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Abstract 

The Flow of inelastic Non-Newtonian fluids is involved in many biological and industrial applications like 

nanofluids. Despite many years have passed since the beginning of the study of turbulent Non-Newtonian 

fluids, most of the studies carried out focus the attention on viscoelastic-fluids. In order to make accurate 

and low-cost prediction on turbulent inelastic Non-Newtonian fluids flow, a RANS Generalized 

Newtonian Fluid (GNF) turbulence model is required based on exact transport equation of turbulent 

variables. In a previous paper [52] we achieved the exact transport equations for turbulent kinetic energy 

and dissipation rate through the introduction of an apparent viscosity transport equation in 2D case for 

sake of simplicity. The object of this paper is to extend the results given in [52] in 3D case giving the full 

mathematical demonstration of the exact-equations. The modelling of the unknown terms it is left for a 

future work. 

Keywords: Apparent viscosity, Turbulent Dissipation rate, Shear rate, Generalized Newtonian Fluid, 

Nanofluids. 

1. Introduction 
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 The flow of Non-Newtonian fluids is present in a wide range of industrial applications and 

biological problems. Slurries flow in pipes, wastewater treatment and aseptic food processing are just 

some examples of application involving Non-Newtonian fluids flow. Usually the flow rate is small in 

these processes and so the fluid flow is in laminar regime. Many theoretical solutions and numerical 

simulations are presented in the literature investigating the laminar flow of Non-Newtonian fluids such as 

those of Gori [1-2]. Nevertheless the turbulent regime may be encountered in some situation as sewage 

transport, drilling hydraulics and processing at high heat transfer rate and gives some advantages in 

comparison to the laminar regime. For example the turbulent regime increases the heat transfer coefficient 

and is found in the aseptic food processing due to the large temperature differences that reduce the 

viscosity and lead the transition from laminar to turbulent regime as shown in [3]. Another advantage of 

turbulent regime in pipe flow operations is that the specific energy consumption is lowest. In biology the 

most famous example of non-Newtonian fluid is blood. Despite in the most of the vascular network the 

flow rate is laminar there are some regions, such as bifurcations, in which turbulent conditions may occur 

promoting, if associated to biochemical factors, the formation of the atherosclerotic plaque [4].  

The term “Non –Newtonian fluid” is very general and includes a wide range of fluids having very 

different constitutive relations. Among these the viscoelastic fluids are the most investigated because of 

the substantial drag reduction under turbulent flow regime called Tom’s effect [5]. This property has been 

studied numerically in a wide number of papers employing different constitutive relations to describe the 

viscoelastic behaviour of the fluid.   

Among these the FENE-P model is one of the most popular and many Direct Numerical 

Simulations (DNS) have been carried out to explain the phenomenon of drag reduction [6], to find 

relationships between flow and fluid rheological parameters at high medium and low regime (HDR, MDR, 

LDR) [7], to study the zero-pressure gradient turbulent boundary layers where the polymer is 

homogeneously distributed in the solvent [8], to investigate where and how polymers affect turbulence [9]. 

The DNS is a powerful instrument but its application is limited by computational resources. That’s 

why many DNS at low and medium Reynolds number are used to develop different turbulence closure 
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models. The models proposed by Poreh and Hassid in [10] and Durst and Rastogi in [11] were based on a 

similar approach consisting in modifying the damping function of the low Reynolds number k-ε model of 

Jones and Launder [12]. Others proposals can be found in [13] where a zero-equation model for the eddy 

viscosity has been proposed or in [14] where closures have been developed for turbulent correlations 

among flow and polymer conformation variables and incorporated into a single-point k−ε model.  

The Giesekus model has been used as well as the FENE-P one in predicting drug reduction. Some 

example can be found in [15-16] where both models are used and in [17] where the numerical results are 

compared with Particle Image Velocimetry (PIV) experiments. 

A mechanistic turbulence model for polymers was suggested in [18] in which it was argued that the 

dominant forces on a polymer fibber in the turbulent flow are elastic and centrifugal. The corrected 

velocity profiles resulting from dimensional analysis in turbulent boundary layer have been compared 

favourably with Virk’s experiments [19].  

Due to the complexity of the viscoelastic model, others Authors proposed a simpler constitutive 

equation inspired to the Generalized Newtonian Fluid Model (GNF). The elongation viscosity has been 

modelled as a function of magnitudes of strain and rotation rate tensors in Orlandi [20] and as a function of 

the third and second invariant of the rate-of-strain tensor in Den Tonder et Al. [21]. In Both works DNS 

results are provided in order to show the capability of the models to reproduce the drag reduction. In 

another paper Den Toonder et al. [22] studied two different constitutive equations, viscous anisotropic 

model and a viscoelastic anisotropic, by means of DNS and Laser Doppler Velocimetry (LDV). The 

viscous anisotropic model, characterized by a single scalar viscosity function related to the second and 

third invariants of the rate of shear tensor, showed a good qualitative agreement with the measurements.  

Olivera and Pinho in [23] following an approach similar to the one adopted in [21] and choosing a 

Bird-Carreau constitutive equation for the viscosity depending on the second and third invariant of the 

rate of shear tensor qualitatively showed that the introduction of the third invariant of the rate of strain 

tensor in the viscosity contributed to an increase of viscous diffusion and turbulent dissipation rate.  
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The same constitutive equation has been employed by Pinho in [24] in order to derive a low 

Reynolds number k-ε model for drag reduction fluids. An algebraic equation has been proposed to 

correlate the instantaneous viscosity to the dissipation rate while the average viscosity and dissipation rate 

have been correlated through a normal logarithmic probability distribution. Appling the dimensional 

analysis it was possible to neglect many terms in all the transport equations while the remaining ones have 

been modelled. The final turbulent dissipation rate equation has been written in non conservative form 

because the explicit time derivative of the average viscosity is present. 

Cruz and Pinho [25] completed the model presented in [24] basing it on the Nagano-Hishida one 

[26]. The values of parameters and forms of damping functions, derived taking into account viscometric 

and elastic near-wall effects, were given and comparison with experimental data were made by performing 

simulations of pipe flow viscoelastic polymer solutions. The model implemented has been improved 

successively in many other papers. In [27] Cruz et Al. added the new stress, i.e. the cross-correlation 

between the fluctuating viscosity and the fluctuating rate of strain. The new stresses modelled were 

proportional to the mean velocity gradient. In [28] the same model has been used modifying the damping 

functions and coefficients while in [29] the Launder-Sharma model [30] has been used instead of the 

Nagano-Hishida one [26]. 

Inspired by [24, 25, and 27] a full Reynolds stress model has been developed in [31]. The 

performances of the new model were compared with those in [27] and other experimental data. New 

developments were made to account separated flows, removing the dependence of the velocity gradient by 

the friction velocity in the recirculation zone. All the results showed that the Reynolds stress model 

perform better than the k- ε one. 

Few numerical investigations dealt with turbulent flow of pseudo-plastic (shear-thinning fluid) and 

dilatant (shear-thickening fluid) fluids because of the lack of models with one or two point closure and, for 

this reason, some investigators performed DNS. Rudman and Blackburn used the Spectral Element-

Fourier Method (SEM) in a duct flow, [4], and compared the DNS results of a power law fluid with small 

consistency index and a Herschel-Bulkley fluid with experimental data [32]. A turbulent model for a non-
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Newtonian power law fluid has been developed in [33], in analogy to the turbulent viscosity, determining 

the temperature distribution for soybean milk flowing inside a tubular heat exchanger.  

Turbulent flow of a non-Newtonian fluid is important also in the medical field. A model to predict 

the turbulent flow of a power-law fluid in a bio-reactor for anaerobic digestion has been developed in [34] 

with the classical k-ε model and the power-law viscosity. The k-ε equations have been derived in [35 - 36] 

for a power-law and Herschel-Bulkley fluid using the apparent viscosity of a non-Newtonian fluid in the 

RANS equations for a Newtonian fluid, but the agreement was not good enough.  

Another very promising field of application is the nanofluid one. Nanofluids are dilute liquid 

suspensions of nanoparticles with at least one of their critical dimensions smaller than about 100 nm [37]. 

Many experimental studies confirmed that the viscosity of these fluids is temperature, amount of particle 

and shear rate dependent. In some of these works the viscosity seems to have a shear-thinning behaviour 

[38-45] while in others a shear-thickening one [46]. Few numerical simulations have been carried out in 

laminar regime [47-50]. An interesting model has been developed in [51] where the effect of the 

nanoparticle/base-fluid relative velocity is described more mechanistically than in the dispersion models 

however the fluid has been considered Newtonian. 

Although there are many applications in which the turbulent motion of Generalized Newtonian 

fluids is involved there is no paper at the Authors knowledge, besides the Pinho one [24] which is 

addressed to viscoelastic fluids, in which a strict derivation of the turbulent dissipation rate equation has 

been carried out. The aim of our previous paper [52] was to derive such an equation in conservative form 

for a simple 2D domain. 

The present work is aimed to extend the two-dimensional set of exact conservative equations 

developed in [52] in three dimensions. Viscosity is assumed dependent only on the second invariant of the 

rate of shear since as expressed in [23] the third invariant is related to extensional viscosity which is not 

interesting in the class of fluids, like the nanofluids, we are interested in moreover as stated in [53] there is 

some evidence that this may be reasonable for real fluids.  
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The transport equation of ε is deduced in this work by the use of the transport equation for the 

apparent viscosity, introduced in [51] and extended here to 3D case, which does not require a constitutive 

link between apparent viscosity and shear rate, does not need any hypotheses on the dependence of the 

turbulent dissipation rate on the fluctuating part of the rate of strain tensor, as required in [14].  

The paper follows the same structure of [51] deriving first the transport equations for the average 

momentum and the turbulent kinetic energy which are same as in 2D case. Afterwards the transport 

equation for the rate of shear tensor and the shear-rate are derived which are different from the one in 2D 

case. The differential equation for the apparent viscosity is deduced using the same approach in [51]. From 

this equation it is possible to derive the equation of dissipation rate in conservative form and to give a 

physical interpretation to the new terms. The method used in this work allows explaining each term and 

classifying it as transport, production and dissipation one.  

 

Nomenclature 

Latin                                                                              Greek 

ij
S      rate of strain tensor                                                              γɺ      shear rate 

k      mean turbulent kinetic energy                                           appµ  apparent viscosity        

p      instantaneous static pressure                                            appµ  mean apparent viscosity    

P      mean static pressure                                                            ρ       density 

S       shear rate                                                                              cτ       yield stress 

R

ijT   mean Reynolds stress tensor                                                  
ij

Ω     rotation rate tensor   

ijT
µ

  mean fluctuating-viscosity stress tensor                                 ε  mean dissipation rate 

R

ijT ′   instantaneous Reynolds stress tensor                                     
ij

δ  Kronecher delta 

ijT
µ′   instantaneous fluctuating-viscosity stress tensor                                  

t        time                                                                           
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i
u      instantaneous i-velocity component                         

i
U     mean x i-velocity component                                      

i
x    i- coordinate                                                   

 

 

2. Conservation equations of mass, momentum and turbulent kinetic energy 

The present analysis is carried on for a Generalized Newtonian Fluid, GNF. The constitutive equation for 

the incompressible non-Newtonian fluid is written similarly to a Newtonian one with the apparent 

viscosity function of the shear-rate only for the reasons expressed in the previous section 

2
ij ij app ij

T p Sδ µ= − + ,           (2.1) 

where 
ij

T  is the stress tensor and p the static pressure. 

The rate of strain tensor 
ij

S is 

1 1

2 3

ji k
ij ij

j i k

uu u
S

x x x
δ

 ∂∂ ∂
= + −  ∂ ∂ ∂ 

,         (2.2) 

and the shear-rate γɺ  is 

2
ij ij

S Sγ =ɺ .            (2.3) 

Defining S as  

2

γɺ
=S ,            (2.4) 

the shear-rate will be treated as S from now on. 

 The conservation equations for the instantaneous variables are the followings, 

0k

k

u

x

∂
=

∂
,            (2.5)  

for the mass, and 

( )2i i
k app ik

k i k

u u p
u S

t x x x
ρ ρ µ

∂ ∂ ∂ ∂
+ = − +

∂ ∂ ∂ ∂
,        (2.6) 

the momentum. 
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Each instantaneous variable is decomposed in mean and fluctuating components,  

i i i
u U u ′= + ,            (2.7) 

pPp ′+= ,            (2.8) 

app app appµ µ µ′= + .           (2.9) 

The mean component of the stress tensor, Eq. (1), becomes 

2 2ij ij app ij app ijT P S Sδ µ µ′ ′= − + + ,         (2.10) 

while the fluctuating one 

2 2 2 2ij ij app ij app ij app ij app ijT p S S S Sδ µ µ µ µ′ ′ ′ ′ ′ ′ ′ ′= − + + + − .      (2.11) 

The third term of the mean component, Eq. (2.10), is null in Newtonian case and it is due to the viscosity 

fluctuations and we will refer to it as “fluctuating-viscosity stress tensor” or FV-stress tensor. It must be 

noted that this term is present in [23, 25-27, 28] as well and it has been called polymeric stress tensor 

because the fluid treated were polymers. The conservation equations of the mean variables are  

0k

k

U

x

∂
=

∂
,            (2.12) 

for the mass, and 

( )2 Ri i
k app ik ik ik

k i k

U U P
U S T T

t x x x

µρ ρ µ
∂ ∂ ∂ ∂

+ = − + + +
∂ ∂ ∂ ∂

,       (2.13) 

for the momentum. 

In the mean flow, the Reynolds stress tensor is given by  

R

ij i jT u uρ ′ ′= − ,            (2.14) 

while the FV-stress tensor is, according to [24] 

2ij app ijT S
µ µ′ ′= .            (2.15) 

In a Newtonian fluid the Reynolds stresses, due to convection, are the only terms responsible for the 

energy transfer from mean to fluctuating scale, while, in a GNF, the FV-stresses are active in conjunction 

to the Reynolds ones in the energy transfer from mean to fluctuating scale. The FV-stress tensor is a new 
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term that requires a modelling but is not the only one. Looking carefully to the equation we can see that we 

have the mean viscosity which is also an unknown variable that requires modelling. 

In the conservation equation for the turbulent kinetic energy, derived in Appendix A, the material 

derivative of the variable is expressed as sum of five terms, as in a Newtonian fluid, but with some 

differences. 

( ) ( ) k k k k

j

j

k U k P T D
t x

ρ ρ ρε
∂ ∂

+ = + Π + + −
∂ ∂

.       (2.16) 

 The sum k k kT DΠ + +  gives the transport term in which we can see the pressure kΠ  and the 

turbulent transport terms kT  which have the same definition in Newtonian case, 

( )k

j

j

p u
x

∂
′ ′Π = −

∂
,           (2.17) 

( )k

j

j

T k u
x

ρ
∂

′ ′= −
∂

,           (2.18) 

 and the diffusive transport kD  which has a different definition due to the variable viscosity 

2

R R

app ij app ijk

app app app i ij

j j i j i

T Tk k
D u S

x x x x x

µ µ
µ µ µ

ρ ρ

 ′′∂ ∂′∂ ∂ ∂ ′ ′ ′= + + + +
 ∂ ∂ ∂ ∂ ∂
 

.    (2.19) 

Since in the Newtonian case the viscosity is constant the mean of the viscosity is the viscosity itself and so 

the fluctuation of viscosity are zero, so the Newtonian expression can be found just replacing the mean 

viscosity with the viscosity and neglecting the terms in which the fluctuating viscosity appear. This means 

that in Newtonian case the diffusive transport is a term that doesn’t need to be modelled because it doesn’t 

introduce new correlation but for a GNF fluid it does and so the last three terms require a closure.  

 The term kP ρε−  represents the balance between the production and dissipation of turbulent 

kinetic energy. Physically the dissipation is due to the work that the viscous stresses exert on the fluid and 

so should be defined as the mean of the product of the fluctuating viscous stress tensor and the fluctuating 

rate of strain tensor, but since in the momentum equation the FV-stess tensor appear, it is convenient give 

a different definition to the dissipation rate which will be 
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( )2
app ij ij app ij ij

S S S Sε µ µ ρ′ ′ ′ ′ ′= + .         (2.21) 

And so the production term will be 

( )k R

ij ij ij
P T T Sµ= −            (2.22) 

in accordance with [24]. In the mean momentum equation the Reynolds stresses component is added to the 

FV stresses while in the turbulent kinetic energy one they subtract, so if the Reynolds stresses transfer 

energy from the mean flow to feed the fluctuating components, the FV stresses reduce the effects of the 

Reynolds stresses. The conservation equations of mass, mean momentum and turbulent kinetic energy are 

the same reported in [51].  

 

4. Transport equations for the mean and fluctuating shear rate and apparent viscosity 

The transport equation for the rate of strain tensor, ij
S , is obtained considering the symmetrical part of the 

gradient of Eq. (2.6). Using the definition of 
ij

Ω  

1

2

ji
ij

j i

uu

x x

 ∂∂
Ω = −  ∂ ∂ 

,           (4.2) 

the transport equations for the ij
S  components are 

1 1

2 2

2 2 2 2

ij ij ij

k ik jk ik jk app

k i j j i k k

app jk jk app app jk jkik ik ik ik

k j i j k i

S S Sp p
u S S

t x x x x x x x

S SS S

x x x x x x

ρ ρ ρ ρ µ

µ µ µ

 ∂ ∂ ∂   ∂ ∂ ∂ ∂ ∂
+ = − + Ω Ω − − + +      ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 ∂ + Ω ∂ ∂ − Ω   + Ω − Ω∂ ∂ ∂   
+ + +        ∂ ∂ ∂ ∂ ∂ ∂       

app

kx

µ ∂ 
  

∂  

. (4.3) 

The details of the algebra are reported in Appendix B. 

The transport equation for the square of the shear rate, S2, is obtained multiplying Eq. (4.3) for each term 

of the rate of strain tensor by itself and summing all of them. 
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( ) ( )( )

( ) ( )

2 2

2

2 2

2

k ij ik jk ij ik jk

k

app

kj app ij ik ik ik ij ij

k j k j

kj ij ij ij appik
app ik ik ij ij

k j k k k k j

S S
u S S S S

t x

p S
S S S S S

x x x x

S S S S Sp
S S

x x x x x x x

ρ ρ ρ ρ

µ
µ

µ
µ

   ∂ ∂
+ = − + Ω Ω +   

∂ ∂   

 ∂ ∂ ∂ ∂
− + + + Ω + − Ω +   ∂ ∂ ∂ ∂  

∂ ∂ ∂ ∂ ∂ ∂∂
− − + Ω + − Ω 

∂ ∂ ∂ ∂ ∂ ∂ ∂ 

.    (4.4) 

A transport equation for the fluctuating components of the rate of strain tensor can be obtained by 

subtracting the mean equation from the instantaneous one. The following expression is obtained 

( ) ( )

( )1 1 1

2 2 2

ij ij ij ij

k jk ik ik jk jk ik ik jk ik jk ik jk k k

k k k

ij ij R

app app ki ik

i j j i k k k k j

S S S S
U S S S S S S u u

t x x x

S Sp p
T T

x x x x x x x x x

µ

ρ ρ ρ ρ ρ ρ

µ µ

′ ′ ′∂ ∂ ∂ ∂
′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ = − + − Ω Ω − Ω Ω − − Ω Ω − − +

∂ ∂ ∂ ∂

   ′∂ ∂ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
′− − + + − + +       ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

( )

2 2 2 2

2 2

R

kj jk

i

app jk jk app app jk jk appik ik ik ik

k j i j k i k

app jk jkik ik

k j

T T
x

S SS S

x x x x x x x

SS

x x

µ

µ µ µ µ

µ

  
+ +    

  

 ′ ′ ′ ′∂ + Ω ∂ ∂  − Ω ∂  ′ ′ ′ ′   + Ω − Ω∂ ∂ ∂   
+ + + +           ∂ ∂ ∂ ∂ ∂ ∂ ∂          

′∂ + Ω + Ω∂
+   ∂ ∂   2 2

app app jk jk appik ik

i j k i k

SS

x x x x x

µ µ µ      ′ ′ ′∂ ∂ − Ω ∂ − Ω∂ ∂
   + +          ∂ ∂ ∂ ∂ ∂       

.(4.5) 

The conservation equation for the dissipative terms of the turbulent kinetic energy is written using the 

conservation equation for the variable
mn mn

S S′ ′ , obtained multiplying the transport equation of each term for 

the rate of strain tensor, Eq. (4.5), by itself and summing all of them.  

( ) ( )2
2 2

1

2 2 2

mn mn mn mn
k ij ik jk ij ik jk ij ik jk ij ik jk

k

ij ijmn mn mn mn
k ij kj k app ij

k k j k k

ij

k

S S S S
U S S S S S S S S

t x

S SS S S Sp
u S S u T

x x x x x

S
x

µ

ρ ρ ρ ρ

ρ ρ µ

′ ′ ′ ′∂ ∂   
′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ = − − Ω Ω − − Ω Ω +   

∂ ∂   

 ∂ ∂′ ′ ′ ′′∂ ∂ ∂   ′′ ′ ′ ′− + − − + + +   ∂ ∂ ∂ ∂ ∂  

∂
′ ′

∂
( ) ( )( ) ( ) ( )( )

( ) ( )

app app

ik ik ik ij ij ij ik ik ik ij ij

j k j

kj ij ij ij ij ijR R

ij ik ik app app ik ik

k j j k k k k k j k

ik

S S S S S S S
x x x

S S S S S Sp
S T T T T

x x x x x x x x x x

S

µ µ

µ µ

µ µ

   ′∂ ∂∂
′ ′ ′ ′ ′ ′+ Ω + − Ω + + Ω + − Ω +      ∂ ∂ ∂   

  ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂′∂ ∂ ∂ ∂
′ ′− + + − − + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

′− +( ) ( ) ( ) ( )ij app ij appik ik
ik ij ij ik ik ij ij

k k j k k j

S SS S
S S S

x x x x x x

µ µ′ ′ ′∂ ∂ ∂ ∂   ′ ′∂ ∂
′ ′ ′Ω + − Ω − + Ω + − Ω +   

∂ ∂ ∂ ∂ ∂ ∂   

(4.6) 

 The details of the algebra are reported in Appendix C. The conservation equation for the 

dissipation rate can be obtained by Eq. (2.21), using Eq. (4.6) and applying the principle of conservation. 
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For a Newtonian fluid the conservation equation of the product of two variables, i.e. the Reynolds stresses, 

can be obtained easily because each transport equation has the same structure and is sufficient to multiply 

each variable for the relative transport equation of the other and sum to derive the transport equation for 

the product of the two terms. This operation is not trivial for a GNF because viscosity is variable and a 

transport equation for the apparent viscosity that has the same structure of the term for which the viscosity 

is multiplied is necessary. We proposed a way to solve this problem in [51] where the apparent viscosity 

has been considered function of the square of the shear rate instead of function of the shear rate itself. To 

avoid confusion between the second and the first derivatives with respect the square of a variable let 

assume 

2
S A= .             (4.7) 

    The apparent viscosity is then 

( )( ),
app j

f A x tµ = ,            (4.8) 

and, using the following relations 

2
app df S

t dA t

µ∂ ∂
=

∂ ∂
, 

2
app

j j

df S

x dA x

µ∂ ∂
=

∂ ∂
,          (4.9) 

the transport equation for apparent viscosity can be finally written as 

2 2 2 2
app app

j j j

j j j

df S df S df S S
u u u

t x dA t dA x dA t x

µ µ  ∂ ∂ ∂ ∂ ∂ ∂
+ = + = +  ∂ ∂ ∂ ∂ ∂ ∂ 

.       (4.10) 

Defining 

df
C

dA
= ,             (4.11) 

and multiplying Eq. (4.4) by C , Eq. (4.10) can be written as 
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( )

( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )

2

2 2 2 2

2 2 2

app app

k ij ik jk ij ik jk

k

app app

kj app ij ik ik ik ij ij kj

k j k j k j

ij app

app ij ik ik ij ij ij ik

k k k k j

u C S S S S
t x

p p
CS CS S CS S CS

x x x x x x

S
CS S CS S CS

x x x x x

µ µ
ρ ρ ρ

µ µ
µ

µ
µ

∂ ∂
+ = − − Ω Ω +

∂ ∂

 ∂ ∂∂ ∂ ∂ ∂
− + + + Ω + − Ω +  ∂ ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ ∂
− − + Ω + − Ω 

∂ ∂ ∂ ∂ ∂ 

. (4.12) 

      In conclusion, Eq. (4.12) is the transport equation of the apparent viscosity which is a differential 

equation rather than an algebraic expression. The form of Eq. (4.12) is similar to the 2$  transport equation. 

The transport equations derived here for the apparent viscosity, shear rate and variable 2$  are more general 

than those presented in [51] because here, due to the tridimensionality is not possible to perform the 

simplifications adopted in 2D case.   

 

5. Transport equation for turbulent dissipation rate 

      The turbulent dissipation rate equation can be obtained by the sum of Eq. (4.4), multiplied by
ρ

µapp
4 , 

and Eq. (4.12), multiplied by 2$
2

ρ
. The instantaneous dissipation rate is finally averaged to give the 

detailed form of the transport equation  

k

k

U P T D
t x

ε ε ε ε εε ε
ρ ρ ρε

∂ ∂
+ = + Π + + −

∂ ∂
        (5.1) 

( ) ( ) ( )

( ) ( )( )

2 1
4 4 2

4

ij ij ijR

mn mn ij ik jk ik jk app k ij ik ik app ij

k j k k k

app ij ik jk ik jk jk ik ik jk ik jk jk ik

S T T
P CS S S S S u S T T S

x x x x x

S S S S S S S

µ µ

ε µµ µ
ρ ρ

µ

∂ ∂ ∂∂ ∂
′ ′ ′ ′= − − Ω Ω − + + + +

∂ ∂ ∂ ∂ ∂

′ ′ ′ ′ ′ ′ ′ ′ ′− + + − Ω Ω + Ω Ω + Ω Ω +

(5.2) 

( ) ( )4 4 4 4
app kj mn mn kj app kj mn mn kj

k j j k j k j

p p p p
S CS S S S CS S S

x x x x x x x

ε µ µ
ρ ρ ρ ρ

 ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂
′ ′ ′ ′ ′ ′Π = − − + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 (5.3) 

( )k

k

T u
x

ε ρ ε
∂

′ ′= −
∂

           (5.4) 
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( ) ( )( )

( ) ( )( ) ( ) ( )( )( )

2 4

4

2

ij app

app app ij app ij ik ik ik ij ij

k k k k j

app

mn mn ij ik ik ik ij ij app ij ik ik ik ij ij

k j

R

ij ik

k j

S
D T S S S S

x x x x x

CS S S S S S S S S S
x x

T T
x x

ε µ

µ

µε
µ µ µ

ρ ρ

µ
µ

ρ

ρ

   ′∂ ∂′∂ ∂ ∂′ ′ ′= + + + Ω + − Ω +   
   ∂ ∂ ∂ ∂ ∂   

 ∂∂
′ ′ ′ ′ ′ ′ ′ ′+ Ω + − Ω + + Ω + − Ω + 

 ∂ ∂ 

∂ ∂
−

∂ ∂
( )ik

T
µ

 
+  

 

 (5.5) 

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 2

2

4 4

4 4

4

ij app

app ij app ij app ij

k k k k

app ij

ik ik app ij ij ij app ik app app ij

k k j k k

a

ik ik app ij ij ij app ik

k k

S
S S S

x x x x

S
S S S S S

x x x x x

S S S S
x x

ε
µ

ε µ µ µ
ρ ρ

µ
µ µ µ µ

ρ ρ

µ
µ µ

ρ

′∂ ∂ ∂ ∂
′ ′ ′= + +

∂ ∂ ∂ ∂

′∂ ∂ ∂ ∂ ∂
′ ′ ′ ′ ′ ′ ′+ Ω + − Ω + + 

∂ ∂ ∂ ∂ ∂ 

′∂ ∂ ∂
′ ′+ Ω + − Ω 

∂ ∂ 
( )

( ) ( ) ( ) ( ) ( )

2

2 2

4

4 4

pp ij

app app ij

j k k

app ij

ik ik mn mn ij ij ij mn mn ik app mn mn ij

k k j k k

S
S

x x x

S
S CS S S S CS S S S S CS

x x x x x

µ µ
ρ

µ
µ

ρ ρ

∂∂
′ ′+ +

∂ ∂ ∂

∂ ∂ ∂ ∂ ∂
′ ′ ′ ′ ′ ′+ Ω + − Ω + 

∂ ∂ ∂ ∂ ∂ 

(5.6) 

The details of the algebra are reported in Appendix D. The Newtonian expression can be found just 

replacing the mean viscosity with the viscosity and neglecting the terms in which the fluctuating viscosity 

its derivatives and the variable C appear. It is clear from the equations above that introducing the 

dependence on the second invariant of shear rate tensor on the viscosity dramatically changes the structure 

of the transport equation of turbulent dissipation rate introducing many new terms, respect to the 

Newtonian case, which require modelling.  

 It is possible verify that from equations (5.1 - 5.6) we can get the simplified expressions achieved 

in [51] for the 2D case which are reported below 

( )2 1
4 2

R

ij ij kj ijR

app app ij ij app ij

k k k j k k

T S S Tk
P T T S

x x x x x x

µ

ε µµ µ µ
ρ ρ

′∂ ∂ ∂ ∂′∂ ∂
→ − + + +

∂ ∂ ∂ ∂ ∂ ∂
    (5.7) 

( )

( )

4
2 1

1
2

ij ij app

app app ij app ij

k k app k k

R

ij ij ij app ij

k k

CS S
D S S

x x x x

T T T S
x x

ε

µ µ

µε
µ ε µ µ

µ ρ

µ
ρ

   ∂′∂ ∂ ∂ ′ ′→ + + +  ∂ ∂ ∂ ∂   

 ∂ ∂
− + + 

∂ ∂ 

    (5.8) 
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( ) ( )2

2

4
$

app ij ij app ij

k k

S C S S
x x

εε µ µ
ρ

∂ ∂
′→ +

∂ ∂
        (5.9) 

 

6. Conclusions 

 The aim of this paper is to extend the results obtained in [52] for a 2D inelastic Generalized 

Newtonian Fluid in 3D case. The conservation equations for the mean momentum components, turbulent 

kinetic energy and turbulent dissipation rate, achieved through the transport equations of the instantaneous 

components of the rate of shear tensor, are investigated as in [52]. It can be concluded that no difference is 

present in the mean momentum and turbulent kinetic energy equations, while the 3D nature of the flow 

affects the turbulent dissipation rate equation. This is found in Newtonian fluids as well where the non-

linear terms generate a different expression for the production of turbulent dissipation rate. In a GNF fluid 

the diffusive terms are non-linear as well and consequently the 3D motion affects all the terms in which 

the viscosity is present i.e. production, molecular transport and dissipation. From what said until now it 

may appear that the 2D study carried out in [52] has been useless but this is not the case. Although the 

terms obtained in the two different analyses don't match, the 2D terms have much simpler expression and 

since they are expected to have the same order of magnitude of the 3D ones, they can be used to get the 

closure relationship once the modelling of the exact equations will be undertaken.  

 The transport equations obtained in this work are exact and expressed in conservative form but not 

usable because the closure relationships are missing nevertheless what we proposed to do was to justify 

the introduction of a new conservation equation for the turbulent dissipation rate giving a strict 

mathematical derivation. The terms modelling problem can be approached in different ways. In [24] , in 

which a visco-elastic fluid has been considered, an order of magnitude analysis was used to neglect some 

term under the hypothesis that the instantaneous viscosity is a function of the instantaneous turbulent 

dissipation rate which was considered to follow a log-normal distribution.  

 For what concern us we plan to face the closure problem in the near future performing Direct 

Numerical Simulations on different non-Newtonian fluids at different Reynolds number. The numerical 
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results obtained will allow us understanding the behaviour of the correlation of viscosity fluctuation and 

viscosity derivatives with the other terms, neglecting the unessential terms and modelling the others. 

 

Appendix 

The transport equations for a GNF are derived similarly to a Newtonian fluid with a variable apparent 

viscosity. 

A. Transport equation for turbulent kinetic energy 

The following equations for the fluctuating components are derived by subtraction of the mean equations 

from the instantaneous ones.  

The conservation equation for mass is  

0k

k

u

x

′∂
=

∂
.           (A.1) 

The momentum conservation equation is  

( ) ( )2 2 2 Ri i i i
k k k app ik app ik app ik ki ik

k k k i k k

u u U u p
U u u S S S T T

t x x x x x x

µρ ρ ρ ρ µ µ µ
′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂

′ ′ ′ ′ ′ ′+ = − − − + + + − +
∂ ∂ ∂ ∂ ∂ ∂ ∂

.(A.2) 

 The turbulent kinetic energy is obtained multiplying Eq. (A.2) by 
i

u′ , summing up all components 

and averaging. The same process than in a Newtonian fluid is used for the viscous terms with the 

derivation by part  

( ) ( )2 2 2

2
2

i
i app ik app i ik app ik

k k k

i i i k i i
app app app k app ik

k k i i k

u
u S u S S

x x x

u u u u u u
u S

x x x x x

µ µ µ

µ µ µ µ

′∂∂ ∂
′ ′ ′ ′ ′= − =
∂ ∂ ∂

 ′ ′ ′ ′ ′ ′∂ ∂ ∂∂ ∂  
′ ′+ − −  

∂ ∂ ∂ ∂ ∂  

,     (A.3) 

( ) ( )2 2 2 i
i app ik app i ik ik app

k k k

u
u S u S S

x x x
µ µ µ

′∂∂ ∂
′ ′ ′ ′ ′= −
∂ ∂ ∂

.       (A.4) 

Summing up it is obtained the equation for the turbulent kinetic energy (16) where the terms with similar 

physical meaning are close each to the other, while the Reynolds stresses are closer to those with the 

fluctuating viscosity components. 
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B. Transport equation for the shear rate 

The exact form of the variable apparent viscosity is obtained by using the fundamental expressions of the 

rate of strain tensor and the terms of the rotation rate tensor, 
ij

Ω , based on mass conservation and the 

relative definitions.  

The following basic equations are employed  

0
ii

S = ,             (B.1) 

1 1
0

2 2

ij jk jkik ik

k j i j i

S SS

x x x x x

   ∂ ∂ ∂Ω∂ ∂Ω
− + + + + =      ∂ ∂ ∂ ∂ ∂   

,        (B.2) 

which allow to derive the conservation equations for the instantaneous variables in a form similar to those 

for a Newtonian fluid.  

The non-Newtonian terms are obtained by changing the order of derivation, summing and subtracting the 

different terms. Applying the 
1

2
j

x

∂

∂
operator to 

i
u component and the 

1

2
i

x

∂

∂
operator to 

j
u component and 

summing up the transport equation for the rate of strain tensor components can be obtained.  

1 1 1 1

2 2 2 2

ij ij jk k i
k

k i k j k j i i j

jk app appik
app jk ik

k i j i j

S S uu u u p p
u

t x x x x x x x x x

S S
S S

x x x x x

ρ ρ ρ ρ

µ µ
µ

 ∂ ∂ ∂  ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ = − − − − +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

  ∂ ∂ ∂∂∂
+ + +    ∂ ∂ ∂ ∂ ∂  

   (B.3) 

Using the definitions of rate of strain tensor and rotation rate tensor we can find 

( )( ) ( )( )

1 1

2 2

1 1

2 2

jk i k

j k i k

kj kj ik ik ki ki jk jk ik jk ik jk

uu u u

x x x x

S S S S S S

ρ ρ

ρ ρ ρ ρ

∂∂ ∂ ∂
− − =

∂ ∂ ∂ ∂

− +Ω +Ω − +Ω +Ω = − + Ω Ω

.    (B.4) 

Using equation (B.2) we can find 

2 2

jk app app ijik
app jk ik app

k i j i j k k

jk jk app appik ik

app app ik jk

k j i j i

S SS
S S

x x x x x x x

SS
S S

x x x x x

µ µ
µ µ

µ µ
µ µ

  ∂ ∂ ∂ ∂ ∂∂ ∂
+ + + = +      ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 − Ω ∂ ∂ − Ω∂ ∂ ∂ 
+ + +    ∂ ∂ ∂ ∂ ∂    

    (B.5) 
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Now swapping the derivation order 

2 2

2 2 2 2

2 2

jk jkik ik
app app

k j i

jk jk app jk jk appik ik ik ik
app app

k j i j i

app jk jkik ik

k j

SS

x x x

S SS S

x x x x x

SS

x x

µ µ

µ µ
µ µ

µ

 − Ω − Ω∂ ∂ ∂ 
+ =    ∂ ∂ ∂    

 − Ω ∂ − Ω ∂   − Ω − Ω∂ ∂ ∂   
+ − − =        ∂ ∂ ∂ ∂ ∂       

∂ − Ω− Ω∂  
− − 

∂ ∂   2 2

2 2

app app jk jk appik ik

i j k i k

jk jkik ik
app app

j k i k

SS

x x x x x

SS

x x x x

µ µ µ

µ µ

 ∂ ∂  − Ω ∂    − Ω∂ ∂ 
+ + +         ∂ ∂ ∂ ∂ ∂       

 − Ω    − Ω∂ ∂ ∂ ∂ 
+      

∂ ∂ ∂ ∂      

(B.6) 

And remembering eq. (B.5) 

2 2

jk jkik ik k k
app app app app

j k i k j k i i k j

k k
app app

j i k i j k

SS u u

x x x x x x x x x x

u u

x x x x x x

µ µ µ µ

µ µ

    − Ω     − Ω ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
+ = + =              ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂            

     ∂ ∂∂ ∂ ∂ ∂
+ =        ∂ ∂ ∂ ∂ ∂ ∂      

0

(B.7) 

So finally we can obtain Eq. (4.3) 

The multiplication of each equation for the transported variable allows obtaining: 

1 1

2 2 2 2

2 2 2

ij ij ij ij

k ij ik jk ij ik jk ij ij

k i j j i

ij ij app jk jk appik ik
app ij ij

k k k j i

S S S S p p
u S S S S S S

t x x x x x

S S SS
S S

x x x x x

ρ ρ ρ ρ

µ µ
µ

      ∂ ∂ ∂ ∂ ∂ ∂
+ = − + Ω Ω − − +        ∂ ∂ ∂ ∂ ∂ ∂      

   ∂ + Ω ∂   + Ω∂ ∂ ∂  
+ +      ∂ ∂ ∂ ∂ ∂       

1 1

2 2 2 2

2 2

ij ij

app

k k

app jk jk app ij ijik ik
ij ij

j k i k i j j i

app jk jk app ijik ik

j i k

S S

x x

S S SS p p
S S

x x x x x x x x

S SS S

x x x

µ

µ µ

µ µ

∂ ∂
− +
 ∂ ∂

 ∂  − Ω ∂  ∂ ∂    − Ω∂ ∂ ∂ ∂ 
+ + + +         ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂         

 ∂ + Ω ∂ ∂ + Ω 
− + −    ∂ ∂ ∂     2 2

app ij jk jk app ijik ik

k j k i

S S S

x x x x

µ µ∂ ∂ − Ω ∂ ∂ − Ω 
−   

∂ ∂ ∂ ∂   

. (B.8) 

Summing all components finally the conservation equation for the square of the shear rate in the 

instantaneous form is obtained as Eq. (4.4).  

C. Transport equation for $2 

The transport equation for the fluctuations of the rate of strain tensor is derived similarly to the 

instantaneous case. Applying the 
1

2
j

x

∂

∂
operator to 

i
u′ component and the 

1

2
i

x

∂

∂
operator to 

j
u′ component 
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and summing up the transport equation for the rate of strain tensor components can be obtained. 

1

2

1 1

2 2

ij ij j j jk i k k i k i k k
k

k j k k i i k k j k j k i

ij ij ik
k k app

k k i j j i k

S S U u uU u u U U u u u u
U

t x x x x x x x x x x x x x

S S Sp p
u u

x x x x x x x x

ρ ρ ρ

ρ ρ µ

 ′ ′ ′ ′∂ ∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ = − + + + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 ′∂ ∂   ′′ ′ ∂∂ ∂ ∂ ∂ ∂
′ ′− − − − +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

( ) ( )1

2

jk app app

ik jk

j i j i

jk app app R Rik
app ik jk ik ik jk jk

k j i j i k j i

S
S S

x x x

SS
S S T T T T

x x x x x x x x

µ µ

µ µ

µ µ
µ

  ′∂ ∂ ∂
′ ′+ + + +    ∂ ∂ ∂  

      ′ ′∂ ∂ ∂∂∂ ∂ ∂ ∂
′ + + + − + + +         ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 (C.1) 

Where we have used the following relationship 

( ) ( )1 1

2 2

RR
j kji ki

k ij k ik jk ik jk

k k j i k j i

u Tu T
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(C.2) 

Using similar reasons made in equations (B.5-B.7),  
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(C.3) 

We can finally find Eq.(4.5) 

The multiplication of Eq. (4.5) for the corresponding transported variable allows writing the following 

equation:  
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(C.4) 

The summation of all transport equations with the square of the fluctuating rate of strain tensor 

components allows obtaining Eq. (4.6) in its final form. 
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D. Transport equation for the dissipation rate of turbulent kinetic energy 

 The step by step algebra to derive the equation for the dissipation rate is the following. 

D.1- First step  

Multiplication of Eq. (C.1) by 
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(D.1) 

D.2- Second step 

Collection of the different terms 
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D.3- Third step 

Summation of Eq. (D.1) and Eq. (D.2) gives 
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(D.3) 

D.6- Fifth step 

Introduction of the instantaneous dissipation rate
2

app mn mnS Sµ ε
ρ

′ ′ ′= , multiplication and division for C of the 

apparent viscosity gives 
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