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Abstract We describe a selection model for multivariate
counts, where association between the primary outcomes
and the endogenous selection source is modeled through
outcome-specific latent effects which are assumed to be de-
pendent across equations. Parametric specifications of this
model already exist in the literature; in this paper, we show
how model parameters can be estimated in a finite mixture
context. This approach helps us to consider overdispersed
counts, while allowing for multivariate association and en-
dogeneity of the selection variable. In this context, attention
is focused both on bias in estimated effects when exogene-
ity of selection (treatment) variable is assumed, as well as on
consistent estimation of the association between the random
effects in the primary and in the treatment effect models,
when the latter is assumed endogeneous. The model behav-
ior is investigated through a large scale simulation experi-
ment. An empirical example on health care utilization data
is provided.
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1 Introduction

In this paper we discuss a mixed-effects model for multivari-
ate counts when a binary selection variable is included in the
linear predictor for the primary responses. If the selection
variable depends on unobservable, individual characteristics
which affect the primary outcomes also, it can not be con-
sidered exogenous, and dependence on unobserved individ-
ual characteristics should be taken into account to prevent
endogeneity bias, see e.g. Davidson and Mackinnon (1993).

Relevant examples can be derived from empirical studies
on the effect of private insurance coverage on health ser-
vices utilization; one may get health insurance to protect
financially himself/herself from an unexpected, substantial,
medical bill due to a serious accident or a major illness. If
health insurance through group coverage is not available,
one could turn to private insurance plans. Individual choices
for health insurance plans can influence patients’ behavior
and demand for health care services; in this view, private in-
surance choice is often considered as a covariate in regres-
sion models for utilization data, see Winkelmann (2000b)
for a thorough review of the literature on the subject. But, the
demand for health care services depends on observed socio-
economic and health status and on additional, unobserved,
factors that may also affect the insurance plan choice. There-
fore, the choice for private insurance can not be considered
as strictly exogenous.

In this paper, we propose a random effects model to ac-
count for extra-Poisson variation and dependence between
the selection mechanism and the random effects in the out-
comes equations, see Terza (1998) or Winkelmann (2000a).
If the selection mechanism depends on unobservable hetero-
geneity sources influencing the (primary) counted outcomes,
and estimation is based on the model for the primary out-
comes only, parameter estimates for the selection variable
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and for all variables depending on the selection, could be
severely biased; Crouchley and Davies (1999) discuss this
topic in the biostatistical context. In this case, parameter dis-
tinctiveness does not hold and the likelihood can not be fac-
torized; therefore, we need to account for potential depen-
dence of the selection variable on the random effects in the
primary outcomes equations. An additional purpose of this
work is to ascertain if correlation between random effects
can be consistently estimated within this framework; ana-
lyzing bivariate binary responses, Smith and Moffatt (1999)
found that the correlation parameter could not be estimated
with enough precision, while Alfò and Trovato (2004) show
different results in the bivariate count data context.

We start from the parametric model introduced by
Munkin (2003) and Munkin and Trivedi (2003), where as-
sociation among the outcomes and the selection variable is
modeled through dependent outcome-specific random ef-
fects, with a known parametric joint distribution. Instead,
we leave the random effects distribution G(·) unspecified,
and show how parameter estimation can be performed us-
ing a nonparametric ML (NPML) approach in a finite mix-
ture context. This model can be also considered as an ex-
tension of the model described by Mroz (1999) to assess
the impact of a dummy endogenous variable on a continu-
ous outcome. It is worth noticing that an alternative method
of estimation can be based on the proposal of Zimmer and
Trivedi (2006), who discuss estimation of a trivariate model
(two count equations plus one binary choice) using copulas.
However, while computationally and theoretically appeal-
ing, their approach allows only for positive association be-
tween counts and the selection variable and the extension to
cases where J > 2 counts are observed appears to be prob-
lematic.

The paper is structured as follows: in Sect. 2 we discuss
model specification, while in Sect. 3 computational details
of the adopted EM algorithm are given. Finite sample per-
formance of the proposed model is investigated through a
Monte Carlo study in Sect. 4, where attention is focused
on empirical cases where J ≥ 2 counts are considered. In
Sect. 5 the effect of private health insurance on the de-
mand for health care services is investigated through an em-
pirical analysis of a well-known health care dataset. The
last section contains concluding remarks and future research
agenda.

2 Model specification

Regression models for multivariate counts have raised great
interest in the last few years; reviews of this subject can
be found in Cameron and Trivedi (2005) and Winkelmann
(2000b). Loosely speaking, three main approaches have
been proposed in this context: convolution models, see e.g.

Karlis and Meligkotsidou (2006, 2007), latent effect mod-
els, see e.g. Chib and Winkelmann (2001), Alfò and Trovato
(2004), and copula-based models, see e.g. Harry (1997),
Nikoloulopoulos and Karlis (2006), Zimmer and Trivedi
(2006). We adopt the latent effects approach and define a set
of conditional univariate models, linked by a common latent
structure which accounts for both heterogeneity (in the uni-
variate profiles) and dependence between counts. The latent
effects approach may be motivated as follows: it is prob-
ably the only available with standard statistical packages,
e.g. Stata or SAS, and EM-based maximization algorithms
may be easily programmed using R or Matlab. Thus, while
other approaches may be adopted as well, the latent effects
approach does not impose any constraint on (explicit or im-
plicit) model parameters and is probably the most widely
used.

Let us suppose we have recorded counts Yij , i = 1, . . . , n

and j = 1, . . . , J , together with a set of mj covariates xT
ij =

(xij1, . . . , xijmj
) and a binary selection variable, say Yi0. To

describe association among counts, it is reasonable to as-
sume that they share some common unobservable feature:
let uij , i = 1, . . . , n, j = 1, . . . , J denote a set of individual
and outcome-specific random effects, accounting for hetero-
geneity and dependence between outcomes. Conditional on
the covariates and the random effects, the observed counts
Yij are independent Poisson random variables:

Yij |λij ∼ Poisson(λij ) (1)

with canonical parameters λij = E(Yij |xij , yi0, uij ) mod-
eled as follows:

log[E(Yij |xij , yi0, uij )]

= β0j +
mj∑

l=1

xijlβjl + αjyi0 + uij . (2)

In this context, βj = (βj0, βj1, . . . , βjmj
) is an outcome-

specific vector of fixed effects and αj represents the effect
of the selection variable on the j -th outcome, j = 1, . . . , J .
The random effects ui = (ui1, . . . , uiJ ) are drawn from a
known multivariate parametric distribution, say G(·), and ac-
count for extra-Poisson variation and marginal dependence
among counts. Various alternatives have been proposed, in-
cluding Poisson-Log-Normal, see e.g. Munkin and Trivedi
(1999), and latent Poisson-Normal, see e.g. van Ophem
(2000), two examples of multi-factor models. Uni-factor
models have been proposed as well, for example the bivari-
ate negative binomial of Winkelmann (2000c). Semipara-
metric multivariate alternatives with unspecified G(·) are
discussed in Alfò and Trovato (2004).

Given the model assumptions, the likelihood function
conditional on the selection variable can be written as fol-
lows:
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L(· | yi0)

=
n∏

i=1

{∫

U
f (yi |xi , yi0,ui )dG(ui |yi0)

}

×
n∏

i=1

⎧
⎨

⎩

∫

U

J∏

j=1

f (yij |xij , yi0, uij )dG(ui |yi0)

⎫
⎬

⎭ , (3)

where U denotes the support for G(·). As can be easily no-
ticed, the likelihood is defined integrating with respect to
G(ui | yi0); if the selection variable is predetermined or, at
least, independent of the random effects in the primary out-
comes equations, we have that G(ui |yi0) = G(ui ). Other-
wise, the dependence between the random effects and the
selection variable has to be taken explicitly into account;
integrating with respect to G(ui ) rather than with respect
to G(ui | yi0) may produce biased and inconsistent esti-
mates, as remarked by Crouchley and Davies (1999), Foto-
hui (2005), Alfò and Aitkin (2006). This is usually known in
the literature as endogeneity bias, see Davidson and Mack-
innon (1993) for a thorough discussion of the topic.

To solve this problem, we may proceed by defining a
secondary model for the selection variable, linked to the
primary response model through a common latent struc-
ture. We assume that the selection variable Yi0 represents,
conditional on a selection-specific latent effect, say ui0,
a Bernoulli random variable with canonical parameter de-
scribed through the following mixed effect logistic model:

Yi0|xi0, ui0 ∼ Bin(1,pi),

logit(pi) = β00 +
m0∑

l=1

xi0lβ0l + ui0, i = 1, . . . , n.

Obviously, the restriction for Yi0 to be binary can be eas-
ily relaxed by considering a multinomial selection variable;
this would simply increase the number of selection equa-
tions, given that a nominal variable with G categories may
be represented by (G − 1) binary (indicator) variables, with
a log-ratio link representation. We will describe only the
cross sectional case, since handling panel data would rep-
resent a straightforward extension; in fact, when longitudi-
nal measurements are handled, random effects account for
overdispersion in the univariate profiles, dependence among
outcomes and among repeated measures on the same out-
come; the proposed approach can be extended to primary
outcomes of mixed type as well, if identifiability conditions
are fulfilled. Given the model assumptions, the likelihood
function can be written as:

L(·) =
n∏

i=1

{∫

U

[
f (yi0 | xi0, ui0)

×
J∏

j=1

f
(
yij | xij , yi0, uij

)
]
dG(ui )

}
. (4)

For Gaussian assumptions on ui , the marginal likelihood
can not be written in closed form; to obtain ML esti-
mates, we may choose among several alternatives. We may
adopt numerical integration techniques based on standard or
adaptive Gaussian Quadrature (GQ, AGQ), for a compar-
ison see Rabe-Hesket and Skrondal (2002); however, the
corresponding estimation algorithms can be cumbersome
when the number of outcomes increases and thus can be
slow to achieve convergence (this point will be further dis-
cussed). A further alternative is to rely on Monte Carlo
or simulation-based techniques, see e.g. McCulloch (1994),
Chib and Winkelmann (2001), Geyer and Thompson (1992),
Munkin and Trivedi (1999). The latter approach is known
to be inefficient for non optimal importance samplers; fur-
thermore, the conditional distribution of the random effects
given the observed data and the current parameter estimates
can be quite difficult to sample from. In addition, simula-
tion, see e.g. McCulloch (1997), as well as analytical inves-
tigations, see e.g. Jank and Booth (2003), found SML es-
timation to perform poorly relative to Monte Carlo (EM)
ML estimation. Marginal maximization procedures using
Gaussian quadrature or Monte Carlo approximations can be
computationally very intensive, as noted in different con-
texts by Crouch and Spiegelman (1990) and Gueorguieva
(2001), since the number of quadrature points/simulation
draws need to be significantly increased. As a general mat-
ter, the assumption of multivariate normality for the la-
tent effects can be too restrictive and is actually unveri-
fiable; parametric alternatives could result in oversmooth-
ing, masking individual discontinuities when the mixing dis-
tribution is defined over a finite number of well-separated
groups. From this perspective, a more appealing approach is
to leave G(·) unspecified, and rely on the theory of NPML,
see e.g. Kiefer and Wolfovitz (1956), Laird (1978), Heck-
man and Singer (1984). Using a simple geometric result,
Lindsay (1983a, 1983b) showed that finding the MLE in-
volves a standard optimization problem, the maximization
of a concave function over a convex set. As long as the like-
lihood is bounded, it is maximized with respect to G(·) by at
least a discrete distribution GK(·) with at most K ≤ n sup-
port points. Thus, moreover, fitting a finite mixture model
can be considered as an additional tool to perform a sen-
sitivity analysis for a standard, parametric, random effect
model. Let us suppose that GK(·) puts masses πk on loca-
tions uk = (uk0, uk1, . . . , ukJ ), k = 1, . . . ,K . The resulting
likelihood function is:

L(·) =
n∏

i=1

{
K∑

k=1

πk

[
f (yi0 | xi0, uk0)

×
J∏

j=1

f
(
yij | xij , yi0, ukj

)
]}

, (5)
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where πk = Pr(ui = uk) = Pr(uk0, uk1, . . . , ukj ), k = 1,

. . . ,K , represent the prior probabilities of locations uk .
Similar finite mixture models have been successfully used
to model overdispersed counts and may outperform mixed
models based on parametric specifications, particularly
when extreme (very high or very low) intensity users are
present, see e.g. Deb and Trivedi (1997), Deb and Holmes
(2000), Alfò and Trovato (2004). Finite mixture models
have several significant advantages over parametric mix-
ture models; first, the discrete nature of the estimate helps
to classify subjects in clusters characterized by homoge-
neous values of random parameters. This is particularly ap-
pealing in health sciences, where components can be in-
terpreted as groups with similar behavior with respect to
the event of interest. Second, the locations and the cor-
responding probabilities are completely free to vary over
the corresponding support, and therefore, extreme depar-
tures from the basic (homogeneous) model can be accom-
modated. Estimation may be accomplished by a standard
EM algorithm; the elements of uk can be estimated by in-
troducing in the linear predictor the interaction between
a K-level factor and a set of outcome-specific dummies
dij , i = 1, . . . , n, j = 0,1, . . . , J , indicating which out-
come is fitted. A standard EM algorithm for finite mix-
tures applies, with the substantial change that the poste-
rior weights wik are computed by considering the joint dis-
tribution of the counted responses and the selection vari-
able(s).

3 Computational details

Given the finite mixture representation above, each unit can
be conceptualized as drawn from one of K distinct groups:
we denote with πk the prior probability that a unit belongs
to the k-th component and with zik the indicator variable
which is equal to 1 if the i-th unit belongs to the k-th com-
ponent of the finite mixture. The data vector is composed
by an observable part, yi , and by an unobservable one, the
membership vector, which is denoted by zi = (zi1, . . . , ziK).
If the vector zi is known, the proposed model reduces to a
simple multivariate nonlinear regression model with group-
specific intercepts; since the zi are unknown, we may use
an EM-type algorithm. Various authors have discussed algo-
rithms for joint estimation of K and model parameters, such
as the Vertex Exchange or the Vertex Direction methods: for
an insightful discussion see Böhning (2000). A possible so-
lution is to update estimates for a fixed K improving step by
step, as in the EM algorithm with gradient function update,
see Böhning (2003). We follow the latter approach: the al-
gorithm is run for fixed K and reaches a solution which is
used to estimate model parameters when K + 1 components

are considered. Using this approach, we reduce to a standard
ML estimation problem where the solution obtained for K is
compared with that obtained for (K +1) components. Karlis
and Meligkotsidou (2007) have employed a large-scale sim-
ulation study to investigate relative performance of penal-
ized likelihood criteria, while Feng and McCulloch (1996)
discuss how hypothesis testing can be performed by boot-
strapping the likelihood ratio test.

For fixed K the following routine for parameter esti-
mation is followed: we assume that the unobservable vec-
tor zi is a multinomial random variable with weights πk =
Pr(ui = uk), i = 1, . . . , n, k = 1, . . . ,K . Given the model
assumptions, the likelihood for the complete data (yi , zi ),
i = 1, . . . , n, is given by:

Lc(·) =
n∏

i=1

K∏

k=1

(πkfik)
zik

=
n∏

i=1

K∏

k=1

[
πk

(
fi0k

J∏

j=1

fijk

)]zik

. (6)

The corresponding complete data log-likelihood function is
therefore defined by:

�c (·) =
n∑

i=1

K∑

k=1

zik {log(πk) + logfik}

=
n∑

i=1

K∑

k=1

zik

{
log(πk) + log(fi0k) +

J∑

j=1

log(fijk)

}
,

(7)

where πk = Pr(uk). Within the E-step, the presence of miss-
ing data is handled by taking the conditional expectation
of the log-likelihood for the complete data given the ob-
served data yi and the current ML parameter estimates, say
θ (r) = {δ(r),π (r)} = {β(r),α(r),u(r),π (r)}. In other words,
we replace zik with its conditional expectation:

E(zik | yi , θ
(r)) = w

(r+1)
ik = πkfik∑K

l=1 πlfil

, (8)

which is the posterior probability that the i-th unit belongs
to the k-th component of the finite mixture, i = 1, . . . , n, k =
1, . . . ,K . The conditional expectation of the complete log-
likelihood function given the data vector yi and the current
parameter estimates, θ (r), is

Q(·) = Eθ (r)

{
�c (·) |yi

}

=
n∑

i=1

K∑

k=1

w
(r+1)
ik {log(πk) + logfik}
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=
n∑

i=1

K∑

k=1

w
(r+1)
ik

{
log(πk) + log(fi0k)

+
J∑

j=1

log(fijk)

}
, (9)

which corresponds to a finite mixture of K multivariate
(J + 1-dimensional) distributions with common weights
w

(r+1)
ik . Conditional on updated weights w

(r)
ik , we maximize

Q(·) with respect to θ to obtain updated ML parameter es-

timates θ̂
(r+1)

. The estimated parameters are the solution of
the following M-step equations:

∂Q

∂πl

=
n∑

i=1

{
wil

πl

− wiK

πK

}
= 0, (10)

∂Q

∂δ
=

n∑

i=1

K∑

k=1

wik

∂

∂δ

⎡

⎣log(fi0k) +
J∑

j=1

log(fijk)

⎤

⎦ . (11)

Solving the first equation we obtain:

π̂
(r+1)
k =

n∑

i=1

w
(r+1)
ik

n
, (12)

which represents a well known result from ML in finite mix-
tures. Given w

(r+1)
ik , score equations in (11) are weighted

sums of likelihood equations for J + 1 independent GLMs;
the standard EM algorithm for finite mixtures of univariate
distributions applies, where wik are computed considering
the joint distribution of the counted responses and the se-
lection variable(s). Since closed form solutions of equations
(11) are unavailable, we use a standard Newton-Raphson al-
gorithm. The E- and M-steps are repeatedly alternated un-
til the log-likelihood relative difference changes by an ar-
bitrarily small amount. Given that the log likelihood func-
tion increases, at the r + 1-th step of the algorithm we have
�(r+1) ≥ �(r), r = 0,1,2, . . . ; convergence is obtained with
a sequence of likelihood values which are bounded from
above.

As a prerequisite for ML estimation, we assume that the
mixture is identifiable, i.e. that two sets of parameters which
do not agree after permutation cannot yield the same mix-
ture distribution. A sufficient condition for identifiability in
the context of Poisson regression models is that the covari-
ate matrix X is full rank, see Wang et al. (1996). Finite
mixtures of multivariate counts can be considered as mix-
tures of univariate counts with outcome-specific random ef-
fects, and are, therefore, identifiable provided the conditions
above are satisfied. On the other side, Teicher (1963) shows
that if Yi |pi ∼ Binomial(m,pi), pi ∼ G(·), then G(·) can be
uniquely identified from the marginal density provided it has
no more than (m + 1)/2 components; thus, finite mixtures

of Bernoulli distributions are not identifiable. However, the
result entails finite mixtures of Bernoulli distributions, but
does not apply to the regression setting. Follmann and Lam-
bert (1991) discuss identifiability of G(·) in random effects
models for binary responses and give simple bounds for the
number of components.

To explain this point, let us choose a generic individ-
ual vector, say the h-th, xh, h = 1, . . . , n and define Shs

as the set of all vectors, xi , i = 1, . . . , n, i �= h, which
agree with the h-th for all but the s-th coordinate, s =
1, . . . , p. Let us denote by Nhs the number of distinct el-
ements in this set, and the corresponding maximum value
by N∗ = maxh,s Nhs . Theorem 2 of Follmann and Lam-
bert (1991) guarantees identifiability of a mixing distribu-
tion G with K components bounding K by a function of
N∗, K ≤ √

N∗ + 2 − 1. To get further insight, let us define
the (conditional) probabilities:

πk,1 = Pr(ui\0 = uk\0 | ui0 = uk0)

= Pr [(ui1, . . . , uiJ ) = (uk1, . . . , ukJ ) | ui0 = uk0] ,

πk,2 = Pr(ui0 = uk0),

where u\0 and u0 are the random effects associated to the
counted outcomes and the selection process, respectively.
Using such quantities, we may factorize the mixing weights
in (7) as follows:

πk = Pr(ui = uk)

= Pr(ui\0 = uk\0 | ui0 = uk0)Pr(ui0 = uk0).

The log-likelihood function for complete data in (7) can
therefore be factorized accordingly:

�c (·) =
n∑

i=1

K∑

k=1

zik

{
log(πk) + log(fi0k) +

J∑

j=1

log(fijk)

}

=
n∑

i=1

K∑

k=1

zik

{[
log(πk,1) +

J∑

j=1

log(fijk)

]

+ [
log(πk,2) + log(fi0k)

]
}

.

We may notice that the first term represents the contribu-
tion to the log-likelihood of a mixture of Poisson distribu-
tions (conditional on ui0, priors given by πk,1), while the
second represents the contribution to the loglikelihood of a
mixture of logistic models (priors πk,2). Therefore, provided
that conditions given above are satisfied, the proposed mix-
ture is identifiable.

Since results obtained using the EM algorithm tend to be
very sensitive to initial parameter values, we started the al-
gorithm from the estimates obtained through a short-length



Stat Comput

CEM (Classification EM) algorithm as suggested in Bier-
nacki et al. (2003). Empirical experience confirms that the
use of CEM-based starting values substantially enhances
the speed of the corresponding EM algorithm; consequently,
a higher number of EM solutions can be attained and a
more thorough search over the likelihood surface can be per-
formed, likely leading to (nearly) optimal results. In the sim-
ulation section, we retained, according to Keribin (2000),
the model corresponding to the best BIC value; this often
represents a conservative rule, which has been adopted con-
sidering that, in the present context, random effects rep-
resent nuisance parameters. We aim at retaining the more
parsimonious model rather than the best estimate for G(·).
Other alternatives are however possible, if a more refined
estimate of the random effects distribution is needed; for ex-
ample, Karlis and Meligkotsidou (2007) found that AIC per-
forms best among various criteria in terms of selecting the
right number of components in finite mixtures of multivari-
ate Poisson models.

4 An empirical application to health care utilization

In this section the proposed model is used to study the ef-
fect of private insurance plans on health care utilization data
when strong controls for bias are imposed. In particular, uti-
lization is measured through counts of event such as the
number of admissions to medical facilities (hospitals, emer-
gency rooms, etc.).

We use data from the National Medical Expenditure
Survey (NMES), previously analyzed by Deb and Trivedi
(1997) and Munkin and Trivedi (1999). The NMES has been
conducted in 1987 and 1988 to provide a comprehensive pic-
ture of how Americans use and pay for health services. In
addition to health care data, the NMES provides informa-
tion on (mainly self-perceived) health status, employment
and other social, demographic and economic characteris-
tics.

We consider individuals aged 66 and over (4406 observa-
tions) all of whom are covered by Medicare, a public insur-
ance programme that bothers substantial protection against
health care costs. We focus on a joint model for two re-
sponses, the number of visits to an emergency room (EMR)
and the number of hospital stays (HOSP). As one might ex-
pect, most elderly see a physician at least once a year and a
considerably small fraction enters an emergency room or is
admitted to a hospital. Hence, an important feature of these
data is that they include a high proportion of zero counts,
corresponding to a null demand of medical services, and a
high degree of marginal overdispersion. Thus, some kind
of mixture model is needed to provide a good fit to the
data. The adopted covariates and responses are defined in
Table 1.

A further modeling challenge come form the potential en-
dogeneity of health insurance. Several studies in the health
economics literature allow for endogeneity, see e.g. Mello
et al. (2002), Deb et al. (2006), Munkin and Trivedi (2008).
A widely held perception in the health economic literature is

Table 1 Variable definitions and summary statistics

Variable Definition Mean St. Dev.

EMR Number of emergency rooms visits 0.26 0.70

HOSP Number of hospitalizations 0.30 0.75

EXCLHLTH 1 if self-perceived health is excellent 0.08 0.27

POORHLTH 1 if self-perceived health is poor 0.13 0.33

NUMCHRON Number of chronic conditions 1.54 1.35

ADLDIFF 1 if the personal condition limits daily life 0.20 0.40

NOREAST 1 if the person lives in Northeastern USA 0.19 0.39

MIDWEST 1 if the person lives in Midwestern USA 0.26 0.44

WEST 1 if the person lives in Western USA 0.18 0.39

AGE Age in years (divided by 10) 7.44 0.63

BLACK 1 if African American 0.12 0.32

MALE 1 if male 0.40 0.49

MARRIED 1 if married 0.55 0.50

SCHOOL Number of years of education 10.3 3.74

FAMINC Family income in $10,000 2.53 2.92

EMPLOYED 1 if employed 0.10 0.30

PRIVINS 1 if covered by private health insurance 0.78 0.42

MEDICAID 1 if covered by MEDICAID 0.09 0.29
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that healthier individuals tend to select themselves into man-
aged care plans with a gatekeeper and smaller premiums;
while less health but more risk-adverse individuals tend to
select indemnity plans with higher premiums and more ex-
tensive coverage.

According to these studies, we fitted a multivariate mixed
model dealing with both heterogeneity sources and endo-
geneity.

Ignoring selection effects means that we cannot sepa-
rate out the pure treatment effect from the one due to self-
selection. Individuals and households are more likely to
choose insurance based on personal characteristics such as
overall health status, severity of chronic health conditions
and physical limitations, preferences for risk, preferences
over intensity of treatment. If all such variables are intro-
duced into the outcome equation, then one could control for
the effects of selection, but this is difficult because some of
these factors are intrinsically unobservable. Hence the ob-
servable variables included in the outcome equation may not
help to adequately control for the influence of these factors,
and, likely, some additional statistical controls for selection
on unobservables will be required.

We start our analysis by fitting a random effects regres-
sion model for the bivariate outcomes; overdispersion and
dependence between responses come through a bivariate la-

tent variable which is additively inserted in the linear predic-
tor. We assume that the responses are conditionally indepen-
dent Poisson variates given the covariates (including the se-
lection variable PRIVINS, indicating if a subject is covered
by a private health insurance plan) and the latent effects,
(ui1, ui2). The inclusion of individual- and outcome-specific
random effects implies correlation across equations. In this
study, unobserved heterogeneity, modeled via a random ef-
fects model, may represent chronic or permanent health con-
ditions that make individuals less likely to join insurance
plan and more likely to have some hospital and physician
use. These unobserved factors are constant across equation
for an individual and also over time since the health condi-
tion is chronic in nature and affect both the outcome and the
insurance choice variables.

This model is a constrained version of the full model,
since the insurance choice is treated as exogeneous. Es-
timates obtained by using a bivariate Poisson log-Normal
model, see Munkin and Trivedi (1999), are shown in Ta-
ble 2, while parameter estimates obtained using the semi-
parametric approach developed by Alfò and Trovato (2004)
are displayed in Table 3; in both cases parameter estimates
for the mixed logit modeling private insurance are shown.
Since the effect of private insurance, assuming endogene-
ity can not be identified without introducing legitimate ex-

Table 2 Estimates of the Bivariate Poisson—lognormal model. Exogenous selection. *Variables significant at 5% level

VARIABLE EMR HOSP PRIVINS

Coef. s.e. Coef. s.e.

CONSTANT −3.734* 0.475 −4.237* 0.462

EXCLHLTH −0.596* 0.205 −0.696* 0.203

POORHLTH 0.526* 0.105 0.531* 0.103

NUMCHRON 0.249* 0.028 0.282* 0.027

ADLDIFF 0.434* 0.096 0.337* 0.094

NOREAST 0.1994 0.1140

MIDWEST 0.5387* 0.1097

WEST −0.2494* 0.1163

AGE 0.120* 0.061 0.180* 0.059

BLACK −1.3871* 0.1088

MALE −0.0915 0.0925

MARRIED 0.6324* 0.0923

SCHOOL 0.1732* 0.0115

FAMINC 0.1138* 0.0245

EMPLOYED 0.2581 0.1572

PRIVINS 0.002 0.106 0.205* 0.097

MEDICAID 0.199 0.139 0.172 0.140

σ 2 1.6402 1.6452 0.0000

ρui1,ui2 0.9999

log-likelihood −5247.4090 −1917.7417
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Table 3 Nonparametric Estimates of Bivariate Poisson—Correlated Random Effects. Exogenous selection. *Variables significant at 5% level

VARIABLE EMR HOSP PRIVINS

Coef. s.e. Coef. s.e. Coef. s.e.

CONSTANT −3.876* 0.522 −4.206* 0.472 −1.426* 0.280

EXCLHLTH −0.598* 0.197 −0.696* 0.195

POORHLTH 0.458* 0.102 0.465* 0.101

NUMCHRON 0.211* 0.026 0.246* 0.025

ADLDIFF 0.397* 0.102 0.300* 0.103

NOREAST 0.272 0.147

MIDWEST 0.710* 0.159

WEST −0.287* 0.148

AGE 0.101 0.058 0.169* 0.057

BLACK −1.566* 0.145

MALE −0.071 0.119

MARRIED 0.760* 0.134

SCHOOL 0.212* 0.021

FAMINC 0.214* 0.065

EMPLOYED 0.463 0.246

PRIVINS −0.044 0.102 0.162* 0.081

MEDICAID 0.100 0.131 0.080 0.133

σ 2 2.803 2.03 1.772

ρui1,ui2 0.9976

log-likelihood −5232.962 −1914.616

clusion restrictions, we separate variables affecting the in-
surance choice but not the outcomes. In fact, if one is in-
terested in the effect of an endogenous treatment variable
on an outcome variable, one may perform causal inference
by exploiting the presence of variables that causally affect
the treatment status but do not have direct causal effect on
the primary outcome. This means that empirical results crit-
ically depend on the validity of the exclusion restrictions;
being identifying restrictions, they can not be tested.

In the exogenous case, the Ĝ(·) estimate is a three-point
distribution which puts masses (0.5654, 0.0577, 0.3778)
on locations (−1.4503,−1.2233), (2.9583,2.7814) and
(1.7155,1.4033), where the coordinates correspond to the
EMR and HOSP equations, respectively.

It is worth noticing that the first location corresponds
to low frequencies which represent people who either do
not use health care services or use them very rarely, while
the second and third locations correspond, respectively, to
very high and high frequencies of health care utilization.
The correlation estimate is equal to 0.9976; this findings
confirm that unobservable heterogeneity sources influencing
the counted outcomes are closely related and, further, that a
shared latent structure for both health care utilization out-
comes may be taken into account. Looking at parameter es-
timates, we may observe that parametric and semiparamet-

ric models strongly agree. Individual characteristics have a
direct effect on the overall probability of choosing private
insurance as well as on health care utilization. Education
levels are significant (in both parametric and nonparamet-
ric latent effects models), with higher levels of attainment
increasing the probability of being insured. While gender
is not a significant determinant of the demand for insurance,
older respondents have a higher propensity to use health care
services. Being single lowers the probability of choosing a
private insurance scheme, while a higher income is associ-
ated to increased probability of choosing private insurance.
Self-reported health status variables show that poorer self-
reported health levels are significant and increase the proba-
bility of using a health care service. The insurance has a sig-
nificant effect only on the number of hospital stays, while its
effect is negligible when the entrance to emergency room is
considered. However, these findings could be due to the im-
plicit assumption of strict exogeneity for the selection vari-
able.

For this reason, we define a model for PRIVINS and pro-
ceed considering the choice for a private insurance plan as
endogenous. We assume that PRIVINS is, conditionally on
the covariates and on an outcome-specific random effect,
ui0, a Bernoulli random variable; furthermore, ui0 is sup-
posed to be dependent on the random effects in the primary
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Table 4 Parametric Parameter Estimates for the Bivariate Poisson Model with Endogenous Selectivity

VARIABLE EMR HOSP PRIVINS

Coef. s.e. Coef. s.e. Coef. s.e.

COSTANT −3.7522* 0.5088 −4.2525* 0.4967 −0.8408* 0.1303

EXCLHLTH −0.5967* 0.2055 −0.6961* 0.2033

POORHLTH 0.5265* 0.1060 0.5316* 0.1033

NUMCHRON 0.2491* 0.0280 0.2821* 0.0271

ADLDIFF 0.4344* 0.0967 0.3375* 0.0944

NOREAST 0.1997* 0.1140

MIDWEST 0.5390* 0.1098

WEST −0.2487* 0.1167

AGE 0.1209* 0.0615 0.1805* 0.0596

BLACK −1.3871* 0.1088

MALE −0.0911 0.0926

MARRIED 0.6322* 0.0923

SCHOOL 0.1732* 0.0115

FAMINC 0.1138* 0.0245

EMPLOYED 0.2588 0.1574

PRIVINS 0.0173 0.2051 0.2208 0.2053

MEDICAID 0.2003 0.1402 0.1785 0.1412

ρ(ui1,ui2),ui3 −1.0000

σ 2 1.6412 1.6412 1.6735

log-likelihood −7165.1801

outcome equations. However, as remarked above, the bivari-
ate model for EMR and HOSP suggests to assume that the
random effects are shared by the primary outcomes. In the
following, we will refer to this model specification, also
known as one-factor model, Winkelmann (2000c), where
correlation among outcomes arises since all the outcomes
measured on the i-th individual share the same random
term, which account for individual extra-Poisson variation.
In this setting, PRIVINS is considered endogenous: Tables 4
and 5 show results of the parametric and semiparametric ap-
proaches, respectively. As can be noticed, the correspond-
ing point estimates in the primary outcomes equation show
changes in both magnitude and significance. In particular,
the choice for private insurance is no longer significant in
the utilization equations, either for EMR or for HOSP.

Adopting the semiparametric approach described above,
the estimate Ĝ is, still, a three-point distribution with masses
(0.5556, 0.0611, 0.3833) on locations (−1.3666,1.3851),
(2.8542,−3.1722), (1.5258,−1.5019) for the random ef-
fects in the outcomes (shared random effects) and PRIVINS
equations, respectively.

The first location corresponds to people who have a high
propensity to subscribe private insurance plans but use less
frequently health services. This suggests that people with
higher health and social status subscribe more often individ-

ual health insurance plans, but use less frequently health care
resources. The second component groups individuals with a
very low propensity to subscribe health insurance plans, but
with higher health needs; lower levels of health status are,
in fact, considerably more diffuse amongst people without
insurance than among those with a private insurance. The
third component is characterized by a reduced, but not ex-
treme, propensity to health insurance and a positive propen-
sity to utilization of hospital resources. The random effect in
the private insurance equation is negatively correlated with
those in the utilization equations. While the random terms
ui1 and ui2 in the health care equations show the impact
of latent health needs on the demand for health services
with increased utilization in component 2 and 3, the ran-
dom effect ui0 seems to represent the influence of this latent
health status on the choice for private health insurance with
increased probability in component 1.

Usually, if high risk individuals purchase more insurance
(adverse selection) the effect of insurance should actually
go down, once this type of endogeneity is accounted for.
The strong and negative correlation between the different
sources of heterogeneity suggests something else. Individ-
uals with higher health status show a higher propensity to
subscribe health insurances than those with lower status, re-
gardless of their health needs.
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Table 5 Nonparametric Parameter Estimates for the Bivariate Poisson Model with Endogenous Selectivity

VARIABLE EMR HOSP PRIVINS

Coef. s.e. Coef. s.e. Coef. s.e.

COSTANT −3.9310* 0.5660 −4.4465* 0.5572 −0.8421* 0.1305

EXCLHLTH −0.6047* 0.1973 −0.7014* 0.1946

POORHLTH 0.4618* 0.1027 0.4662* 0.0997

NUMCHRON 0.2108* 0.0263 0.2442* 0.0253

ADLDIFF 0.4070* 0.0947 0.3068* 0.0929

NOREAST 0.2013 0.1142

MIDWEST 0.5418* 0.1101

WEST −0.2441* 0.1172

AGE 0.1130 0.0594 0.1748* 0.0576

BLACK −1.3870* 0.1090

MALE −0.0880 0.0929

MARRIED 0.6328* 0.0924

SCHOOL 0.1731* 0.0115

FAMINC 0.1140* 0.0246

EMPLOYED 0.2629 0.1578

PRIVINS 0.0576 0.2424 0.2613 0.2412

MEDICAID 0.1034 0.1318 0.0781 0.1318

ρ(ui1,ui2),ui3 −0.9983

σ 2 2.4278 2.4278 2.5455

log-likelihood −7151.4870

We computed standard errors of parameter estimates us-
ing parametric bootstrap, as standard errors based on the ob-
served information matrix are often unstable. That is, we
re-fitted the model to bootstrap samples drawn from the es-
timated model. This process was repeated 250 times.

The choice of the number of components in the finite
mixture is based on the BIC criterion; as well as from a
formal LRT (performed conditional on K̂), the null hy-
pothesis of exogeneity of the selection variable (ρ13 =
ρ23 = 0) would be rejected, suggesting the choice of the
unconstrained model where the selection variable is for-
mally treated as endogenous. We can conclude that ignoring
the selection variable is endogenous would have led to bi-
ased parameter estimates for all those effects which depend
on it.

As can be easily observed, the estimated correlation be-
tween the random effects in the outcome and in the insur-
ance equations is close to unit in magnitude, which is the
boundary of the parameter space. This is true for both para-
metric and semiparametric case, even if in the latter case the
problem is more serious. In fact, when a discrete mixing dis-
tribution is adopted, the correlation coefficient is estimated
only on a small (K) number of points and when ρ is high this
can lead to a set of K points that are almost aligned. Thus,

when correlation is high, parameter estimates tend towards
the bounds of the interval (−1,1).

5 Simulation study

To investigate the empirical behavior of the proposed model,
we have conducted the following simulation study. A dataset
is generated according to an endogenous selection model,
with multiple counted outcomes; to model dependence be-
tween the outcomes and the selection process, the random
effects in the corresponding equations have been drawn from
a multivariate normal density with non-diagonal covariance
matrix. The aim of this study is to investigate if ignoring
endogeneity of the selection variable could lead to biased
estimates for the corresponding effect as well as for the ef-
fects of those covariates which are correlated, to some ex-
tent, with the selection variable.

We have generated B = 250 samples of size n = 250,
1000, 2000 each, according to the following scheme:

Yij | λij ∼ Poisson(λij ), j = 1, . . . , J

for J = 2,3,4 counts and

Yi0 | pi ∼ Bin(1,pi)
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for the selection variable. The following regression models
hold:

log(λij ) = βj0 + βj1xi1 + βj2yi0 + uij ,

j = 1, . . . , J,

logit(pi) = β00 + β01xi2 + ui0.

(13)

The covariates have been drawn from a standard Gaussian
density, while the correlated latent effects ui have been
drawn from a multivariate normal density, MVN(0,�). For
ease of discussion, the elements in � are imposed to be
equal to:

σ 2
j = 1, σjj ′ = ρ, j �= j ′ = 0, . . . , J ; ρ = {0.5;0.75}

therefore, the random effects are dependent and the selec-
tion variable can not be considered exogeneous. The choice
of a common covariance term, denoted by ρ, is motivated by
our interest in analyzing the behavior of parameter estimates
when correlation approaches 1; in this context, the reliable
estimation of the correlation between random effects in the
primary and selection equations may be of interest per se.
We assume the following true values for the parameter vec-
tors:

β0 =
[
β00

β01

]
=
[

0.5
1

]
, β1 =

⎡

⎣
β10

β11

β12

⎤

⎦=
⎡

⎣
0.5

0.75
1

⎤

⎦ ,

β2 =
⎡

⎣
β20

β21

β22

⎤

⎦=
⎡

⎣
0.75
0.5
1

⎤

⎦ , β3 =
⎡

⎣
β30

β31

β32

⎤

⎦=
⎡

⎣
1
1

0.6

⎤

⎦ ,

β4 =
⎡

⎣
β40

β41

β42

⎤

⎦=
⎡

⎣
1.5
0.6
0.5

⎤

⎦ .

Thus, β0 is the fixed effect vector for the selection model,
while the effect of the selection variable on the j -th count is
genoted by βj2, j = 1 . . . , J . We fitted the proposed model
using the algorithm described in Sect. 3 for varying number
of components, K = 2, . . . ,10. In each case, the model with
the best BIC value has been retained according to Keribin
(2000). Similar estimates for regression parameters have
been obtained using other penalized likelihood criteria, such
as the AIC; the substantial difference is in the mean number
of components used to estimate the unknown mixing dis-
tribution, which tend to be higher if the AIC is employed.
In this context, AIC has proved to perform slightly better
when the covariance matrix estimate is entailed. However,
observed differences are not substantial, and thus we pro-
ceed on employing the BIC. The EM algorithm has been
implemented in MatLab; just to give an idea of the compu-
tational effort involved, it required about 5 hours CPU time
(on a P4 based machine) to obtain parameter estimates for
250 samples with n = 2000 and k = 2, . . . ,10.

Complete simulation results are given in the Appendix;
here we focus on correlation estimates and on estimates for
the selection variable effect.

We notice the reliable behavior of the proposed model
even for small to moderate sample sizes, i.e. for n =
250,1000; the modest additional amount of computational
resources which is needed to estimate the endogenous selec-
tion model suggests that it can be used also when the asso-
ciation between outcomes is weak or we cast some doubts
about the endogeneity of the selection variable. If the endo-
geneity of the selection mechanism is not accounted for, a
severe bias of parameter estimates is recorded, regardless of
the sample size. This bias seems to increase with absolute
value of ρ (see Table 10 in the Appendix). As can be seen,
the estimated effects of the selection variable are perma-
nently biased, and the bias does not show any regular behav-
ior for increasing n or ρ. Other model parameters are consis-
tently estimated, as the adopted covariates are independent
on the mechanism generating the selection variable; this set-
ting is likely unrealistic, and the behavior of the exogenous
model should be better investigated to understand the effect
of ignoring endogeneity of the selection variable on para-
meter estimates when some of the adopted covariates are
dependent on the selection mechanism. On the other hand,
taking into account the endogeneity of the selection variable,
estimates of selection variable effects, β̂j2, j = 1, . . . ,4 are
nearly unbiased (see Fig. 1).

From a computational perspective, it might be interesting
to show the behavior of the proposed algorithm by starting
the EM algorithm from the real parameter values; this would
help us to distinguish between variability due to the perfor-
mance of the proposed estimator and that intrinsically due to
the EM algorithm. Just to give an idea, we fitted the bivariate
model for n = 250 by using true parameter values as starting
values (results are displayed in Table 11 in the Appendix).
As expected, both bias and standard errors reduce in magni-
tude, showing the presence of a (non-significant) bias due to
computational aspects related to algorithm implementation.

Until now, we have shown the behavior of the proposed
model for bivariate counts, but the model can be easily im-
plemented for J ≥ 2 counted responses. Tables 12–13 in the
Appendix entail the case with J = 3,4 counts and a binary,
endogenous, selection, corresponding estimated effects are
summarized in Figs. 2–3.

Computational complexity does increase linearly with
the number of responses, say J ; thus, the proposed approach
is not computationally intensive or time consuming per se.
The need for a formal strategy to choose starting values may
be somewhat cumbersome for J = 3,4, but, still, the com-
putational effort is linear in the number of the starting value
sets, the (fixed) number of components and the sample size.
As an empirical evidence, we found out that using a short-
length CEM algorithm to start the core EM algorithm tends
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Fig. 1 Simulation results for
the bivariate Poisson model with
endogenous
selectivity—Boxplot for the
selection variable effect
estimates, true values in
brackets

Fig. 2 Simulation results for the trivariate Poisson model with endogeneous selectivity—Boxplot for the selection variable effect estimates, true
values in brackets

Fig. 3 Simulation results for the quadrivariate Poisson model with endogeneous selectivity—Boxplot for the selection variable effect estimates,
true values in brackets
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Table 6 Simulation results for the bivariate Poisson model with endogeneous selectivity—Corrleation coefficient estimates

n = 250 n = 1000 n = 2000

ρ = 0.5 ρ = 0.75 ρ = 0.5 ρ = 0.75 ρ = 0.5 ρ = 0.75

ρ̂12 0.5482 0.7825 0.5142 0.7478 0.5085 0.7501

ρ̂10 0.5908 0.8520 0.5473 0.8098 0.5336 0.8063

ρ̂20 0.5848 0.8490 0.5423 0.8093 0.5297 0.8082

Table 7 Simulation results for the trivariate Poisson model with endogeneous selectivity—Corrleation coefficient estimates

n = 250 n = 1000 n = 2000

ρ = 0.5 ρ = 0.75 ρ = 0.5 ρ = 0.75 ρ = 0.5 ρ = 0.75

ρ̂12 0.5466 0.7971 0.5107 0.7629 0.5083 0.7536

ρ̂13 0.5439 0.7961 0.5281 0.7607 0.5067 0.7582

ρ̂23 0.5433 0.8035 0.5194 0.7676 0.5049 0.7488

ρ̂10 0.5651 0.8574 0.5541 0.8182 0.5475 0.8107

ρ̂20 0.5655 0.8503 0.5583 0.8152 0.5521 0.8115

ρ̂30 0.5634 0.8475 0.5612 0.8254 0.5514 0.8215

Table 8 Simulation results for the quadrivariate Poisson model with endogeneous selectivity—Corrleation coefficient estimates

n = 250 n = 1000 n = 2000

ρ = 0.5 ρ = 0.75 ρ = 0.5 ρ = 0.75 ρ = 0.5 ρ = 0.75

ρ̂12 0.5658 0.7896 0.5158 0.7436 0.5050 0.7509

ρ̂13 0.5542 0.7912 0.5122 0.7609 0.4988 0.7522

ρ̂14 0.5564 0.7868 0.5214 0.7676 0.5099 0.7516

ρ̂23 0.5683 0.7805 0.5172 0.7413 0.5019 0.7489

ρ̂24 0.5661 0.7764 0.5156 0.7614 0.5083 0.7491

ρ̂34 0.5611 0.7825 0.5093 0.7644 0.5080 0.7508

ρ̂10 0.5667 0.8485 0.5525 0.8201 0.5511 0.8174

ρ̂20 0.5772 0.8548 0.5518 0.8171 0.5516 0.8096

ρ̂30 0.5607 0.8494 0.5565 0.8325 0.5520 0.8274

ρ̂40 0.5684 0.8574 0.5546 0.8369 0.5538 0.8270

to substantially reduce the need to employ several different
starting values.

When we look at parameter estimates, we observe a be-
havior which is close to the one observed for J = 2 counts;
increasing the sample size leads to nearly unbiased parame-
ter estimates, for fixed value of ρ (see Tables 12–13 in the
Appendix). For sake of brevity, we do not report here para-
meter estimates for the model postulating exogeneity of the
selection variable, since the behavior of the parameter esti-
mates is qualitatively similar to the one observed before. The
variance of the parameter estimates reduces with increasing
sample size, but the bias does not, at least not substantially;
in particular, the bias is increasing with ρ, regardless of the
corresponding sample size.

While the proposed model is relatively easy to imple-
ment, there are a number of problems that may limit its
usefulness in practice; a major problem is related to the es-
timation of covariance between the random effects in the
primary and selection equations. While identifiability of the
global model is ensured by conditions given above, and the
covariance matrix is straightforwardly calculated, the corre-
sponding estimates are not completely reliable. In fact, as
the value of ρ increases, we registered a clear tendency to
provide less stable estimates of the covariance/correlation
coefficient between the random effects in the counted re-
sponse and in the selection equations (see Tables 6–8). Esti-
mates of ρ̂ are shown in Table 6 for the bivariate case; a clear
and consistent pathcan be noticed as the sample dimension,
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n, increases, regardless of the values of the correlation co-
efficient (see Table 9 in the Appendix for estimates of β̂).
The only differences which can be observed when the corre-
lation among the latent effects varies are in the accuracy of
parameter estimates, since the results seem more stable for
higher (absolute) values of ρ. This can be explained by the
smaller number of components which is necessary to esti-
mate G(·) when ρ 	 1; this produces a smaller variability in
the resulting estimates due to reduced uncertainty with re-
spect to the number of mixture components. The vice-versa
is true when ρ decreases in absolute value towards zero. In
the following tables terms ρjj ′ , j �= j ′ = 1, . . . ,4 refer to the
estimated correlation coefficients between the latent effects
in the two outcome equations while values ρj0, j = 1, . . . ,4
refer to the correlation between the random effects in the
j -th outcome equation and those in the selection equation.

It may be noticed that the correlation coefficient is not a
formal parameter of the proposed model, but it is rather a by-
product of the adopted estimation approach. Our proposal is
roughly based on the use of a finite mixture to approximate
the distribution of the primary responses and the selection
variable; the mixing distribution estimates is, in this context,
a discrete distribution on K support points and, unless K is
fixed great enough, the resulting estimate is only a rough
approximation of the true G(·). Reasonably, this can be also
due to the variance estimates of the random effect in the (bi-
nary) selection process which is usually higher than those in
the counted responses equations; the estimated locations for
the random effect in the binary regression are usually greater
than those in the primary response equations, and may force
the ρ estimates towards the corresponding bounds.

6 Concluding remarks

In this paper we discuss a mixed effect model for multivari-
ate counts, when a binary, potentially endogenous, selection
source is included in the linear predictor for the primary re-
sponses. The proposed model is a semiparametric ML al-
ternative to the models discussed by Munkin (2003) and
Munkin and Trivedi (2003). We propose to use a finite mix-
ture representation for the regression model, estimating the
unknown (multivariate) random effect distribution through
a discrete (multivariate) distribution. Finite mixture models
are particularly suited for health data modeling since they
lead to identify potential clusters characterized by a simi-
lar propensity to the event(s) of interest. Obviously, mix-
ture components do not necessarily correspond to clusters:
the component specific densities could simply represent the
departure from a misspecified homogeneous model (in this
case the Poisson model).

Results obtained in a simulation study seem to suggest
a reliable finite sample behavior of the proposed model in a
wide variety of empirical applications; in particular, even for
moderate sample sizes model parameter estimates seem to
be nearly unbiased. Correlation estimates suffer, however, of
some overestimation when the true ρ is near to the bounds;
this can be due to the discrete nature of the estimated mixing
distribution which is able to capture dependence between
random effects and/or extra-Poisson variation, but is not able
to provide accurate estimates for the correlation coefficients.

Appendix: Simulation results

Table 9 Simulation results for the bivariate Poisson model with endogenous selectivity

n = 250 n = 1000 n = 2000

ρ = 0.5 ρ = 0.75 ρ = 0.5 ρ = 0.75 ρ = 0.5 ρ = 0.75

β̂10 0.4828 0.4723 0.4981 0.4903 0.5021 0.5047

(s.d.) (0.4774) (0.4726) (0.2991) (0.3035) (0.1864) (0.1833)

β̂11 0.7262 0.7276 0.7462 0.7483 0.7469 0.7502

(s.d.) (0.2250) (0.2223) (0.1057) (0.1089) (0.0862) (0.0738)

β̂12 1.0920 1.0576 1.0669 1.0299 1.0334 1.0138

(s.d.) (0.4949) (0.4302) (0.2420) (0.2731) (0.2108) (0.1948)

β̂20 0.7213 0.7258 0.7399 0.7445 0.7582 0.7532

(s.d.) (0.4510) (0.4595) (0.2990) (0.2970) (0.1831) (0.1769)

β̂21 0.4503 0.4557 0.4892 0.5017 0.4952 0.5006

(s.d.) (0.2176) (0.2244) (0.1003) (0.1042) (0.0792) (0.0735)

β̂22 1.0942 1.0751 1.0651 1.0204 1.0301 1.0002

(s.d.) (0.4499) (0.4221) (0.2807) (0.2649) (0.2110) (0.1948)

β̂00 0.5427 0.5449 0.4923 0.5031 0.4943 0.5003

(s.d.) (0.5023) (0.4866) (0.3012) (0.3192) (0.1579) (0.1509)

β̂01 1.0921 1.0794 0.9713 0.9978 0.9936 1.0012

(s.d.) (0.2292) (0.2364) (0.1353) (0.1234) (0.0806) (0.0959)
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Table 10 Simulation results for the bivariate Poisson model with exogenous selectivity

n = 250 n = 1000 n = 2000

ρ = 0.5 ρ = 0.75 ρ = 0.5 ρ = 0.75 ρ = 0.5 ρ = 0.75

β̂10 0.5253 0.4458 0.4757 0.6611 0.5167 0.5193

(s.d.) (0.3325) (0.3438) (0.1742) (0.1717) (0.0961) (0.0832)

β̂11 0.6253 0.6177 0.7005 0.6997 0.7409 0.7441

(s.d.) (0.1957) (0.2018) (0.1026) (0.1075) (0.0860) (0.0738)

β̂12 1.3604 1.4304 1.3271 1.5102 1.3282 1.3342

(s.d.) (0.2526) (0.2522) (0.1707) (0.1646) (0.1026) (0.0954)

β̂20 0.6486 0.6525 0.7101 0.6925 0.7502 0.7343

(s.d.) (0.3340) (0.3480) (0.1737) (0.1689) (0.1052) (0.0995)

β̂21 0.3863 0.3875 0.4637 0.4531 0.4932 0.4951

(s.d.) (0.1912) (0.1986) (0.1010) (0.1023) (0.0759) (0.0700)

β̂22 1.3873 1.4242 1.3322 1.4171 1.3308 1.3961

(s.d.) (0.2294) (0.2470) (0.1494) (0.1515) (0.1088) (0.1001)

β̂00 0.6560 0.6407 0.5431 0.5429 0.4899 0.4914

(s.d.) (0.3217) (0.3432) (0.1695) (0.1741) (0.1034) (0.0964)

β̂01 0.8769 0.8691 0.9430 0.9608 0.9806 0.9846

(s.d.) (0.1908) (0.2002) (0.1766) (0.1779) (0.0867) (0.0859)

ρ̂12 0.5925 0.8024 0.5842 0.7478 0.5085 0.7501

Table 11 Simulation results for
the bivariate Poisson model with
endogenous selectivity. Starting
values set to real parameter
values

n = 250

ρ = 0.5 ρ = 0.75

β̂10 0.4890 0.4970

(s.d.) (0.1840) (0.1876)

β̂11 0.7404 0.7422

(s.d.) (0.0387) (0.0355)

β̂12 1.0242 0.9922

(s.d.) (0.1595) (0.1787)

β̂20 0.7346 0.7467

(s.d.) (0.1577) (0.1051)

β̂21 0.5091 0.5019

(s.d.) (0.0343) (0.0355)

β̂22 1.0406 1.0186

(s.d.) (0.1548) (0.1736)

β̂00 0.4877 0.4912

(s.d.) (0.3484) (0.3311)

β̂01 0.9544 0.9873

(s.d.) (0.2278) (0.2304)
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Table 12 Simulation results for the trivariate Poisson model with endogenous selectivity

n = 250 n = 1000 n = 2000

ρ = 0.5 ρ = 0.75 ρ = 0.5 ρ = 0.75 ρ = 0.5 ρ = 0.75

β̂10 0.5417 0.4823 0.4995 0.4994 0.5024 0.4974

(s.d.) (0.3867) (0.3565) (0.1585) (0.1478) (0.0924) (0.0802)

β̂11 0.7002 0.6976 0.7395 0.7345 0.7474 0.7469

(s.d.) (0.2237) (0.2222) (0.1690) (0.1540) (0.0945) (0.0957)

β̂12 1.0871 1.0663 1.0508 1.0267 1.0036 1.0064

(s.d.) (0.3924) (0.3782) (0.1700) (0.1615) (0.1171) (0.1244)

β̂20 0.6828 0.7326 0.7389 0.7346 0.7503 0.7441

(s.d.) (0.3312) (0.3118) (0.1518) (0.1679) (0.1011) (0.0904)

β̂21 0.4408 0.4516 0.4586 0.4678 0.5016 0.5027

(s.d.) (0.2247) (0.2362) (0.1414) (0.1332) (0.0810) (0.0921)

β̂22 1.0924 1.0785 1.0471 1.0328 1.0018 0.9993

(s.d.) (0.3444) (0.3344) (0.1642) (0.1760) (0.1073) (0.1086)

β̂30 1.0652 0.9541 1.0466 1.0453 1.0042 0.9920

(s.d.) (0.3378) (0.3285) (0.1499) (0.1469) (0.0940) (0.0925)

β̂31 0.9553 0.9807 0.9842 0.9931 1.0033 0.9980

(s.d.) (0.2241) (0.2212) (0.1081) (0.1103) (0.1196) (0.1051)

β̂32 0.5480 0.5337 0.5742 0.5675 0.5982 0.5898

(s.d.) (0.2613) (0.2355) (0.1709) (0.1623) (0.1186) (0.1090)

β̂00 0.5539 0.5810 0.4867 0.4819 0.5044 0.5029

(s.d.) (0.3538) (0.3346) (0.1923) (0.1940) (0.1134) (0.1002)

β̂01 1.0532 1.0700 0.9562 0.9753 1.0093 1.0175

(s.d.) (0.2222) (0.2409) (0.1692) (0.1706) (0.1039) (0.1172)

Table 13 Simulation results for the quadrivariate Poisson model with endogenous selectivity

n = 250 n = 1000 n = 2000

ρ = 0.5 ρ = 0.75 ρ = 0.5 ρ = 0.75 ρ = 0.5 ρ = 0.75

β̂10 0.5745 0.4811 0.5456 0.5076 0.5128 0.4975

(s.d.) (0.2500) (0.2774) (0.1294) (0.1141) (0.1023) (0.0980)

β̂11 0.7032 0.7254 0.7273 0.7318 0.7592 0.7529

(s.d.) (0.1843) (0.2113) (0.1171) (0.1230) (0.0752) (0.0861)

β̂12 1.1137 1.0971 1.0271 1.0278 1.0040 0.9994

(s.d.) (0.3054) (0.3172) (0.1865) (0.1967) (0.1105) (0.1145)

β̂20 0.7875 0.7284 0.7466 0.7335 0.7482 0.7508

(s.d.) (0.2508) (0.2771) (0.1438) (0.1424) (0.0960) (0.1071)

β̂21 0.4638 0.4973 0.4840 0.4907 0.4980 0.5004

(s.d.) (0.2076) (0.2336) (0.1322) (0.1293) (0.0874) (0.0914)

β̂22 1.1036 1.0362 0.9832 1.0248 0.9904 1.0035

(s.d.) (0.3055) (0.2949) (0.1947) (0.2096) (0.1052) (0.1120)

β̂30 1.0367 0.9689 0.9837 0.9915 1.0011 1.0037

(s.d.) (0.2721) (0.2806) (0.1599) (0.1637) (0.0930) (0.0823)

β̂31 1.0170 0.9808 0.9785 0.9809 1.0024 0.9993

(s.d.) (0.2178) (0.2226) (0.1215) (0.1190) (0.0855) (0.0820)

β̂32 0.6321 0.5659 0.6137 0.6266 0.6071 0.6087

(s.d.) (0.3287) (0.2730) (0.1329) (0.1263) (0.0798) (0.0724)
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Table 13 (Continued)

n = 250 n = 1000 n = 2000

ρ = 0.5 ρ = 0.75 ρ = 0.5 ρ = 0.75 ρ = 0.5 ρ = 0.75

β̂40 1.5541 1.4313 1.4810 1.5239 1.5084 1.5063

(s.d.) (0.2436) (0.2683) (0.1350) (0.1473) (0.1021) (0.1031)

β̂41 0.5359 0.5557 0.5770 0.5901 0.5938 0.6011

(s.d.) (0.1843) (0.2004) (0.1307) (0.1368) (0.0972) (0.0901)

β̂42 0.6398 0.5590 0.5111 0.5167 0.5076 0.5061

(s.d.) (0.3133) (0.2856) (0.1861) (0.2007) (0.1159) (0.1213)

β̂00 0.5995 0.6073 0.4983 0.4903 0.4994 0.5016

(s.d.) (0.3560) (0.3644) (0.1918) (0.2066) (0.1190) (0.1236)

β̂01 0.9988 1.0234 0.9993 1.0213 0.9975 1.0111

(s.d.) (0.2181) (0.2113) (0.1458) (0.1528) (0.0807) (0.0825)

References

Alfò, M., Aitkin, M.: Variance component models for longitudinal
count data with baseline information: epilepsy data revisited. Stat.
Comput. 16, 231–238 (2006)

Alfò, M., Trovato, G.: Semiparametric mixture models for multivariate
count data, with application. Econom. J. 7, 1–29 (2004)

Biernacki, C., Celeux, G., Govaert, G.: Choosing starting values for
the EM algorithm for getting the highest likelihood in multivariate
Gaussian mixture models. Comput. Stat. Data Anal. 41, 561–575
(2003)

Böhning, D.: Computer-assisted Analysis of Mixtures and Applica-
tions: Meta-analysis, Disease Mapping and Others. Chapman &
Hall/CRC, London (2000)

Böhning, D.: The EM algorithm with gradient function update for dis-
crete mixtures with known (fixed) number of components. Stat.
Comput. 13, 257–265 (2003)

Cameron, A., Trivedi, P.: Microeconometrics: Methods and Applica-
tions. Cambridge University Press, Cambridge (2005)

Chib, S., Winkelmann, R.: Markov chain Monte Carlo analysis of cor-
related count data. J. Bus. Econ. Stat. 19, 428–435 (2001)

Crouch, E., Spiegelman, D.: The evaluation of integrals of the
form

∫∞
−∞ f (t) exp(−t2)dt : application to logistic-normal mod-

els. J. Am. Stat. Assoc. 85, 464–469 (1990)
Crouchley, R., Davies, R.: A comparison of population average and

random effect models for the analysis of longitudinal count data
with baseline information. J. R. Stat. Soc. A 162, 331–347 (1999)

Davidson, R., Mackinnon, J.: Estimation and Inference in Economet-
rics. Oxford University Press, Oxford (1993)

Deb, P., Holmes, A.: Estimates of use and costs of behavioural health
care: a comparison of standard and finite mixture models. Health
Econ. 9, 475–489 (2000)

Deb, P., Trivedi, P.: Demand for medical care by the elderly: a finite
mixture approach. J. Appl. Econom. 12, 313–336 (1997)

Deb, P., Munkin, M., Trivedi, P.: Bayesian analysis of the two-part
model with endogeneity: application to health care expenditure.
J. Appl. Econom. 21, 1081–1099 (2006)

Feng, Z., McCulloch, C.: Using bootstrap likelihood ratios in finite
mixture models. J. R. Stat. Soc. B 58, 609–617 (1996)

Follmann, D., Lambert, D.: Identifiability of finite mixtures of logistic
regression models. J. Stat. Plan. Inference 27, 375–381 (1991)

Fotohui, A.: The initial conditions problem in longitudinal binary
process: a simulation study. Simul. Model. Pract. Theory 13, 566–
583 (2005)

Geyer, C., Thompson, E.: Constrained Monte Carlo maximum likeli-
hood for dependent data. J. R. Stat. Soc. B 54, 657–699 (1992)

Gueorguieva, R.: A multivariate generalized linear mixed model for
joint modelling of clustered outcomes in the exponential family.
Stat. Model. 1, 177–193 (2001)

Harry, J.: Multivariate Models and Multivariate Dependence Concepts.
Chapman & Hall/CRC, London (1997)

Heckman, J., Singer, B.: A method for minimizing the impact of distri-
butional assumptions in econometric models of duration. Econo-
metrica 52, 271–320 (1984)

Jank, W., Booth, J.: Efficiency of Monte Carlo EM and simulated max-
imum likelihood in two-stage hierarchical models. J. Comput.
Graph. Stat. 12, 214–229 (2003)

Karlis, D., Meligkotsidou, L.: Multivariate Poisson regression with co-
variance structure. Stat. Comput. 15, 255–265 (2006)

Karlis, D., Meligkotsidou, L.: Finite mixtures of multivariate Poisson
distributions with application. J. Stat. Plan. Inference 137, 1942–
1960 (2007)

Keribin, C.: Consistent estimation of the order of mixture models.
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