Proposed problem

Dear Oscar, I would like to submit the following problem
Let α and β be real numbers such that for any positive integer k

$$
\alpha \neq-2 k, \quad \alpha \neq(2 k-1), \quad \beta \neq 2 k+2, \quad \beta \neq-2 k-1 .
$$

Define $\quad a_{n} \doteq \prod_{k=1}^{n} \frac{\alpha+(-1)^{k} k}{\beta+(-1)^{k+1}+(-1)^{k+1}(k+1)} \quad$ and

$$
T(\alpha, \beta) \doteq \lim _{N \rightarrow \infty} \sum_{n=1}^{N} a_{n}, \quad U(\alpha, \beta) \doteq \lim _{N \rightarrow \infty} \sum_{n=1}^{N} n a_{n}, \quad S(\alpha, \beta) \doteq \lim _{N \rightarrow \infty} \sum_{n=1}^{N}(-1)^{n} a_{n}
$$

a) Prove that if $-1<\alpha+\beta<1$, the limits exist.
b) Find the values of (α, β) such that $(\beta+\alpha) S(\alpha, \beta)-3 T(\alpha, \beta)-2 U(\alpha, \beta)>0$

Proof a). Define $c_{n}=(-1)^{n} a_{n}$. We start with the limit defining $S(\alpha, \beta)$ and prove that asymptotically c_{n} has definite sign.

$$
\frac{c_{n}}{c_{n-1}}=-\frac{\alpha+(-1)^{n} n}{\beta+(-1)^{n+1}+(-1)^{n+1}(n+1)}
$$

For n even the ratio is $\frac{c_{n}}{c_{n-1}}=-\frac{\alpha+n}{\beta-1-(n+1)}$ and asymptotically we have

$$
\frac{c_{n}}{c_{n-1}}=1+\frac{\beta+\alpha-2}{n}+O\left(n^{-2}\right), \quad \frac{p_{n}}{p_{n-1}}=1-\frac{1}{n}-\frac{2}{n \ln n}+O\left(n^{-2}\right) .
$$

If $\beta+\alpha-2<-1$ that is $\beta+\alpha<1$, it follows $c_{n} / c_{n-1}<p_{n} / p_{n-1}$.
For n odd the ratio is $\frac{c_{n}}{c_{n-1}}=-\frac{\alpha-n}{\beta+1+(n+1)}$ and asymptotically we have

$$
\frac{c_{n}}{c_{n-1}}=1+\frac{-\beta-\alpha-2}{n}+O\left(n^{-2}\right)
$$

If $-\beta-\alpha-2<-1$ that is $\beta+\alpha>-1$, it follows $c_{n} / c_{n-1}<p_{n} / p_{n-1}$.
Moreover since +1 is the leading term of the asymptotic expansions of the ratios c_{n} / c_{n-1}, we can affirm that c_{n} has definitively constant sign. Combining the two cases, we obtain the convergence of the limit $S(\alpha, \beta)$ provided that $-1<\beta+\alpha<1$.
Moreover we have

$$
\frac{q_{n}}{q_{n-1}}=1-\frac{1}{n}-\frac{1}{n \ln n}+O\left(1 / n^{2}\right)
$$

Thus if $\beta+\alpha>1$ we would have for n even $c_{n} / c_{n-1} \geq q_{n} / q_{n-1}$ yielding divergence since we know that $\sum q_{2 n}$ diverges. If $\beta+\alpha \leq-1$ the same occurs for n odd letting us to conclude that the series defining $S(\alpha, \beta)$ converges if and only if $-1<\beta+\alpha<1$.

- The convergence of the limit $T(\alpha, \beta)$ for $|\alpha+\beta|<1$ follows immediately since it is an alternating series $\left(a_{n}=(-1)^{n} c_{n}\right)$ converging absolutely as showed although we have not found its character for $|\alpha+\beta| \geq 1$
- As for the convergence of the limit $U(\alpha, \beta)$, it defines also a Leibnitz-series. Since $b_{n}=(-1)^{n} n c_{n}$, it suffices to show that $\left|b_{n}\right|$ goes to zero monotonically. To this end we employ the theorem whose proof we omit since it is well known, just apply Cauchy-property of any convergent sequence and use monotonicity

Theorem If $\sum x_{n}$ is a convergent series of positive, monotone terms, then $n x_{n} \rightarrow 0$
Thus we have $n c_{n} \rightarrow 0$.
The monotonicity of $n c_{n}$ amounts to show

$$
\frac{c_{n}}{c_{n-1}} \frac{n}{n-1} \leq 1
$$

For n even we have

$$
\begin{aligned}
& \frac{c_{n}}{c_{n-1}} \frac{n}{n-1}=\left(1+\frac{1}{n}\right)\left(1+\frac{\alpha+\beta-2}{n}+O\left(1 / n^{2}\right)\right)= \\
& =1+\frac{\beta+\alpha-1}{n}+O\left(n^{-2}\right) \leq 1 \quad \text { for } \quad \beta+\alpha<1
\end{aligned}
$$

For n odd we have

$$
\begin{aligned}
& \frac{c_{n}}{c_{n-1}} \frac{n}{n-1}=\left(1+\frac{1}{n}\right)\left(1+\frac{-\alpha-\beta-2}{n}+O\left(1 / n^{2}\right)\right)= \\
& =1+\frac{-\beta-\alpha-1}{n}+O\left(n^{-2}\right) \leq 1 \quad \text { for } \quad \beta+\alpha>-1
\end{aligned}
$$

To prove b) we show that

$$
(\beta+\alpha) S(\alpha, \beta)-3 T(\alpha, \beta)-2 U(\alpha, \beta)+\alpha c_{1}+b_{1}+2 a_{1}=0, \quad|\beta+\alpha|<1
$$

Since $S(\alpha, \beta)$ is finite for any $|\alpha+\beta|<1$, and $\alpha c_{1}+b_{1}+a_{1}=\alpha-1$, $\left.\mathbf{b}\right)$ follows.
To this end let's rewrite the ratio c_{n} / c_{n-1} as

$$
c_{n} \beta+\alpha c_{n-1}+c_{n}(-1)^{n+1}+c_{n}(-1)^{n+1}(n+1)+(-1)^{n} n c_{n-1}=0
$$

or

$$
c_{n}(\beta+\alpha)+\alpha\left(c_{n-1}-c_{n}\right)+c_{n}(-1)^{n+1}+c_{n}(-1)^{n+1}(n+1)+(-1)^{n} n c_{n-1}=0
$$

By summing between $n=2$ and $n=N$ and telescoping we get

$$
(\beta+\alpha) \sum_{n=2}^{N} c_{n}+\alpha c_{1}-\alpha c_{N}-\sum_{n=2}^{N} a_{n}-\sum_{n=2}^{N}\left(a_{n}+b_{n}\right)-\sum_{n=2}^{N}\left(a_{n-1}+b_{n-1}\right)
$$

The limit $N \rightarrow \infty$ yields

$$
(\beta+\alpha) S(\alpha, \beta)-3 T(\alpha, \beta)-2 U(\alpha, \beta)+\alpha c_{1}+2 a_{1}+b_{1}=0
$$

or

$$
(\beta+\alpha) S(\alpha, \beta)-3 T(\alpha, \beta)-2 U(\alpha, \beta)=\frac{(\alpha-1)(\alpha-3)}{\beta+3}
$$

The answer to \mathbf{b}) is thus $\alpha<1$ or $\alpha>3$ and $\beta>-3$ and clearly $|\alpha+\beta|<1$. The second possible condition $1<\alpha<3$ and $\beta<-3$ is actually forbidden by $|\alpha+\beta|<1$.

References

[1] Prob. num. 11260, Amer.Math.Monthly, Vol.113, num.10, 2006
[2] Prob. num. 11409, Amer.Math.Monthly, Vol.116, num.1,n 2009
[3] Prob. num. 11473, Amer.Math.Monthly, Vol.116, num.10, 2009
[4] Prob. num. 3583, Crux Mathematicorum with Math. Mayhem, Vol.36-7, Nov. 2010

Perfetti Paolo, Dipartimento di Matematica, Università degli studi di Tor Vergata Roma, via della ricerca scientifica, 00133 Roma, Italy
email: perfetti@mat.uniroma2.it
Roma(Italy) 06/15/2013
Best regards
Paolo Perfetti

