
MATRIX OPERATORS AND HYPERINVARIANT
SUBSPACES

F. RADULESCU AND F.-H. VASILESCU

ABSTRACT

In this paper we study the super-decomposability of some matrix operators as well as some other special
properties. These matrix operators are derived from non-analytic functional calculi. As by-products, we
obtain statements concerning the existence of (non-trivial) hyperinvariant subspaces.

1. Introduction

Let A' be a complex Banach space and let S£(X) be the algebra of all bounded
linear operators acting on X. For each SeJ?(X) we denote its spectrum by o(S).

For a fixed integer n ^ 1, let X" denote the Banach space X®...® X (n copies).
Every operator Te^X") can be represented as a matrix ( 7 ^ ) " ^ , where Tjlce 2£(X)
for each pair of indicesy, k. We shall study in the sequel a class of operators Te S£(X")
with the property that the operators Tjk from the matrix representation of T
mutually commute. To present this class, we need some preliminaries.

Let Q be a compact topological space, let C(Q) be the algebra of all complex-
valued continuous functions on Q, and let A c= C(Q) be a (not necessarily closed)
subalgebra. We recall that A is said to be normal if, for every open cover {Glt..., Gm}
of Q, there are positive functions/15.. .,fm in A such that supp (fp) c Gp (p = 1,..., m)
and

f1(co)+...+fm(<o)=l

for all caeCl. In particular, \eA (the positivity of the functions/15 ...,/„, will play no
role in what follows).

1.1 DEFINITION. For an algebra A a C(Q) we shall consider the following
properties:

(i) A is a normal algebra;
(ii) for every pair f,heA such that

supp(/j) c {co€Q:J{(o) # 0},

the function co -*• h(co)/J{co), extended with zero outside the set supp (//), is an element
of A;

(iii) A has a Banach algebra structure which makes the inclusion A cr C(fi)
continuous.

We shall indicate at the beginning of each section which of these hypotheses on
the algebra A are going to be used.
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It is clear that C(Q) has the properties (i), (ii) and (iii). If O is the closure of a
relatively compact open subset of IRm, then the algebra O(Q) of all functions r-times
differentiate in the interior of Q whose partial derivatives up to order r have
continuous extensions to Q, also has the properties (i), (ii) and (iii). These are, in fact,
the most significant examples that we have in mind.

If A is an arbitrary commutative unital algebra, we denote by Mn(A) the algebra
of « x/j-matrices whose entries are elements of A. The algebra Mn(A) will some-
times be regarded as an ,4-module. Every unital algebra morphism O: A -»JSf (X)
induces a unital algebra morphism <I>n: Mn(A) -»• JSf(A™), defined by the equality
<!>„(«) = (<D(«,*))JVI» where a = ( ^ g

1.2 DEFINITION. Let A a C(Q) be an algebra with the properties (i) and (ii)
from Definition 1.1. An operator TeJSf(A^) will be called (A,n)-scalar if there
exists a unital algebra morphism <!>: A -> S£{X) and an element T e Mn(A) such that
r=<Dn(T).

This concept extends the concept of ^-spectral operator, introduced in [9], which
in turn extends that of «-normal operator [7]. When A is an admissible algebra of
continuous functions, then Definition 1.2 also provides an extension of the concept
of /4-scalar operator [5,12] (with respect to this class of admissible algebras).

One of the main purposes of this paper is to prove that every (A, «)-scalar operator
is super-decomposable [8] (in particular decomposable [5,12]). Specifically, we shall
show that if TeS^iX11) is (v4,«)-scalar and {Uv U2} is an open cover of a(T), then
there exists an operator ReSfiX11) such that RT = TR, aiTlRiX11)) <r Ux and
a{T\{\ n — R){Xn)) a U2 (where ln is the identity of A™; we use the same notation for
the identity of Mn{A)). With the terminology of [8], this means precisely that an
(/4,«)-scalar operator is super-decomposable (see Theorem 3.9).

The decomposability of an (/J,n)-scalar operator TeS£{Xa) can be used to derive
the existence of a proper hyperinvariant subspace (that is, invariant under each
operator commuting with T), when a{T) contains at least two points. This explains
one of the main results of [9] (see Corollary 3.7 and Remark 3.8).

By analysing the spectrum of an (/l,«)-scalar operator T (Theorem 4.6), we shall
obtain the existence of hyperinvariant subspaces of T, even if o{T) contains only one
point, provided that T is not a multiple of the identity; thus we obtain a complete
extension of [7, Theorem 5.3] (see Corollary 4.8).

In connection with this subject, we also refer to [2,6,10,11]. We can apply our
methods to a large enough class of matrix operators, including matrices of generalized
scalar operators given by a specral distribution [5].

2. A spectral capacity

Let A a C(Q) be a normal algebra. We also fix a unital algebra morphism
O: A -> S£(X) and denote by On the corresponding morphism of Mn(A) into ^{X11)
induced by <X>.

Since a matrix a = (a^ . ) "^ <= Mn(A) can be regarded as a function a: Q -* Mn

(where Mn = Mn(C) c= Mn(A)), the notation a(a>) = (<xjk(co))f k_l (co € Q) and supp (a)
makes sense. Moreover,

supp (a' • a") cr supp (a') (1 supp (a")

for each pair a',</'eMn(A).
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For every ft A we denote by S(f)€Mn(A) the matrix S(f) = (£#/)£*_!, where
Sjk is the Kronecker symbol. Notice that 5 is, in fact, a unital algebra morphism of
A into Mn{A) and that S(A) is in the centre of Mn(A).

The set supp (O) (that is the support of <D) is defined as the intersection of all closed
sets Fez Q such that Q>(J) = 0 whenever supp(/) cr Q\F(feA). The set supp(<Dn) is
defined in a similar way. It is easily seen that supp (On) = supp ($). (Note that
supp (a) = (J{supp(«,fc): 1 ̂ j,k ^ n) for each a = ( a ^ ) ^ e Mn(A).)

2.i PROPOSITION. For every closed set Fez Q we define the space

Xl(F) = Hiker (<Dn(a)): supp ( a ) n f = 0 } . (2.1)

Then the assignment F-* X£(F) is a spectral capacity [3,12].

Proof. We follow some lines from the proof of [12, Theorem IV.7.3] (see also

[1]).
It is clear that X%(F) is a closed linear subspace of X™. It is easily seen that

K(0) = {0}, *£(fi) = A"1 and *»(/?) a Xl(F2) whenever F, c= F2.
Let {Glt..., Gm} be an open cover of Q. Since A is normal, we can find functions

fv ...,/„, in ^ such that supp(/p) c Gp (/> = 1, ...,m) and / x + . . . +fm = 1. Let
ap = ^(/p) ; therefore supp(ap) e Gp and ax + . . . +a m = ln. It is then clear that

We have only to note that

<Dn(ap

for every /?, and therefore

(2.2)

Now, let {Fy}yer be an arbitrary family of closed subsets of Q. We shall prove
that

p3
Since the mapping F - ^ A ^ ^ ) is increasing, it suffices to prove that the right-hand
side of (2.3) is contained in the left-hand side. Let xeX%,(Fy) for all y e F and let
Fo = (~){Fy: yeF}. Let also <xeMn(A) be such that supp(a)ni£ = 0 . Since supp (a)
is compact, we can choose open sets Hg = Q\Fy (q=l,...,r) such that
supp (a) c= H1 U ... U Hr. If Ho = Q\supp (a), there are functions h0, h1}...,hrmA such
that ho + h1 + ... + hr = 1 and supp (A,) <= Hq (q = 0,1, ... ,r). Let $q = S(hg)eMn(A)-

T h e n <Dn(a)x = O.(o^) J:+ O, (aA)*+. . . +On(a^r)x.

Since supp (a) n supp (y90) = 0 and supp(a/?9) n Fy = 0 (1 ^ q ^ r), we have
®n(

aPq)x - 0 for all q = 0,1, ...,r. Consequently On(a)x = 0, so that x is contained
in the left-hand side of (2.3). The proof of Proposition 2.1 is complete.

2.2 COROLLARY. LetfsA be such that supp(/) n supp(<I>) = 0 . Then <!>(/) = 0.

Proof. Consider first a closed set F a Q such that if he A and supp (h)(]F= 0,
then <D(A) = 0. In this case we must have X%(F) = Xn, by (2.1). Indeed, if aeMn(A)
and supp (a) n F = 0, then <Dn(a) = 0, that is ker(On(a)) = JT.
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Now, let {FY}yer be the family of all closed subsets of Q sharing the property of F.
Then f]{Fy: ysF} = supp(O). Since supp(S(f)) 0 supp(O) = 0 , it follows that

ker(On(<5(/))) 3 *»(supp(O)) = fl * " 0 p = *">
yeT

by (2.3) and the first part of the proof. Consequently <D(/) = 0.

2.3 COROLLARY. For every closed F <= Q we have the equality

Proof. As we have noted in the proof of Corollary 2.2,

Therefore
X%(F) = X* n Xl(F) = Xl(F(] supp(O)),

by (2.3).

2.4 REMARK. We have not used so far the fact that the functions of A are
continuous.

A supplementary condition on the algebra A c C(Q) makes the mapping
<J>n: Mn(A) -> <£{X*) injective on its support.

2.5 LEMMA. Assume that the algebra A also has the property (ii) of Definition 1.1.
V/"<X>n(a) = Ofor some a.eMn(A), then <x(co) = 0 for every coesupp(O).

Proof Note first that if <!>(/) = 0 for some / e / l , then /(a>) = 0 for every
a> e supp (O).

Indeed, if /ie^4 is such that supp(/i) <= G = {coeQ:J{co) # 0}, then the extension
hx of the function co\->h(co)/J{co) belongs to A and we have O(/i) = O ^ J O C / ) = 0.
Therefore supp(O) C\G = 0.

Now, if <J>n(a) = 0 and a = (a,fc)" fc_l5 then O(aiJfc) = 0 for each pair (j, k). By the
previous remark, it follows that a(co) = 0 for all coe supp (O).

3. Decomposability

In this section A will denote a subalgebra of C(Q) with the properties (i) and (ii)
from Definition 1.1. Let O: A -> S£{X) be a fixed initial algebra morphism. We also
fix an element x = (xjk)lk_xeMn{A). Let T = <Dn(r) € i f (X"), that is, Tis (^,«)-scalar.
From the defining relation (2.1), it follows easily that TX%(F) c X%(F) for all closed
subsets F <= Q.

3.1 LEMMA. For every closed FczQ we have the inclusion

cueF

r/ie ^e/ on the right-hand side is closed.
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Proof. We use the well-known equality

<J(T(CO)) = {z e C : det (z 1 n - T(CO)) = 0}, co e fi,

where det stands for determinant. It is also an elementary fact that there exists a
matrix x+(z)eMn(A) such that

(zln-T)T,(z) = T#(z)(zln-T) = <5(det(zln-r)) (3.1)

for each zeC.
Now, let z eC be such that det(zln — T(CO)) # 0 for all OJEF. We take a function

he A such that h = 1 in a neighbourhood of JF and

supp(/i) c f a e f l : det(zln-T(w)) ^ 0}.

Since det(zln — T)EA and y4 has the property (ii) of Definition 1.1, the function
g(ca) = h(co) (det (z\n — r((o))~1 (equal to zero outside the set supp(/i)) is an element of
A. From (3.1) we deduce that

(zln-T)<i>n(gT*(z)) = ®n(gU{z)){z\n-T)= Q>Mh)).

Since we have supp(l -h) n F = 0 , it is clear that Q>n(S(h)) \ Xl(F) is the identity on
Xl(F). Therefore

Finally, if det(zln — r(a>)) ^ 0 for all coeF, then there exists a neighbourhood V
of z such that if we V, then det(vvln-i(a>)) # 0 for all <weF. Consequently, the set
\J{a(r(co)): coeF} is closed.

3.2 REMARK. The inclusion in the statement of Lemma 3.1 can be written as

a(T\XZ(F)) c: []{<J(T(CO)): coeFf) supp(O)},

using Corollary 2.3.

3.3 LEMMA. Let L cz C be a closed set and let

6(L) = {coe£l: a(r(co)) OL^0}.

Then 9(L) is a compact subset of Q with the property that a(J\ X%(F)) n L = 0
whenever 6(L) f]F= 0, F closed in Q.

Proof. If (D0$6(L), then (T(T(CO0)) n L = 0 . Thus, by the upper semicontinuity
of the spectrum, there exists a neighbourhood Wo of <w0 such that <T(T(O;)) n L = 0 for
each coeW0. Hence Q\6(L) is open.

Now, let F = F cz Q be such that 0(L) 0 F = 0 . If z were a point of
a(T\X%(F)) n L, then, by virtue of Lemma 3.1, there would exist a point coeF such
that ze<7(f(a>)). Therefore coe0(L) n i% which contradicts the choice of F.

3.4 LEMMA. The operator T satisfies the condition (f$) of Bishop [4].

Proof. We have to show that if U <= C is an arbitrary open set and {gj,}^ is a
sequence of X11-valued functions, analytic in U, such that ( z l n - T)gp(z) -> 0 (/> -> oo)
uniformly on the compact subsets of U, then it follows that gp(z) -> 0 (/? -> oo)
uniformly on the compact subsets of C/.
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Let {#„)*_! be a sequence as above and let A <= U be a fixed closed disc. We show
that gp(z) -> 0 (p -> oo) uniformly on A.

We consider the set 0(A) <= Q (defined in Lemma 3.3) and fix a point co0 e 0(A). Let
Do c Do <= U be an open disc containing A and let VQ c C be an open set such that
DoOVo — 0 and <T(T(O)0)) C= DO U ^ , which is obviously possible. By the upper
semicontinuity of the spectrum, we infer the existence of an open neighbourhood
WQ of co0 in Q such that if coelV0, then a(r((o)) <= Z>0 U ^ . This procedure can
be applied to any point co of 0(A). By the compactness of 0(A) (Lemma 3.3), we
obtain a finite open cover {lV1,...,Wm} of 0(A), open discs D1,...,Dm whose
closures are in U and open sets Vv..., Vm in C such that Dq =) A, Dq n Ĵ  = 0 and
<7(T(O))) C / ) 9 U K , for every ooeWq (q = \, ...,m). Let Wm+1 = Q\0(A). We take the
functions h1,...,hm,hm+1 from A such that /»! + . . .+ hm + hm+1 = 1 and supp(/ifl) c= WQ

(q = 1, . . . ,m+ 1). Then consider the matrices <xq = S(hq). Note that

<&» W ^ ) e A^(supp (a,)), q = \,...,m,m+\,

and that a{T\A^(supp(ae)) c ^ u F , ( ? = l , . . , 4 Since 5 ? n K 4 = 0, we can take
another open disc D'q => Dq'\n U such that Dqf]Vq = 0 (\ ^q ^m). Note that the
operator

is invertible for z e Dq\Dq and that <I>n(ag) commutes with T. Therefore, as p -* oo
^n(a«)^p(z) ~* 0 uniformly on the compact subsets of Z)g. By the maximum principle,
we deduce that On(a9)gp(z) -> 0 (/> -• oo) uniformly on /) , , in particular on A, for every
q= l,...,m.

From Lemma 3.3 we obtain that

Hence On(am+1)gp(z) -* 0 (p -* oo) uniformly on A, and therefore

gp(z) = <&n((<x1)gp(z)+ ... + On(am+1)gp(z) -> 0 (^ -> oo)

uniformly for zeA.
The general assertion now follows by covering an arbitrary compact subset

L a U with a finite number of closed discs and applying the previous argument to each
of these discs.

Since T satisfies the condition (Jf), it follows that T has the single-valued extension
property. In particular, we can discuss the spectral spaces

X»T(L) = {xeXn:yT(x)c:L}, (3.2)

where L a C is an arbitrary closed set and yT{x) is the local spectrum of T at x (see
[5] or [12] for details). In addition, the space X%{L) is closed (which is an easy
consequence of the condition (/?)), X^(L) is invariant under every operator that
commutes with T (that is X^(L) is hyperinvariant) and o(T\X^(L)) a L [5,12].

3.5 LEMMA. The operator T is decomposable.

Proof. Let {Ult U2} be an open cover of C, and fix a point coQeCl. Then we can
choose two open sets V\ and ^0 in C such that ff(r((a0)) a FJ U VI, Pg c= Uq

(q = 1,2) and V\ n V\ = 0. Let Wo c Q be an open set such that coeW^ implies that
a(r(co)) <= V\ U V\. Since Q is compact, the previous remark shows that we can find
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an open cover {Wx,..., Wm} of Q and open sets {Vq
p: 1 ̂ p < m, q = 1,2} in C such

that
(a) Vl<zUg, PpnPp = 0 ; _
(b) if COE Wv then a{x{w)) c F j U ^

for all p = 1, ...,m and # = 1,2. From Lemma 3.1 and the property (b) we deduce
that

<T\ Xl(Wp)) c U G(T(CO)) C j * U Pp.

Therefore

by the fact that the space from the right-hand side is spectral maximal [5,12]. Let us
also note the decomposition

U V\) = *»(FJ)+ *»(PJ), (3.3)
which follows from (a), the decomposition of the space with respect to separate parts
of the spectrum (see, for instance, [12, Theorem III.3.11]) and the fact that all
involved spaces are spectral maximal.

According to (2.2) and the above considerations, we can write

x* = E
p-i p-i p-i

which proves the decomposability of T, by virtue of [12, Theorem IV.4.28].

3.6 REMARK. Lemma 3.5 is also stated in [2] as Corollary 3.14, in a framework
different from ours. It seems to us that the proof of the above-mentioned corollary
needs our slightly stronger condition (ii) of Definition 1.1 rather than condition (b)
from [2, Definition 3.1] (see the construction of the function/[2, p. 304]). We are
indebted to the referee for drawing our attention to this result from [2].

3.7 COROLLARY. If a{T) contains more than one point, then T has at least one
proper hyperinvariant subspace.

This fact is well known in the theory of decomposable operators and is based on
the existence of a compact subset L <= a{T) such that X^{L) is neither zero nor the
whole space. As we have already mentioned, X^(L) is a hyperinvariant subspace of T.

3.8 REMARK. If A = C(Q) and $ is obtained via a spectral measure on Q, then
the operator Tis w-spectral [9]. If o(T) has more than one point, then Thas a proper
hyperinvariant subspace, as proved in [9]. Consequently, Corollary 3.7 provides an
extension of this result.

3.9 THEOREM. Every (A,n)-scalar operator is super-decomposable.

Proof. We use the notation and the discussion from the proof of Lemma 3.5.
Let {flt ...JJcA be such that/; +... +/m = 1 and supp(/p) c Wv (p = 1,...,m).

Let also Q% be the spectral projection of the space A^KpU V%) onto
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(q = 1,2;/?= \,....,m), which is obtained from the decomposition (3.3) via the
analytic functional calculus of the restriction of T to X^^Vp U Kp) (see [12, Theorem
III.3.11]). Since

we may define the operators
m

X, = E ^ n W p ) ) ^ * " ) , * = 1,2.
p-1

It is easily seen that Rx + R2 = \n. Moreover,

p-\

since every operator commutes with its analytic functional calculus and S(fp) is in the
centre of Mn(A). We also have

p-1

which insures, by virtue of [8, Theorem 1.4], that Tis super-decomposable. The proof
of the theorem is complete.

The authors thank the referee for suggesting the use of [8, Theorem 1.4] to shorten
the original proof of Theorem 3.9.

3.10 REMARK. Let Qr = T(O) and set AT = {feC(QT):fozeA}, which is a
subalgebra of C(Qr). Then the map <DT: AT -> S£{X) given by <Dr(/) = 0>(fo r) is a unital
algebra morphism. Suppose that Ax has the properties (i) and (ii) from Definition 1.1
(this happens, for instance, when A = C(Q)). Then the morphism OT can be used
instead of O. In this case there is no loss of generality in assuming that Q is a compact
subset of C"2 and that T is the matrix of the coordinate functions on Cn\ restricted
toQ.

4. More about the spectrum

In this section we assume that A a C(Q) has the properties (i), (ii) and (iii)
of Definition 1.1. As in the previous section, we fix a unital algebra morphism
<1>: A -*• «£?(X), an element T = (T^)" fc-1 e Mn(A), and consider the (A, «)-scalar
operator T = 0n(f) e J^(A^).

For every closed set F a Q we define the set

Sr,F= U <T(T(CB)) <= C. (4.1)
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The set ST F is closed (in fact compact), by Lemma 3.1. When F= supp(<X>), the set
Sr F will be denoted simply by ST.

4.1 LEMMA. For every he A, there is an analytic function <f>n: C\5 r F -* Mn(A) such
that {z\n-x)(f)h{z) = S(h)for all z$Sz<F, where F= supp(/i).

Proof. Consider the Banach space Y = An and the map *F: A -*• £?(Y) given by

Clearly, *F is a unital algebra morphism. Let *Fn: Mn(A) ->Jz?(Pl) be the unital
algebra morphism induced by *F. If we identify F1 with Mn(A), then, with this
identification, ¥n(a)/? = a/?for all <x,(}eMn(A). In particular *FB(T) is the multiplication
by the matrix T, which will also be denoted by T. The operator T is (,4,w)-scalar, and
therefore it has the properties described in the previous section.

It is easily seen that S(h)e Y£(supp (h)) (which is defined by (2.1)). According to
Lemma 3.1,

where F= supp(/i). Consequently, we may take

4.2 LEMMA. Assume that there exists a compact subset L c: ST\a(T) such that
ST\L is also compact. Then L = 0.

Proof. Let us assume that L ¥= 0. Let Vx =3 L and V2 => St\L be open sets such
that Vx n V2 — 0. Then there is an open neighbourhood W of supp (O) such that
Sx w c V^ U V2. We may also assume that T = dVx is a finite system of Jordan recti-
fiable curves, positively oriented.

Let he A be such that h = 1 in a neighbourhood of supp (<&) and supp (h) c W.
Also let <f>h be the analytic function given by Lemma 4.1, which is defined outside the
set ST #• Then we may consider the element

- — f
2ni)r

Set Fx = {coeQ: h(co) = 1}. Since S(h)(co) = ln for coeFv <f>h(z)(co) = (z\n-T(co))-\
It follows from our assumption on the algebra A (Definition 1.1 (iii)) that the point
evaluations are continuous. Hence

1 C
e((o) = — (z 1 n - T(W))"1 dz, coeFi,

2ni J r

which shows that e(co)2 = e(coi) (in fact e{(o) is a spectral projection of T(CO)). Since
F^ is a neighbourhood of supp (<I>), it follows that On(e) is an idempotent. In addition,
On(e) commutes with T because of the equality r(co)e(co) = e(a))t(oj) (caeFJ.

Consider now the integral
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It is clear that
(wl B - T(CO)) eja) = ew(co) (wl „ - t(o))) = e(co) (4.2)

for all COEF1 and w$ Vv

Since On(e) is idempotent, it follows that Z = On(e) (A™) is a closed subspace of
A™, invariant under T and also under On(eJ. Moreover, from (4.2) we deduce that

where \z is the identity of Z. This shows that a{T\Z) c Px. On the other hand,
o(T) c K2, by Remark 3.2 and the property of L. Therefore a{T) n o{T\Z) = 0,
which is not possible unless Z = {0}. This shows that On(e) = 0, so that e(co) = 0 for
each co€ supp (O), by virtue of Lemma 2.5, which contradicts our assumption. Indeed,
if zoeL, then there exists G>0esupp(O) such that Z0EG(T(CO0)). Then Vx contains at
least one point from the spectrum of the matrix T(COQ), whence e(co0) ^ 0. Consequently
we must have L = 0.

4.3 LEMMA. Let F c Q be closed and let

: supp(/) n F= 0}.

Then the space XJ^FY is invariant under T and the restriction T\X(Sl{FY is (A,n)-
scalar.

Proof. It is easily seen that X^FY = X^F)®...® XQ(F) (n copies) is invariant
under T. Since X^F) is invariant under O(/) for every feA, we may define the
map

A Bf > OF(/) = O(/) | X^F) € nUn), (4-3)

which is a unital algebra morphism. If OF n is the unital algebra morphism from
Mn(A) into Se{XJiFY) induced by OF, then T\X9(F)n = <&F n(t), which is precisely
our assertion.

4.4 REMARK. With the notation of Lemma 4.3, we have the inclusion
aiTlX^FY) <= o(T). Indeed, if z$o{T), then the space XO(FY is invariant under
{z\n-TY\ since

4>Mf))(z\n-Tylx = (z\n-T)-l®Mf))x = 0

for every fsA with supp(/) f]F= 0, and each

4.5 LEMMA. The morphism <&Ffrom (4.3) /iaj the following property:

int (F) n supp (O) c supp (OF) c f n supp (<D)

for each closed F.

Proof Let XF be the space X<j,(F), defined in Lemma 4.3. Let also feA be such
that supp(/) D ^D supp(O) = 0. By using the normality of the algebra A, we can
write f=fi+f2, where f1}f2sA, supp(/i) f]F= 0 and supp(/2) n supp(O) = 0 .
Then

A = o,
which shows that supp(<J>F) c f n supp(O).
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Conversely, let co0 G int (F) n supp (<I>), let Wo be an open neighbourhood of a>0

such that Wo c int (F), let Wx = int (F) and let W2 c Q be open such that W2(\WQ = 0
and Wl\jW2 = Q. Then, by Proposition 2.1 (with « = 1),

X = X^ + A ̂  = A F + A w2-

iffeA and supp(/) c= WQ, then <!>(/) | Z ^ = 0. Since co0 e supp (O), this shows that
CO0G supp (OF).

4.6 THEOREM. Le/ Te^{Xn) be an (A,n)-scalar operator such that T= On(t).
Then we have the equality

a{T) = []{(T(T(CO)): we supp (O)}.

Proo/. The inclusion a ( r ) c 5T has already been noted (see Remark 3.2).
Conversely, assume that there exists a point zoeSx\a(T). Let woefi be such that

20Gcr(T(a>)). Let Vlt V2 be open sets in C such that V^ZQ, V2 =J a{T), V1(\V2 = 0 and
(T(T((W0)) C FX U V2. Then there exists an open set W03co0 in Q such that
a(r(a>)) cz V^\j V2 for every (oeF= WQ. According to Remark 4.4, we have the
inclusion o(TF) a o(T) a V2, where TF = T\X0(F)n. On the other hand,

(J{a(T(ft))): WGSupp(<DF)} c StiO c Kx U K2,

by virtue of Lemma 4.5. From the same lemma it also follows that co0 e supp (Op). This
shows that the set

L = [J{<J(T(CO)): COG supp (OF) n P j

is non-empty, which contradicts Lemma 4.2, applied to TF. Therefore ST\a(T) = 0 .

4.7 DEFINITION. The map On: Mn(A) -» i f (Â *) is said to be of finite algebraic
order if there exists an integer m ^ 1 such that from the fact that cc(co) = 0 for all
&>esupp(On) and a certain aeMn(A), it follows that On(a

m) = 0.

If A = C(Q) and $„: Mn(A) -* ^(X71) is continuous, then for every 0eMn(A)
which is null on supp (On) together with its partial derivatives up to order r, we have
<!>„(/?) = 0. This fact is well known for scalar distributions and can be extended to
vector distributions as well; an outline of the proof can be found in [12, Lemma
IV.8.8]. This shows, in particular, that On is of finite algebraic order ^ r + 1 .

We can now complete Corollary 3.7 with the following statement.

4.8 COROLLARY. Ifo(T) = {z0} and the morphism 0>n: Mn(A) -> ^{X11) is of finite
algebraic order, then zo\n — T is nilpotent.

In particular, ifTis not a multiple of the identity, then Thas a proper hyperinvariant
subspace.

Proof It follows from Theorem 4.6 that a(r(co)) = {z0} for every coe supp (O).
In other words, the matrix zo\n — T((O) is nilpotent for each COG supp (O), that is
(z0 \n-r(co))n = 0 (a>esupp(O)).

Since the map <Dn is of finite algebraic order, On((z01 „ - r)mn) = 0 for some integer
m ^ 1, that is zo\n—T is nilpotent. If T is not a multiple of the identity, then
ker(z0 ln — T) is a proper hyperinvariant subspace of T.
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Note added in proof. E. Albrecht (in a private communication) has shown that [2,
Definition 3.1, conditions (a) and (b)] imply Definition 1.1 (i) and (ii) above. The
converse is also true (see Remark 3.6).
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