632 0.202
5 1.002 0.141

Table 10. Estimated regression coefficients in the proportional odds model for the latent class probabilities

Covariate Results for quartiles Results for fixed cut-offs

Estimate Standard error t-statistic p-value Estimate Standard error t-statistic p-value

Intercept 1 3.506 0.444 7.896 0.000 5.574 0.752 7.417 0.000
Intercept 2 1.125 0.306 3.677 0.000 2.479 0.434 5.709 0.000
Intercept 3 −0.260 0.375 −0.693 0.488 1.021 0.356 2.869 0.004
Intercept 4 −0.452 0.312 −1.451 0.147
Age 1–3 years −3.974 1.030 −3.859 0.000 −4.372 0.803 −5.446 0.000
Age 4–6 years −2.905 0.553 −5.252 0.000 −2.231 0.470 −4.749 0.000
Age 7–10 years −0.801 0.424 −1.892 0.058 −0.908 0.407 −2.231 0.026
Age 11–20 years −0.734 0.318 −2.306 0.021 −0.597 0.316 −1.889 0.059
Age 21–40 years −0.315 0.290 −1.089 0.276 −0.337 0.288 −1.168 0.243
UK, D, NL −0.553 0.256 −2.156 0.031 −0.582 0.249 −2.340 0.019
Other countries −3.650 0.395 −9.238 0.000 −3.326 0.345 −9.646 0.000

country of the publisher (the reference category is published in the USA), in the proportional
odds model (5) for the latent class probabilities. The estimated coefficients suggest that the prob-
ability of being in a higher class (i.e. having a higher impact) increases with a journal’s age and,
compared with journals published in the USA, it is slightly lower for those published in the UK,
Germany and the Netherlands, and is much lower for those published in all other countries.

Table 11 presents estimates of the discriminant indices αj in equation (2), which allow us
to assess the quality of each indicator as a measure of the impact of a journal. Table 11 also
presents the estimates of the difficulty parameters βjv. It is worth noting that we reach the same
conclusion under both types of discretization: the indicator that best measures the impact of a
journal is IF5 because it corresponds to the highest estimate of the discrimination parameter.
Moreover, the estimates of the discrimination parameter for the other indicators are quite similar
under both types of discretization. This agrees with the result in Chang et al. (2010), based on
the ISI–Thomson Reuters database of citations from all fields in the sciences and social sciences,
that AIS does not add much compared with more traditional indicators such as IF5.

We then assign each journal to a latent class by using the rules that were discussed in Section
2.3. Under the first type of discretization (quartiles), we assign 159 journals to the first class
(lowest impact), 138 to the second, 79 to the third and 69 to the fourth (highest impact). The
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Table 11. Estimated discriminant indices and difficulty parameters

j Results for quartiles Results for fixed cut-offs

α̂j β̂j1 β̂j2 β̂j3 α̂j β̂j1 β̂j2 β̂j3 β̂j4

1 3.124 0.000 2.526 4.670 6.862 0.000 2.507 3.754 6.095
2 5.132 0.709 3.195 4.924 13.765 1.528 2.825 4.842 6.442
3 3.234 0.614 2.950 4.921 6.594 1.713 4.278 5.443 6.915
4 3.523 −2.818 −0.276 3.200 6.743 −4.026 −0.705 2.662 4.750

–2 –1 0 1

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

-1.0 -0.5 0.0 0.5 1.0 1.5

-2
-1

0
1

(a)

(b)

Fig. 2. Scatter plot of the predicted latent variables under the discretization based on (a) quartiles and (b)
fixed cut-offs

journals that were assigned to the top two classes are listed in Tables 1 and 2, together with
information of interest, such as the estimated posterior probabilities and the predicted impact
under both models. Fig. 2 presents the scatter plot of the predicted impact of all journals. These
results show that, although we are assuming a discrete distribution for the latent variable with
a relatively small number of support points, there is a high variety of different predicted values,
confirming our previous remarks in Section 2.3. This is because for some journals the estimated
posterior probabilities are not strongly unbalanced towards a certain class, as confirmed by the
plots in Fig. 3.
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Fig. 3. Scatter plot of the maximum posterior probabilities under the discretization based on (a) quartiles
and (b) fixed cut-offs

On the basis of the above journal clustering, Table 12 reports the average conditional correla-
tion between the indicators given the latent class under the two types of discretization, together
with the observed (marginal) correlation between the indicators. Note that the conditional cor-
relation between the pairs of indicators for which we assume local independence is very low
compared with both the observed correlation and the conditional correlation between the pair
of indicators (IF and IF5) for which we admit local dependence. This provides indirect support
for the assumptions underlying the models adopted.

5. Conclusions

We propose an approach to ranking scientific journals in a given list based on a latent variable
model for polytomous item response data. The latent variables, which are assumed to be discrete
and are interpreted as the unobserved scholarly impact of the journals in the list, are predicted
on the basis of a set of bibliometric indicators that are discretized to avoid strong parametric
assumptions.

Our approach has the advantage of relying on a well-defined statistical model, which simplifies
the interpretation of the results and inference. The model is semiparametric in nature as it does
not need parametric assumptions on the distribution of the latent variables. This is instead
approximated by a discrete distribution with a finite number of support points corresponding
to a set of latent classes, i.e. groups of journals with similar unobservable characteristics.
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Table 12. Correlation matrix of the observed indicators and
average of the conditional correlation given the assigned
cluster

Indicator Results for the following indicators:

IF IF5 AIS h-index

Observed
IF 1.000 0.899 0.692 0.556
IF5 0.899 1.000 0.795 0.579
AIS 0.692 0.795 1.000 0.485
h-index 0.556 0.579 0.485 1.000

Conditional (quartiles)
IF 1.000 0.724 0.147 0.108
IF5 0.724 1.000 0.265 0.157
AIS 0.147 0.265 1.000 0.004
h-index 0.108 0.157 0.004 1.000

Conditional (fixed cut-offs)
IF 1.000 0.671 0.120 0.010
IF5 0.671 1.000 0.256 0.094
AIS 0.120 0.256 1.000 0.045
h-index 0.010 0.094 0.045 1.000

Journals are assigned to a latent class on the basis of a maximum a posteriori probability
rule. The posterior mean of the latent variable provides a prediction on a single continuous
scale of the impact of each journal, so journals can be ranked, the distance between any pair of
them can be compared and journals can be clustered into any arbitrary number of classes of a
given size. One can also assess the discriminant power of each indicator, i.e. the sensitivity and
reliability of each indicator in its relationship to the latent variable. For example, in our data
we find that IF5 is more reliable than IF, AIC and the h-index as an indicator of the impact
of a journal. Finally, our approach has the advantage of easily handling missing values in the
available indicators.

A key aspect of our approach is that it requires a preliminary discretization of the available
bibliometric indicators. It is therefore important to assess the sensitivity of the results of an
analysis to the discretization adopted. As shown in our application, this can be assessed by
replicating the analysis with different discretizations and then comparing the results that are
obtained. In our empirical application, the results appear to be fairly robust to the choice of
discretization.

Our analysis can be easily extended to handle the case where different indicators have different
numbers of categories (to include, for instance, binary indicators), and to employ discriminant
indices which are category dependent. Finally, our method could be applied to other lists of
journals in different fields.
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