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Synaptic Plasticity and PDGF Signaling Defects Underlie
Clinical Progression in Multiple Sclerosis
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Neuroplasticity is essential to prevent clinical worsening despite continuing neuronal loss in several brain diseases, including multiple
sclerosis (MS). The precise nature of the adaptation mechanisms taking place in MS brains, ensuring protection from disability appear-
ance and accumulation, is however unknown. Here, we explored the hypothesis that long-term synaptic potentiation (LTP), potentially
able to minimize the effects of neuronal loss by providing extra excitation of denervated neurons, is the most relevant form of adaptive
plasticity in stable MS patients, and it is disrupted in progressing MS patients. We found that LTP, explored by means of transcranial
magnetic theta burst stimulation over the primary motor cortex, was still possible, and even favored, in stable relapsing-remitting
(RR-MS) patients, whereas it was absent in individuals with primary progressive MS (PP-MS). We also provided evidence that platelet-
derived growth factor (PDGF) plays a substantial role in favoring both LTP and brain reserve in MS patients, as this molecule: (1) was
reduced in the CSF of PP-MS patients, (2) enhanced LTP emergence in hippocampal mouse brain slices, (3) was associated with more
pronounced LTP in RR-MS patients, and (4) was associated with the clinical compensation of new brain lesion formation in RR-MS. Our
results show that brain plasticity reserve, in the form of LTP, is crucial to contrast clinical deterioration in MS. Enhancing PDGF signaling
might represent a valuable treatment option to maintain brain reserve and to attenuate the clinical consequences of neuronal damage in

the progressive phases of MS and in other neurodegenerative disorders.

Introduction
Neuronal loss and gray matter atrophy progress since the early
stages of multiple sclerosis (MS) (Tiberio et al., 2005; Compston
and Coles, 2008), but their clinical consequences are initially well
compensated, likely because of plastic adaptations of surviving
neurons (Schirmer et al., 2013). The precise nature of the adap-
tation mechanisms taking place in MS brains, ensuring protec-
tion from disability appearance and accumulation, is however
unknown, and its identification could be of great relevance for
future treatments of primary and secondary progressive MS.
LTP of excitatory transmission is the most studied form of
synaptic plasticity, and its occurrence in spared neurons might
well compensate for neuronal loss occurring in acute and chronic
neurological diseases. LTP, indeed, consists of the strengthening
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of synaptic communication between two connected neurons
(Bliss and Lomo, 1973) and is virtually able therefore to restore
membrane excitability of neurons that have lost part of their
synaptic inputs (Singer et al., 2011; Zepeda et al., 2013). It can be
hypothesized, therefore, that a certain degree of white and gray
matter damage is tolerated in relapsing-remitting MS (RR-MS)
as a consequence of LTP occurrence in unaffected neurons, al-
though reversible or irreversible, clinical disability appears when
the adaptive abilities of the brain fail. Instead, in primary progres-
sive MS (PP-MS), accumulating disability might reflect the pro-
gression of neuronal damage without any compensation by
adaptive LTP mechanisms exhausted during clinically silent in-
flammatory episodes.

LTP can be explored noninvasively in humans by means of
transcranial magnetic stimulation (TMS) (Mariorenzi et al.,
1991; Stefan et al., 2000), which offers therefore the possibility of
addressing the hypothesis of synaptic plasticity involvement in
the attenuation of MS clinical deficits. The synaptic plasticity
hypothesis of clinical recovery in MS predicts that LTP is possible
in RR-MS but not in PP-MS and that molecular factors regulating
LTP induction also impact on MS disease clinical manifestation.

The present investigation was therefore specifically designed
at investigating whether LTP is differentially expressed in non-
progressing and in progressing MS patients, and to try to uncover
the role of inflammatory molecules in the regulation of LTP in-
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Table 1. Demographic and dinical characteristics of enrolled subjects

Total Controls RR-MS PP-MS p
Number 194 48 116 30
Sex (F/M) 118/76 28/20 72/44 18/12 NS
Age (years) 363193 365+102 356*X95 385*+63 NS
Disease duration (years) NA NA 3251 47+52 NS
EDSS NA NA 1311 35%£09 <001
EDSS range NA NA 0-6.0 2.5-6.0

NS, Not significant; NA, not applicable.

duction. According to the idea that synaptic plasticity is crucial to
counterbalance clinical progression in MS subjects, we found
that LTP was still possible, and even favored, in stable RR-MS
patients, whereas it was absent in individuals with PP-MS. Recent
studies reported that the PDGF can induce LTP in vitro (Peng et
al., 2010), and that it may represent a key molecule for the recov-
ery phase of MS because of its neuroprotective action (Vana et al.,
2007). In the present study, we also identified PDGF as a crucial
inflammatory molecule able to facilitate LTP induction and to
promote the clinical compensation of brain damage associated
with MS.

Materials and Methods

The study involving human subjects was approved by the Ethics Com-
mittee of the University Hospital Tor Vergata, Rome. All experiments in
mice were performed in accordance with the Guide for the Care and Use
of Laboratory Animals and the European Communities Council Direc-
tive of 24 November, 1986 (86/609/EEC).

Human subjects and CSF withdrawal. A total of 194 central-southern
Italian subjects (118 females, 76 males) were included in this study (Table
1). MS subjects were admitted to the neurological clinic of the University
Hospital Tor Vergata of Rome and later diagnosed as suffering from
RR-MS (n = 116), or PP-MS (n = 30). After their admittance, all patients
underwent for diagnostic purposes, in sequence, brain (and in selected
cases also spinal) MRI scan, and CSF withdrawal within 24 h. In all
instances, patients underwent detection of oligoclonal banding in the
CSF (positive in 88% of cases). Patients were drug-free before CSF with-
drawal and neurophysiological assessment. Corticosteroids or other MS-
specific immunoactive therapies were initiated later when appropriate.

The diagnosis of RR-MS or PP-MS was established by clinical, labora-
tory, and MRI parameters, and matched published criteria (Polman et
al., 2005, 2011). Demographic and clinical information was derived from
medical records. MS disease onset was defined as the first episode of focal
neurological dysfunction indicative of MS. Disease duration was esti-
mated as the number of years from onset to the last assessment of dis-
ability. Disability was determined by a specially trained (Neurostatus
training and documentation DVD for a standardized neurological exam-
ination and assessment of Kurtzke’s functional systems and Expanded
Disability Status Scale for MS patients. Basel, Switzerland: Neurostatus,
2006; available at http://www.neurostatus.net) and certified examining
neurologist using Expanded Disability Status Scale (EDSS), a 10 point
disease severity score derived from nine ratings for individual neurolog-
ical domains (Kurtzke, 1983). Relapses were defined as the development
of new or recurrent neurological symptoms not associated with fever or
infection lasting at least 24 h. As controls, we used CSF from 48 age- and
gender-matched healthy subjects (HSs) without inflammatory or degen-
erative diseases of the central or peripheral nervous system. These sub-
jects underwent lumbar puncture because of a clinical suspect of acute
peripheral neuropathy, meningitis, or subarachnoidal hemorrhage,
which were not confirmed.

All the subjects gave their written informed consent to the study. Clin-
ical and demographic data are presented as the mean = SD. Differences
between two groups were compared by univariate analysis using Stu-
dent’s t test or Mann—Whitney test for continuous variables and Fisher’s
exact test for categorical variables. Multiple comparisons were analyzed
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Table 2. Demographic and dlinical characteristics of the subgroup of subjects
enrolled in TMS experiments

Total Controls RR-MS PP-MS p
Number 75 13 50 12
Sex (F/M) 17/58 5/8 8/42 4/8 NS
Age (years) 36683 355*£92 359*89 385*x62 NS
Disease duration (years) NA NA 6.0 =45 62*=38 NS
EDSS NA NA 15512 45%13 <001
EDSS range NA NA 0-6.0 20-6.0

NS, Not significant; NA, not applicable.

by performing ANOVA for independent measures followed by Tukey
HSD.

MRI acquisition and analysis. Three Tesla MRI scan consisted of dual-
echo proton density, FLAIR, T2-weighted spin-echo images and pre-
contrast and postcontrast T1-weighted spin-echo images. All images
were acquired in the axial orientation with 3-mm-thick contiguous
slices. The presence of gadolinium-enhancing (Gd *; 0.2 ml/kg e.v.)
lesions was assessed by a neuroradiologist who was unaware of the
patient’s clinical details (Mori et al., 2011).

TMS. TMS protocols were performed in a subgroup of 75 MS patients
(63 RR-MS and 12 PP-MS), and in 13 healthy controls (Table 2). In a
subgroup of 20 RR-MS patients, TMS measurements were performed
during admission to the neurological clinic and within 24 h from CSF
withdrawal. A subgroup of 62 MS subjects (50 RR-MS and 12 PP-MS)
were evaluated at least 60 d since stabilization/resolution of a previous
relapse in case of RR-MS (50 females, 12 males) (Table 2).

All subjects gave consent to the examination and were asymptomatic
in the upper right limb. EMG traces were recorded from the right first
dorsal interosseus muscle (FDI) with surface cup electrodes. The active
electrode was placed over the muscle belly and the reference electrode
over the metacarpophalangeal joint of the index finger. Responses were
amplified with a Digitimer D360 amplifier (Digitimer) through filters set
at 20 Hz and 2 kHz with a sampling rate of 5 kHz, then recorded by a
computer with SIGNAL software (Cambridge Electronic Devices).
Motor-evoked potentials (MEPs) were evoked through a figure-of-eight
coil with external loop diameter of 70 mm connected to a Magstim 200>
magnetic stimulator (Magstim). Coil position was adjusted to find the
optimal scalp site to evoke motor responses in the contralateral FDI, the
motor “hot spot,” at the beginning of each experimental session and
marked over the patients scalp with a pencil. The coil was held tangen-
tially to the scalp surface with the handle pointing posteriorly and later-
ally at ~45° with respect to the mid-sagittal axis of the head.

Intermittent theta burst stimulation (iTBS) or continuous theta burst
stimulation (cTBS) was delivered over the primary motor cortex (M1)
“hot spot” of the right FDI through a Magstim Rapid? stimulator. The
resting motor threshold (RMT) was defined as the minimum stimulation
intensity required to evoke a liminal motor potential from the FDI at rest
(~50 wV in 50% of 10 trials). The active motor threshold (AMT) was
defined as the minimum stimulation intensity required to evoke a liminal
motor potential from the FDI during voluntary contraction (~200 wV in
50% of 10 trials). Stimulation intensity was 80% of AMT. The iTBS
protocol consisted of 10 bursts, each burst composed of three stimuli at
50 Hz, repeated at a theta frequency of 5 Hz every 10 s for a total of 600
stimuli (200 s). The ¢TBS protocol was delivered as a sequence of 200
bursts (600 stimuli) given at a rate of 5 Hz (total duration of 40 s).

The effect of iTBS or ¢TBS on corticospinal excitability was quantified
by measuring the amplitude of MEPs evoked in the right FDI by a con-
stant intensity TMS pulse given over the contralateral motor cortex.
Twenty-five MEPs were collected before iTBS or cTBS (baseline) and at
two different time points (0 and 15 min) after the end of stimulation
procedure. Stimulation intensity was set to induce a stable MEP of ~1
mV peak to peak amplitude in the relaxed right FDI at baseline and
remained unchanged until end of recordings. MEP amplitudes were
then averaged at each time point and normalized to the mean baseline
amplitude.

Differences between groups for MEP latency, RMT, and AMT were
evaluated through one-way ANOVA. For iTBS or ¢TBS aftereffects, we
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used a repeated-measures ANOVA with between-subjects GROUP (RR-
MS, PP-MS, and controls) and within-subjects TIME (baseline, 0 and 15
min after iTBS or ¢TBS) main factors. Correlations between PDGF CSF
levels and iTBS or ¢TBS effects on MEP size were analyzed through the
Pearson correlation coefficient.

PDGF determination in the CSF. For measurements of PDGF concen-
tration, the CSF was centrifuged and immediately stored at —80°C until
analyzed using Bio-Plex Multiplex Cytokine Assay (Bio-Rad), according
to the manufacturer’s instructions. Concentrations of PDGF were calcu-
lated according to a standard curve generated for the specific target and
expressed as pictograms per milliliter. When the concentrations of PDGF
were below the detection threshold, they were assumed to be 0 pg/ml. For
data presented as the mean = SEM, statistical analysis was performed using
one-way ANOVA for independent measures followed by Tukey HSD. Dif-
ferences among two groups were compared by univariate analysis using
Student’s ¢ test.

In vitro electrophysiology. Preparation of mouse brain slices was per-
formed in accordance with the European Communities Council Direc-
tive (86/609/EEC). Parasagittal hippocampal slices (400 um) were
prepared from 3- to 4-week-old male C57BL/6] mice as previously de-
scribed (Molinaro et al., 2011; Nistico et al., 2013).

Slices were incubated for 1 h and then transferred to a recording cham-
ber submerged in a continuously flowing artificial CSF (ACSF) (30°C,
2-3 ml/min), gassed with 95% O, and 5% CO, containing 124 mm NaCl,
2.5 mm KCl, 1.25 mm NaH,PO,, 2.5 mm CaCl,, 1.3 mm MgSO,, 26 mm
NaHCOj, and 10 mm glucose. Hippocampal CAL1 field EPSP (fEPSP) was
evoked by Schaffer collateral stimulation (0.2 ms current pulses) using a
bipolar tungsten-stimulating electrode. Synaptic responses were re-
corded with ACSF-filled microelectrodes (2—4 MQ) positioned in the
stratum radiatum and were quantified as the initial slope of fEPSP in
CAl.

For slices in which the presynaptic fiber volley was distinguishable,
input-output relations were examined by plotting the initial slope of the
fEPSP against the amplitude of the presynaptic fiber volley. LTP was
induced by conventional TBS applied to the Schaffer collateral-CA1 syn-
apses TBS (4 trains of 5 pulses at a frequency of 100 Hz, with an intertrain
interval of 200 ms) (Errico et al., 2008).

All data are presented as mean = SEM. normalized to the precondi-
tioning baseline (at least 30 min of stable responses) and assessed for
significance using the Student’s # test.

Results

Characteristics of enrolled subjects

The three groups (control, RR-MS, PP-MS) did not differ in
terms of the demographic characteristics, and the two MS groups
(RR-MS and PP-MS) did not differ in terms of the main clinical
characteristics (Table 1). Of note, disease duration, reported to be
inversely related to PDGF concentration in the CSF of MS pa-
tients (Harirchian et al., 2012), was similar in our samples. It was
therefore not taken into account as confounding factor during
subsequent analyses. EDSS was higher in PP-MS patients, ac-
cording to the different grade of disability progression here
investigated.

TMS was well tolerated from all subjects, and no adverse effect
was recorded. One-way ANOVA revealed that MEP latency and
AMT differed in the three groups. Post hoc comparisons revealed
that MEP latency was significantly different between the three
groups (PP-MS, 23.83 * 3.2 ms; RR-MS, 22.02 = 2.25 ms; HSs,
21.1 £ 0.9 ms; all p < 0.05). RMT differed significantly between
the three groups (PP-MS, 41.5 * 13.0%; RR-MS, 34.1 = 7.2; HSs,
30.7 = 4.96; all p < 0.05). AMT mean values were higher in the
PP-MS (41.5 = 13.0%) than in the RR-MS (34.1 = 7.2) and HSs
(30.7 = 4.96) groups, but not statistically different between the
three groups.
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Figure 1.  Cortical excitability changes induced by (A) iTBS and (B) TBS in RR-MS, PP-MS,
and HSs. *p < 0.05.

LTP induction in the motor cortex of RR-MS and of PP-MS
To assess plasticity reserve in nonprogressing RR-MS and in PP-
MS, we delivered the iTBS and ¢TBS protocols over the M1 in 50
stable RR-MS patients, in 12 PP-MS subjects, and in 13 HSs
(Table 2). Repeated-measures ANOVA showed a significant
TIME per GROUP interaction (F = 3.80; p < 0.05). According to
the idea that LTP reserve is greater in RR-MS than in PP-MS
subjects, post hoc contrasts showed that iTBS-induced LTP was
more pronounced in RR-MS than in PP-MS at 0 min (F = 3.50,
p < 0.05) and 15 min (F = 3.60, p < 0.05) after the stimulation
procedure. No differences emerged between RR-MS and healthy
individuals, as iTBS caused the expected LTP-like phenomenon
(Huang et al., 2005) in both groups (Fig. 1A).

We then explored the effects of the cTBS protocol, which also
induces plasticity effects (LTP or LTD) in healthy individuals
(Gentner et al., 2008; Iezzi et al., 2008; Huang et al., 2011).
Repeated-measures ANOVA showed a significant effect of
GROUP (F = 3.83, p < 0.05) and a significant TIME per GROUP
interaction (F = 4.15; p < 0.05). Post hoc contrasts showed that,
15 min after ¢TBS, MEP amplitude was significantly higher in
RR-MS subjects compared with PP-MS (F = 3.26, p < 0.05) and
compared with HSs (F = 4.89, p < 0.05) at 0 min (F = 3.84,p <
0.05) and 15 min (F = 4.15, p < 0.05) and significantly lower in
HSs compared with PPMS at 15 min (F = 3.31, p < 0.05), reveal-
ing that this alternative stimulation protocol caused a measurable
LTP in RR-MS patients, although it failed to induce synaptic
plasticity effects in PP-MS. In healthy individuals, cTBS caused a
LTD-like phenomenon in the majority of the subjects (9 0of 13), as
already described (Huang et al., 2011) (Fig. 1B).
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Figure2.  PDGF levelsin the CSF of MS subjects. The graph shows that PDGF was significantly
lower in PP-MS patients than in RR-MS. *p << 0.05, versus RR-MS.

Together, these results indicate that LTP reserve is preserved
in stable RR-MS and lost in PP-MS patients, and that LTP
induction is favored in RR-MS patients compared with
healthy individuals.

PDGEF levels in the CSF of RR-MS and of PP-MS
Some inflammatory molecules released in the CSF of MS patients
can alter excitatory synaptic transmission (Rossi et al., 2012) and
could be therefore potentially implicated in the differential syn-
aptic plasticity expression in RR-MS and in PP-MS. Because of its
ability to enhance LTP induction and expression in vitro (Peng et
al., 2010) and of its proposed role in limiting MS disease progres-
sion (Harirchian et al., 2012), we measured PDGF CSF levels in
RR-MS, in PP-MS, and in a sample of control individuals.
PDGF levels were significantly affected by MS disease (F =
3.65, p = 0.03). Post hoc analysis showed that PDGF was signifi-
cantly lower in PP-MS patients than in RR-MS, suggesting a
contribution of this molecule in the differential expression of
LTP seen in RR-MS and in PP-MS. PDGF levels were also lower
in PP-MS patients than in controls, without reaching statistical
significance. Of note, PDGF levels were higher, although not sig-
nificantly, in the CSF of RR-MS subjects, in line with the TMS
data showing a favored LTP induction compared with healthy
individuals (Fig. 2).

Role of PDGF in in vitro LTP

Having determined that PDGF CSF levels positively correlate to
LTP induction in stable RR-MS, we next sought to test the effect
of PDGF on synaptic transmission and LTP in mouse hippocam-
pal slices. A scatter plot relating the initial slope of the fEPSP to
the size of the presynaptic fiber volley showed that slices incu-
bated with PDGF (20 ng/ml for 1 h) displayed normal input-
output characteristics in the CAl area (Fig. 3A). Next, to
determine whether synaptic plasticity is modulated by PDGF,
we studied hippocampal LTP induced by TBS. Similarly to
previous results (Peng et al., 2010), CA1-LTP was always fa-
cilitated when slices were preincubated with PDGF (Fig. 3B).
Indeed, the magnitude of potentiation measured between 50
and 60 min after TBS was significantly higher in PDGF-treated
(162 = 9%, n = 6) compared with control slices (134 * 9%,
n = 6) (p < 0.05; Fig. 3B).

Thus, our in vitro data indicate that PDGF modulates LTP
induction at excitatory synapses and are consistent with the idea
that this molecule could contribute to the maintenance of plas-
ticity reserve seen in nonprogressing MS patients.
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Association between PDGF levels and clinical relapses in
RR-MS patients

Based on the assumption that PDGF-favored plasticity reserve
could be relevant for the compensation of evolving brain damage
in RR-MS, we also examined the impact of PDGF on the clinical
correlates of disease evolution in RR-MS subjects. To this aim,
RR-MS subjects with active MS lesions (1 = 49), as evidenced by
Gd enhancement at the MRI, were divided into two groups (re-
lapsing, n = 26 vs silent, n = 23), based on the presence or
absence of concomitant clinical symptoms. Gd *-relapsing pa-
tients had significantly lower PDGF CSF concentrations than
Gd ™ clinically silent patients (p = 0.01), a finding that is in
agreement with the idea that PDGF plays a role in plasticity re-
serve and clinical compensation of brain damage in MS, by pre-
venting symptom appearance despite new lesion formation (Fig.
4A). In line with this, relapsing patients were significantly more
frequent among subjects with undetectable PDGF at the time of
MRI activation (undetectable PDGF, n = 23; detectable PDGF,
n = 26;78% vs 30%, p = 0.001) (Fig. 4B).

Correlation between PDGF levels and LTP amplitude in
RR-MS patients

To further address the proposed involvement of PDGF in LTP
reserve in RR-MS patients, the correlation between CSF concen-
trations of this molecule and the amplitude of this form of syn-
aptic plasticity was explored in a subgroup of 20 RR-MS patients
(5 males and 15 females, aged 17—47 years). The results of this
investigation were in agreement with the conclusion that PDGF
has a role in the maintenance of brain plasticity potential in MS
subjects because those individuals with higher CSF PDGF levels
showed larger LTPs in response to ¢TBS than those with low
PDGF levels (r = 0.57, p < 0.05) (Fig. 5). Conversely, no signif-
icant correlation emerged between CSF PDGF levels and MEP
latency, AMT, or RMT (data not shown).

Discussion

LTP is a form of use-dependent synaptic plasticity that strength-
ens the communication between two connected neurons, able to
minimize the effects of neuronal loss in a network by providing
extra excitation of denervated neurons (Bliss and Lomo, 1973).

The present study showed defective LTP in patients with pro-
gressive MS course, supporting the idea that altered synaptic plas-
ticity reserve plays a substantial role in the manifestation and
progression of clinical deficits in MS. In stable RR-MS patients, in
contrast, LTP was still possible and even favored, as evidenced by
the finding that not only iTBS but also cTBS resulted in signifi-
cant and long-lasting enhancement of cortical excitability. In
healthy individuals, conversely, cTBS generally results in LTD,
but LTP has been found to emerge in response to ¢cTBS under
specific circumstances altering the excitability of the motor cor-
tex (Gentner et al., 2008; Iezzi et al., 2008).

NMDA receptor-dependent LTP induction is greatly facili-
tated in response to ischemic brain damage in rodents (Ben-
veniste et al., 1984; Picconi et al., 2006), and its occurrence in the
peri-infarct area is associated with better clinical outcome (Cen-
tonze et al., 2007). Also, in humans, LTP reserve explored with
iTBS after focal brain ischemia is associated with better func-
tional recovery (Di Lazzaro et al., 2010), a finding that is in good
agreement with our results, and extends to other acute and
chronic pathological conditions the concept that this form of
synaptic plasticity is indeed able to attenuate the clinical conse-
quences of brain tissue damage.
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Immune cells infiltrating the CNS and
causing tissue damage contribute to neu-
ronal and oligodendroglial cell survival
and tissue repair by secreting different
growth factors (Schwartz et al., 1999; Ker-
schensteiner et al.,, 2003) and, among
these, PDGF acts as a key molecule for the
recovery phase. PDGF, indeed, promotes
neuronal differentiation (Williams et al.,
1997; Erlandsson et al., 2001), improves
significantly remyelination and oligoden-
drocyte density during acute demyelina-
tion, and reduces apoptosis during the
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recovery period after chronic demyelina-
tion (Vana et al., 2007). Furthermore,
strong upregulation of PDGF occurs in
peripheral lymphocytes of experimental
MS, with the highest expression after the
disease maximum (Koehler et al., 2008).
PDGF has also been implicated in neuro-
protection against energy deprivation and
oxidative injury (Cheng and Mattson,
1995), against human immunodeficiency
virus protein toxicity (Peng et al., 2008),
and after injurious events, such as focal
brain ischemia (Egawa-Tsuzuki et al.,
2004). Importantly, PDGF concentration
in the CSF of MS patients decreases with
disease duration, and its serum and CSF
levels have been proposed as markers of
disease severity (Harirchian et al., 2012).
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emergence in hippocampal slices, (2) was
associated with more pronounced LTP in
RR-MS patients, (3) was associated with
clinically stable disease course, and (4)
was associated with the clinical compen-
sation of new brain lesion formation in
RR-MS. The ability of PDGF to favor LTP,
and its association with clinically stable MS course, is indeed
consistent with its prosurvival effects because a striking conver-
gence between the intracellular signaling pathway mediating LTP
and neuronal survival exists (Bartlett and Wang, 2013).

As expected, PP-MS patients had higher EDSS values and
more pronounced MEP alterations (higher MEP latency and
RMT). PP-MS patients may thus have lost the ability to express
LTP resulting from increased axonal damage and thus to a lower
number of synaptic connections. It must be considered, however,
that activity-dependent LTP is essential for synaptogenesis (Col-
lin et al., 1997) and that axonal damage occurs also in RR-MS
patients since the early stages (Schirmer et al., 2013). However,
LTP was higher in RR-MS than in HSs in our study. At the present
stage, this point remains controversial and needs to be elucidated
in further studies.

The mechanism by which PDGF enhances LTP is only mar-
ginally understood, but animal studies showed that PDGF and its
receptors are widely expressed in the CNS (Sasahara et al., 1991;
Gozal et al., 2000), where they modulate the expression of Arc/
Arg3.1 and give rise to LTP in hippocampal slices (Peng et al.,
2010; present study). While reduced PDGF activity seems to con-

Figure 4.
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tribute to exhausted LTP in PP-MS patients, LTP facilitation in
RR-MS, as evidenced by the induction of this form of synaptic
plasticity not only after iTBS but also after cTBS, does not seem to
be directly dependent upon PDGF. Although higher than in PP-



Mori, Rossi et al. @ PDGF and Synaptic Plasticity in MS

MS, indeed, PDGF CSF levels were similar in RR-MS and in
control subjects, who showed LTD rather than LTP in response to
cTBS.

Facilitated LTP is likely to be important for prompt compen-
sation of brain damage in RR-MS and could instead be favored by
inflammatory molecules released during MS but not in nondis-
eased brains. Among them, IL-18 has already been found to
lower the threshold for LTP induction and to favor LTD to LTP
switch in MS brains, possibly through the inhibition of GABA
synapses (Nistico etal., 2013). cTBS, indeed, induces a mixture of
excitatory and inhibitory long-lasting effects (Stagg et al., 2009),
and the direction of the post-cTBS synaptic plasticity is deter-
mined in physiological conditions by the excitation/inhibition
balance (Huang et al., 2011). Accordingly, LTP is attenuated by
enhancing GABA transmission (Wigstrom and Gustafsson, 1983;
Chapman et al., 1998; Grover and Yan, 1999; Levkovitz et al.,
1999; Lu et al., 2000; Yoshiike et al., 2008; Martin et al., 2010) and
potentiated by reducing it (Hess and Donoghue, 1996; Stiubli et
al., 1999).

During a relapse, MS patients show decreased short interval
intracortical inhibition (Caramia et al., 2004). These findings
could reflect changes of both NMDA receptors (Schwenkreis et
al., 1999) or GABAA receptor activities (Ziemann et al., 1996).
Thus, the increased LTP responses observed in RR-MS patients
may possibly be secondary to alterations in both NMDA or
GABA receptor activity. In this respect, reduction of cortical in-
hibition has been proposed as a mechanism to augment plastic
properties (Baroncelli et al., 2011; Imbrosci and Mittmann,
2011), as synaptic inhibition limits the plastic properties of the
cortex (Teo et al., 2009).

In our study, the excitability of the motor cortex was evaluated
indirectly, through the amplitude of the MEP, which is consid-
ered reflective of corticospinal excitability. This may represent a
limitation, as the plastic modulation of the MEP amplitude may
have occurred at noncortical sites. Indeed, plastic changes in the
spinal H reflex after 5 consecutive days of iTBS over the motor
cortex have been reported in MS patients with lower limb spas-
ticity (Mori et al., 2010). However, H reflex remained unchanged
after only one single session of iTBS (Huang et al., 2005; Mori et
al., 2010; Conte et al., 2012) or ¢TBS (Huang et al., 2005; Zapal-
low et al., 2012).

Also, spinal recordings through epidural electrodes at the cer-
vical site showed that, after a TMS pulse at intensities 3% below
the AMT over the motor cortex, no corticospinal volleys could be
recorded (Di Lazzaro et al., 1998). The lack of change in the H
reflex after TBS and the low intensity used by TBS suggest that
there is no effect of one single session of motor TBS on excitability
of spinal motor neurons and the inhibitory circuits around
these neurons. Moreover, EEG (Vernet et al., 2013), MEG
(McAllister et al., 2013), and cervical epidural (Di Lazzaro et
al., 2005) recordings showed that TBS induces excitability
changes at the cortical level. Investigating the relationship be-
tween cortical plasticity through measures of corticocortical
connectivity (i.e., by means of paired pulse TMS, EEG, MRI),
and clinical and biochemical variables in MS may provide
further and more direct evidence of the role of neuronal plas-
ticity and its regulators in MS.

LTP can be influenced by a number of different factors,
among these, proinflammatory cytokines, with detrimental ef-
fects on MS progression (Pickering et al., 2005; Haji et al., 2012;
Rossi et al., 2012; Mori et al., 2013). It thus appears reasonable
that the net effect on plasticity is the result of a very complex
interaction between proinflammatory and anti-inflammatory cy-
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tokines and genetic factors. Future studies designed to evaluate
the impact of multiple variables and of their interaction on MS
clinical severity are thus warranted.

In conclusion, despite brain damage progresses overtime,
maintenance of LTP-like, brain plasticity reserve is crucial to
contrast clinical deterioration in MS, and possibly in other acute
or chronic neurological diseases. Enhancing PDGF signaling
might represent a valuable treatment option to preserve brain
reserve and to attenuate the clinical consequences of neuronal
damage in the progressive phases of MS. This possibility should
be carefully considered as plasticity can also lead to maladaptive
clinical manifestations as reported in dystonia (Quartarone et al.,
2003), dyskinesias (Cenci and Konradi, 2010) or spasticity itself
(Tan et al., 2012).
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