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When a linear system Ax = y is solved by means of iterative meth-

ods (mainly CG and GMRES) and the convergence rate is slow, one

may consider a preconditioner P and move to the preconditioned

system P−1Ax = P−1y. The use of such preconditioner changes the

spectrum of the matrix defining the system and could result into a

great acceleration of the convergence rate. The construction of op-

timal rank preconditioners is strongly related to the possibility of

splitting A as A = P + R + E, where E is a small perturbation and

R is of low rank (Tyrtyshnikov, 1996) [1]. In the present work we

extend the black-dot algorithm for the computation of such split-

ting for P circulant (see Oseledets and Tyrtyshnikov, 2006 [2]), to

the case where P is in A , for several known low-complexity matrix

algebras A . The algorithm so obtained is particularly efficient when

A is Toeplitz plus Hankel like. We finally discuss in detail the exis-

tence and the properties of the decomposition A = P+R+EwhenA

is Toeplitz, also extending to the ϕ-circulant and Hartley-type cases

some results previously known for P circulant.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In this work we consider a new approach to the construction of preconditioning matrices P for

the solution of linear systems Ax = y. We call this kind of preconditioners optimal rank because

they are produced trying to force the rank of A − P to be as small as possible. Optimal rank circulant

preconditioners P were initially proposed for Toeplitz systems by Tyrtyshnikov et al. in [2,3]. Here we
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basically extend them to several known low complexity matrix algebras [4–7] and to Toeplitz plus

Hankel like matrices.

1.1. Notations

We use some standard notations, which are briefly described here.

WithM(n)we denote the Hilbert space of n× nmatrices whose entries are in the complex field C,

withU(n) the group of unitary n×nmatrices andwithM(n)+ the cone of positive semi-definite n×n

matrices.We use also the notation A � 0 for an element ofM(n)+ and A > 0 for thosematrices which

are strictly positive definite. Given A ∈ M(n), σ(A) and λi(A) are the spectrum and the ith eigenvalue

of A, respectively.

The square bracket [ · , · ] : M(n) × M(n) → M(n) denotes the commutator

A, B �→ [A, B] = AB − BA

also denoted by ∇A(B) = [B, A]. The round bracket ( · , · ) denotes the standard scalar product on

C
n (sometimes it can denote the scalar product on different Hilbert spaces; it will be clear from the

context).

The symbol ei is used for the ith canonical vector (ei)k = 1 if k = i and (ei)k = 0 otherwise.

Finally given a matrix W ∈ M(n) we shall use the symbol A (W) for the algebra generated by W ,

namely the closed set

A (W) = {p(W) | p polynomials}

2. Low complexity matrix algebras

Suppose we are given a unitary matrix U ∈ U(n). Then it can be naturally defined the algebra of

normal matrices

A = sdU = {U diag(θ1, . . . , θn)U
∗ | θi ∈ C}

also called algebra of matrices simultaneously diagonalized by a unitary transform or briefly sdU algebra.

For an element A ∈ A , the complexity of the products A × vector and A−1 × vector depends only

on the complexity of U × vector and U∗ × vector. Therefore we say that a sdU algebra A is of low

complexity if both these products are computable with less thanO(n2) operations, in particular if they

can be performed with O(n log n) floats.
Notice that, whenever W ∈ M(n) is diagonalized by M ∈ M(n), for any A ∈ A (W) we have

A = M diag(λ1(A), . . . , λn(A))M
−1. Moreover if (Aλ) is a family of mutually commuting matrices, it

is known that (Aλ) admits a commonSchur basis. These two facts together imply that the algebraA (N)
generated by a normal n × n matrix N, must satisfy A (N) ⊂ sdU for a unitary matrix U ∈ U(n). The
inclusion can be proper, and precisely it is an identity if and only if N is non-derogatory 3 [4]. Therefore

the non-derogatorycity hypothesis on the matrix W leads to the following further characterization

A (W) = ker ∇W

and if W is normal we also have A (W) = sdU, for an U ∈ U(n).
Thebestknownlowcomplexity sdU algebrasarecommonlydivided into threeclasses:ϕ-circulants,

Trigonometric and Hartley-type. Some specific choices in such classes have been used successfully to

solve linear algebra problems involving Toeplitz matrices or, more generally, structured matrices re-

lated to shift invariance of the mathematical model considered (see f.i. [8] and references therein).

3 A matrix A ∈ M(n) is said to be non-derogatory if deg(p) � n, for any polynomial p such that p(A) = 0, or, equivalently, if the

geometric multiplicity of any eigenvalue of A is one. Wemake often use of matrices that are both normal and non-derogatory, which

therefore are those normal matrices that have pairwise different eigenvalues.
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Anyway, depending on the problem, any algebra among the three families could find a potential ap-

plication as a preconditioner.

2.1. ϕ-Circulant algebras

Let us consider the matrix

Πϕ =

⎛⎜⎜⎜⎜⎜⎜⎝
1

. . .

1

ϕ

⎞⎟⎟⎟⎟⎟⎟⎠ , ϕ ∈ C, (1)

which is the basis for the definition of the family of ϕ-circulant algebras

Definition 2.1. Given ϕ ∈ C, the algebra Cϕ = A (Πϕ) generated by Πϕ is called ϕ-circulant algebra.

Note that eT1 Πk
ϕ = eTk+1 for k = 0, 1, . . . , n − 1, which implies that Cϕ is a 1-space [4] or, in other

words, that any matrix C ∈ Cϕ is uniquely defined by its first row. It is now natural to introduce the

operator

Cϕ : C
n −→ Cϕ, x �→ Cϕ(x)

which maps x ∈ C
n into the matrix Cϕ(x) ∈ Cϕ whose first row is xT.

It is not difficult to observe that the matrix

Fϕ = 1√
n

(
ϕ

i
n ωij

)
i,j=0,1,...,n−1

, ω = e−
2π i
n (2)

diagonalizes the algebra Cϕ , namely that

Cϕ = {Fϕ diag(θ1, . . . , θn)F
−1
ϕ | θi ∈ C}.

Moreover Fϕ ∈ U(n) if and only if |ϕ| = 1 (cf. [9]). From now on we assume that ϕ, defining Cϕ , has

modulus one, unless otherwise specified. Nevertheless we underline that several formulas that we

obtain could be adapted to the case of a generic complex ϕ. The choice ϕ = 1 gives rise to the well

known circulant algebra C, diagonalized by the Fourier matrix

F = 1√
n

(
e− 2πkhi

n

)
k,h=0,1,...,n−1

(3)

which is naturally related to Fϕ up to the diagonal scaling

Fϕ = diag

(
1, ϕ

1
n , . . . , ϕ

n−1
n

)
F = 	ϕF.

Weshall use simply the symbolΠ forΠ1. Another very popular choice isϕ = −1which defines the

so called skew-circulant algebra C−1. Both C and C−1 and their applications has been widely studied,

see for instance [10]. Since Πϕ is normal and non-derogatory we have Cϕ = ker ∇Πϕ .

2.2. Trigonometric algebras

There are sixteen different trigonometric algebras presently known [7,11]. Eight of them are di-

agonalized by a discrete sine-type transform, the other eight by a cosine-type one. We start again by

introducing a family of matrices
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Table 1

Sixteen choices for μ ∈ R
4 and respective trigonometric algebras.

μ3 = 2 μ3 = 1 μ3 = 1 μ3 = 1

μ4 = 0 μ4 = 0 μ4 = 1 μ4 = −1

μ1 = 0, μ2 = 2 DCT1 DCT3 DCT5 DCT7

μ1 = 0, μ2 = 1 DST3 DST1 DST7 DST5

μ1 = 1, μ2 = 1 DCT6 DCT8 DCT2 DCT4

μ1 = −1, μ2 = 1 DST8 DST6 DST4 DST2

Xμ = X(μ1,μ2,μ3,μ4) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μ1 μ2

1 0 1

. . . . . . . . .

1 0 1

μ3 μ4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, μ =

⎛⎜⎜⎜⎜⎜⎜⎝
μ1

μ2

μ3

μ4

⎞⎟⎟⎟⎟⎟⎟⎠ , (4)

and defining Tμ = A (Xμ). Sixteen different choices for the vector μ ∈ R
4 give rise to the sixteen

trigonometric algebras (see f.i. appendix1 in [12]).We list in Table1 suchparticular values forμnaming

the corresponding trigonometric algebras Tμ also DST or DCT so to recall that they are diagonalized

by a discrete sine transform or a discrete cosine transform, respectively.

It is not difficult to observe that for such choices of μ the matrix Xμ is normal and non-derogatory,

since μ2 	= 0, so Tμ = ker ∇Xμ .

The well known tau-algebra is DST1 = T(0,1,1,0) = T whose generating matrix will be denoted

simply by X . Such algebra was considered in [13] where it is defined as the set of n × n matrices

satisfying the cross-sum rule with null boundary conditions

T = {A ∈ M(n) |aij ∈ C, ai−1,j + ai+1,j = ai,j−1 + ai,j+1, i, j = 1, . . . , n

an+1,j = a0,j = ai,n+1 = ai,0 = 0}.
This is a computationally useful definition and it clearly is nothing but the scalar form of our previous

characterization of T as the kernel of ∇X . Other trigonometric algebras which attained particular

attention are DCT2, DST2, DST3, DST7 mainly because of their applications to image processing [14],

displacement decomposition [11,15], and preconditioning techniques (see [4,6] and the references

therein).

As for theϕ-circulants, also the trigonometric algebras are 1-spaces [4], namely eachmatrix in Tμ is

uniquely defined up to its first row. In [15] such property is explicitly shown for themore generic set of

Hessenberg algebras which contains both ϕ-circulant and trigonometric algebras. As a special case of

that result we derive the following characterization for Tμ: consider n−1 polynomials
1, . . . , 
n−1,

each 
k defined as the characteristic polynomial of the principal submatrix of Xμ of order k. Setting


0 = 1 and

X(k)
μ = μ−1

2 
k−1(Xμ), k = 1, . . . , n,

then Tμ = Span(X(1)
μ , . . . ,X(n)

μ ) and the 1-space property eT1 X(k)
μ = eTk follows. So, as for the circulant

case, we introduce in a natural way the operator

τμ : C
n → Tμ x �→ τμ(x)

which maps x ∈ C
n into the matrix τμ(x) ∈ Tμ whose first row is xT.

Since Xμ is non-derogatory and normal as well, there exists a matrix Uμ ∈ U(n) such that Tμ =
sdUμ. Using the symbol Sμ (Cμ) for the matrix Uμ diagonalizing Tμ when the choice of μ gives rise

to a DST (DCT), we list Sμ, Cμ and the eigenvalues of Xμ in Tables 2, 3. We finally underline that all of

them satisfy the low complexity property (see [16,17] and references therein).
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Table 2

Discrete sine transform Sμ and the eigenvalues λk of Xμ , k, h = 0, . . . , n − 1.

(Sμ)kh λk(Xμ)

DST1 sin(k + 1)(h + 1)
π

n + 1
cos

(k + 1)π

n + 1

DST2 sin(k + 1)

(
h + 1

2

)
π

n
cos

(k + 1)π

n

DST3 sin

(
k + 1

2

)
(h + 1)

π

n
cos

(k + 1
2
)π

n

DST4 sin

(
k + 1

2

) (
h + 1

2

)
π

n
cos

(k + 1
2
)π

n

DST5 sin(k + 1)(h + 1)
π

n + 1
2

cos
(k + 1)π

n + 1
2

DST6 sin(k + 1)

(
h + 1

2

)
π

n + 1
2

cos
(k + 1)π

n + 1
2

DST7 sin

(
k + 1

2

)
(h + 1)

π

n + 1
2

cos
(k + 1

2
)π

n + 1
2

DST8 sin

(
k + 1

2

) (
h + 1

2

)
π

n − 1
2

cos
(k + 1

2
)π

n − 1
2

Table 3

Discrete cosine transform Cμ and the eigenvalues λk of Xμ , k, h = 0, . . . , n − 1.

(Cμ)kh λk(Xμ)

DCT1 cos kh
π

n − 1
cos

kπ

n − 1

DCT2 cos k

(
h + 1

2

)
π

n
cos

kπ

n

DCT3 cos

(
k + 1

2

)
h
π

n
cos

(k + 1
2
)π

n

DCT4 cos

(
k + 1

2

) (
h + 1

2

)
π

n
cos

(k + 1
2
)π

n

DCT5 cos kh
π

n − 1
2

cos
kπ

n − 1
2

DCT6 cos k

(
h + 1

2

)
π

n − 1
2

cos
kπ

n − 1
2

DCT7 cos

(
k + 1

2

)
h

π

n − 1
2

cos
(k + 1

2
)π

n − 1
2

DCT8 cos

(
k + 1

2

) (
h + 1

2

)
π

n + 1
2

cos
(k + 1

2
)π

n + 1
2

2.3. Hartley-type algebras

In [5] eight different unitarymatricesHi are introduced and eight Hartley-type algebrasHi = sdHi

are defined as the set of matrices simultaneously diagonalized by such Hi. The Hartley algebra H1 was

introduced in [18] and the well known Hartley matrix H1, which diagonalizes it, is defined as follows

H1 = 1√
n

[
cos

(
2π ij

n

)
+ sin

(
2π ij

n

)]
ij=0,1,...,n−1

.

The multiplication H1 × vector can be performed with O(n log n) operations, nonetheless in [5] is

shown that the same low complexity property holds for all the Hi, i = 1, . . . , 8. Let us introduce in

detail the Hartley-type transforms and the corresponding algebras. Consider the matrices
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Table 4

Definitions for the eight Hartley-type algebras Hi .

H1 = H = sdH = sdH1 = Cs + JΠCsk

H2 = K = sd K = sdH2 = Cs
−1 + JΠ−1C

sk
−1

H3 = G = sd G = sdH3 = Cs
−1 + JCsk

−1

H4 = K̃ = sd KT = sdH4 = Cs + JCsk

H5 = η = sd(KTE1) = sdH5 = Cs + JCs

H6 = μ = sd(GE2) = sdH6 = Cs
−1 + JCs

−1

H7 = α = sd(HET
1 ) = sdH7 = Cs + JΠCs

H8 = β = sd(KET
2 ) = sdH8 = Cs

−1 + JΠ−1C
s
−1

K = H2 = 1√
n

[
cas

(
2π i(2j + 1)

n

)]
ij,=0,1,...,n−1

,

G = H3 = 1√
n

[
cas

(
2π(2i + 1)(2j + 1)

2n

)]
ij,=0,1,...,n−1

,

where cas x = cos x + sin x. Both of them are orthonormal matrices. Furthermore consider the two

sparse n × nmatrices

E1 = 1√
2

⎛⎜⎜⎜⎜⎜⎜⎝

√
2

I J√
2

−J I

⎞⎟⎟⎟⎟⎟⎟⎠ , E2 = 1√
2

⎛⎜⎜⎜⎝
I −J√

2

J I

⎞⎟⎟⎟⎠
where the presence of the central row and column depends on the oddness of n. Consider finally the

four subspaces of ±1-circulant algebras

Cs±1 = {C ∈ C±1 | CT = C}, Csk±1 = {C ∈ C±1 | CT = −C},
the first two being a proper subalgebra of C±1.

The eight Hartley-type transforms and algebras are defined by the identities in Table 4. Note that

only the algebra G = sd G is not a 1-space, in fact its elements are not defined uniquely by the first

row (for more details see [4,5]).

Unlike ϕ-circulant and trigonometric algebras, it is not so clear that Hartley-type algebras can be

introduced as the algebras generated by matrices whose structure is predictable for all n. However,

since all of them are algebras of normal matrices simultaneously diagonalized by a unitary transform,

there exist non-derogatory matrices Wi such that Hi = A (Wi) = ker ∇Wi
. Nevertheless let us note

that the Cs±1 part of Hi is the subalgebra A (Y±1) generated by the following derogatory matrix

Yϕ = Πϕ + ΠT
ϕ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 ϕ

1
. . .

. . . 1

ϕ 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (5)

Noting that

F∗
ϕΠϕFϕ = �ϕ = ϕ1/n� = ϕ1/n diag(ωi | i = 0, . . . , n − 1), ω = e−

2π i
n

and that Π±1 + ΠT±1 = Π±1 + Π∗±1 = 2
Π±1,
4 we easily obtain an explicit formula for the

eigenvalues of Y1 and Y−1, namely

4 The real part (Hermitian part) of a matrix X is the Hermitian matrix 
X = 1
2
(X + X∗)
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λk(Y1) = 2 cos

(
2kπ

n

)
, λk(Y−1) = 2 cos

(
(2k + 1)π

n

)
(6)

for k = 0, . . . , n − 1.

3. Optimal rank preconditioning

Let us consider an n × n linear system

Ax = y, A ∈ M(n), x, y ∈ C
n (7)

whichshouldbesolvedbysomeKrylovsubspace iterativemethods (CGandGMRESaregoodexamples).

When the convergence rate of suchmethods is low, onemay consider a suitable preconditioningmatrix

P, switch to the preconditioned linear system

P−1Ax = P−1y, (8)

and apply to this new system the iterative methods. Clearly, except for trivial cases, the spectrum

of the matrix defining the system (8) is different from the original one, while the solution x main-

tains unchanged. The introduction of the preconditioner P could lead to a substantial improvement of

the convergence rate, provided that P satisfies some “good” properties, that we summarize into the

following two

1. The condition number κ(P−1A) is uniformly bounded in n

2. The spectrum of P−1A has a cluster around 1.

When A > 0 (the general case needs some further hypothesis cf. [19]), the first property leads to the

linear convergence of themethods, independently on the dimension n of the problem. The second one

is related with the super-linear convergence of the methods and, fixed an ε > 0, it is the same as

requiring that the following splitting for the matrix A in (7)

A = P + R + E

holds, being E a small perturbation, ‖E‖ � ε, and R a low-rank matrix, namely rank R is o(n) [1,2]. It
is clear that the cluster of σ(P−1A) is a proper cluster whenever rank R = rε(n) is uniformly bounded

with respect n, in fact rε(n) is exactly the number of eigenvalues of P−1A which are outside a ball of

radius ε around 1. Moreover we can heuristically affirm that “the smaller is rank R, the smaller is the

cluster of σ(P−1A) and the better is the preconditioner P”.

In the following we consider low complexity algebras of matrices simultaneously diagonalized by

a unitary fast transform U, or rather closed sets of the form

A = sdU = {U diag(θ1, . . . , θn)U
∗ | θi ∈ C},

where U × vector and U∗ × vector require O(n log n) operations.
Our considerations about property 2 above suggest the definition of an optimal rankmatrix algebra

preconditioner for a given linear system (7).

Definition 3.1. Given an invertible n × n matrix A and a matrix algebra A , we call optimal rank

preconditioner in A for A any matrix

A = arg min{rank(A − P − E) | P ∈ A , ‖E‖ � ε}.
In [2] it is stressed that in order to construct suchpreconditioner forAone should solve the following

Problem 1. Given A ∈ M(n), given an sdU algebra A and given ε > 0, find A = P + R, with P ∈ A

and ‖A − A‖ � ε such that rank R is as small as possible.



412 F. Tudisco et al. / Linear Algebra and its Applications 438 (2013) 405–427

Observe that for any given M ∈ sdU there exists a diagonal matrix D such that M = UDU∗.
Therefore if the norm considered in Problem 1 ‖ · ‖ is unitarily invariant

‖A − A‖ = ‖U∗AU − D − R̃‖, rank R̃ = rank R.

In other words we can split problem 1 into the following problems 2 and 3 and calculate theminimum

over the algebra of diagonal n × nmatrices D

Problem 2. Given A ∈ M(n) and ε > 0, find Â = D + R, with D ∈ D and ‖|A − Â‖| � ε such that

rank R is minimum, for a chosen unitarily invariant norm ‖| · ‖|.
Problem 3. Given A ∈ M(n) and given an sdU algebra A = sdU, compute the image U∗AU.

If A = sdU is of low complexity, the computation of U∗AU requires an amount of O(n2 log n)
operations which is not acceptable. For this reason we have posed Problem 3. However, we shall see

that in solving Problem 3 it is not necessary to compute all the entries of the image matrix U∗AU, it is

instead enough to have an algorithm that computes any prescribed entry (U∗AU)ij in a fast way, by a

number of operations independent of the matrix size.

Problem 2 can be approached as in the circulant-Toeplitz case [2], i.e., by means of the black-dot

algorithm, an ad-hoc version of the incomplete cross algorithm [20–22]. Given an algebraA = sdU =
A (W) (W non-derogatory), in order to apply the black-dot algorithmwe need to know some elements

(U∗AU)ij , where the pair (i, j) belongs to a certain set of indices �. Typical choices for � give rise to

a method whose complexity can be estimated with O(nrε(n)
2) [2]. When the coefficients matrix is

positive definite we expect that the preconditioner A computed by such algorithm is positive definite

as well. Actually such property is not always ensured, in fact it may happen that some entry of the

computed diagonal matrix D is negative. However, in typical cases – see [2] and the proposition here

below – it is possible to ensure the positive definitess of A by applying a low-rank correction to the

computed D, i.e., modifying a small number of its diagonal entries.

Proposition 3.2. Let A = P + R + E with rank R = r < n and ‖E‖ < ε. If A > εI and R � 0 then at

least n − r eigenvalues of P are positive.

Proof. Weyl’s inequalities for the Hermitian eigenvalues problem Z = X + Y give us the following

λi+j−1(Z) � λi(X) + λj(Y), 1 � i + j − 1 � n,

λi(X) + λn(Y) � λi(Z) � λi(X) + λ1(Y), 1 � i � n,

where the eigenvalues of a Hermitian matrix are supposed in decreasing order (i.e., λi � λi+1). Since

r < n, we have λr+k(R) = 0 for k = 1, . . . , n − r. Thus Weyl’s inequalities applied to A = P + R + E

give us

λi+r(A) = max
k=r,...,n−1

λi+k(A) � λi(P + E) � λi(A), 1 � i � n − k.

Therefore we know that all the first n − r eigenvalues of P + E are greater or equal to ε, thus n − r

eigenvalues of P are positive, since A > εI. �

In thenext sectionwediscuss Problem3andpropose amethod for computing anyelement (U∗AU)ij
at a very low cost, after a preprocessing phase of complexity O(n log n). Suchmethodworks well if the

displacement rank of A, the matrix defining our system (7), with respect to the chosen algebra A , is

sufficiently small. More precisely let us introduce the following

Definition 3.3. Let A = A (W) be a matrix algebra. We say that a matrix A ∈ M(n) almost-belongs to

A , in symbols A ∈̃ A , if rank([A,W]) is uniformly bounded in n.

Note that by the fundamental theorem of homomorphism we have a canonical isomorphism ∇̇W

between M(n)/A and range∇W which implies that the pre-image of A ∈ range∇W is given by the

closed set {∇̇−1
W (A) + A}A∈A .
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The method proposed in the next section for computing cheaply the elements (U∗AU)ij , works if

A ∈̃ A and [A,W] is explicitly known.We underline since now that our method works well for all the

low complexity sdU algebras A previously presented and for any Toeplitz or Hankel matrix A.

4. The computation of U∗AU

Let A ⊂ M(n) be an algebra of normal matrices A = sdU, U ∈ U(n). Let us consider an element

W ∈ A which is non-derogatory. Clearly A = A (W) = ker ∇W and U∗WU ∈ D . Set D = U∗WU.

Given a matrix A ∈ M(n), we have

(U∗AU)D − D(U∗AU) = U∗[A,W]U
thus the off-diagonal elements of U∗AU satisfy the identity

(U∗AU)ij = (U∗[A,W]U)ij

λj(W) − λi(W)
, i 	= j. (9)

Such equalities let us state the theorem below, whose detailed proof can be derived also by the obser-

vations which follow.

Theorem 4.1. Let A = A (W) be a low complexity sd U algebra, A ∈̃ A and rank[A,W] = ρ (thus ρ is

uniformly bounded in n andλi(W) = λk(W)⇔ i = k). Assume thatσ(W) is explicitly known. Then, after

a preprocessing phase of complexity O(n log n) required for the computation of U∗[A,W]U (see below),

each off-diagonal element (U∗AU)ij can be calculated with ρ + 1 multiplications.

The theoremabove gives us a tool for approaching Problem3, or rather for computing the image of a

matrix A under a unitary fast transformation. In fact, we are requested to compute 2ρ transformations

x̂k = U∗xk , ŷk = U∗yk, for k = 1, . . . , ρ , in a preprocessing phase, where xk and yk are the vectors

defining a dyadic decomposition of [A,W]. Then each off-diagonal entry ofU∗AU is known up to ρ +1

multiplicative operations (U∗AU)ij = (λj(W) − λi(W))−1 ∑ρ
k=1(̂xk)i(̂yk)j . Finally observe that in

order to apply the black-dot algorithm we actually do not need the diagonal entries of U∗AU [2], thus

Theorem 4.1 is not restrictive in our situation.

To summarize, in order to compute the optimal rank preconditioner A for A into the algebra A =
sdU = ker ∇W , we can propose the following DR-scheme, where the black-dot algorithm is like a

black box which sometime requires an entry (U∗AU)ij , i 	= j.

DR-scheme

Assume sdU = ker ∇W and [A,W] = ∑ρ
k=1 xky

∗
k .

1. (Preprocessing) Compute the 2ρ fast transforms x̂k = U∗xk , ŷk = U∗yk , k = 1, . . . , ρ .

2. Start the black-dot iterations

2.1. if (U∗AU)ij is required, compute it via the identity

(U∗AU)ij =
∑ρ

k=1(̂xk)i(̂yk)j

λj(W) − λi(W)

where z denotes the complex conjugate of z.

3. Proceed with the iterations until convergence, passing through 2.1 if necessary

Note that the preprocessing phase requires O(ρn log n) operations, whereas only ρ + 1 arithmetic

multiplications are needed each time step 2.1 must be performed.

Despite the somewhat general formulation of the DR-scheme, in the following we consider some

specific cases, in which A is a Toeplitz or Hankel matrix, and discuss how to compute U∗AU explicitly,
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for the low complexity algebras presented in Section 2, underlining that for these choices of A, we

actually have A ∈̃ A .

4.1. ϕ-circulant algebras

Recall that the generic ϕ-circulant algebra is defined as

Cϕ = A (Πϕ) = sd Fϕ = ker ∇Πϕ ,

where Fϕ = 	ϕF = diag(1, ϕ
1
n , . . . , ϕ

n−1
n )F , |ϕ| = 1, and F is the Fourier matrix (3). We will make

use of the following matrix J, also called reverse identity

J =

⎛⎜⎜⎜⎜⎜⎜⎝
1

1

. . .

1

⎞⎟⎟⎟⎟⎟⎟⎠ .

Given p ∈ Z, consider the equivalence class {p mod n} and let [p]n denote its unique representative

in {0, 1, . . . , n − 1}.
Proposition 4.2. Let Tn = (ti−j)ij be a Toeplitzmatrix andΠϕ thematrix (1) generatingCϕ . Then Tn ∈̃ Cϕ

and

[Tn, Πϕ] = xϕ eT1 + en y
T
ϕ (10)

being xϕ = (ϕt1−n − t1, . . . , ϕt−1 − tn−1, 0)
T and yϕ = −Jxϕ .

Proof. Due to the definition of Πϕ we have the following equality

[Tn, Πϕ]ij =
n−1∑
k=0

(
ti−k(Πϕ)kj − (Πϕ)iktk−j

) = ϕti−[j+n−1]n − t[i+1]n−j.

Therefore (10) holds for i 	= n−1and j 	= 0. In fact for such choices of indexeswehave i−[j+n−1]n =
i − (j − 1) = [i + 1]n − j thus [Tn, Πϕ]ij = 0 and rank([Tn, Πϕ]) = 2. It is not difficult to observe

that (10) also holds for i = n − 1 and j = 0. �

The above Proposition immediately implies that, when A has Toeplitz structure, the DR-scheme

can be applied to the case U = Fϕ , the unitary matrix diagonalizing Cϕ . The Hankel case needs some

further observation since the rank of [Hn, Πϕ] is not bounded in general and a direct use of the DR-

schemewould be prohibitive. Given a Hankel matrixHn call T(Hn) the Toeplitz matrix JHn. Here below

we observe that when ϕ is 1 or −1, the computation of F∗
ϕHnFϕ can be brought back to the Toeplitz

case F∗
ϕT(Hn)Fϕ , for which, instead, the DR-scheme works well.

Observe that

	∗
ϕ J	ϕ = diag

(
ϕ

n−2k−1
n | k = 0, . . . , n − 1

)
J,

therefore when ϕ ∈ {−1, 1} we get the equality F∗
ϕ JFϕ = ϕ

n−1
n F∗JF . Moreover, since F = JΠF∗,

F2 = JΠ and F∗JF = �, we also have

F∗JF = (F∗ΠF)(F∗)2 = �JΠ,

where � = diag(1, ω, . . . , ωn−1), ω = e−2π i/n. Now use the definition of T(Hn) to write
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F∗
ϕHnFϕ = (F∗

ϕ JFϕ)(F∗
ϕT(Hn)Fϕ).

The formulas obtained so far imply the desired result:

(F∗
ϕHnFϕ)ij = ϕ

n−1
n ω[−i]n(F∗

ϕT(Hn)Fϕ)[−i]n,j, i, j = 0, . . . , n − 1, i 	= j.

Before proceeding to our discussion for the trigonometric and Hartley cases, let us introduce some

further useful notation. Given a, b ∈ C
n with a1 = b1, we shall denote with Tn(a, b) the Toeplitz

matrix whose first column is a and whose first row is bT. Analogously, given u, v ∈ C
n such that

un = v1 we shall denote withHn(u, v) the Hankel matrix whose first row is uT andwhose last column

is v. By Proposition 4.2 the following formula holds for any a, b ∈ C
n with a1 = b1

[Tn(a, b), Πϕ] = �ϕ(a, b) − J�ϕ(a, b)TJ, (11)

where �ϕ(a, b) is the rank one matrix

�ϕ(a, b) = (ϕJb − Πϕa)e
T
1 . (12)

4.2. Trigonometric algebras

As discussed in Section 2 all the sixteen trigonometric algebras Tμ are generated by the matrix Xμ

(4), for the sixteen choices of μ ∈ R
4 shown in Table 1. Being Xμ non-derogatory and normal all its

eigenvalues are distinct and we know them explicitly (Tables 2 and 3). As a consequence, Theorem 4.1

holds for the trigonometric algebras and for the set of matrices A ∈ M(n) such that A ∈̃ Tμ. Let us

show that all the Toeplitz and Hankel matrices belong to such set.

Given μ ∈ R
4, let us split Xμ into Xμ = X + Mμ, where

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1 1

. . . . . .

1 1

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Mμ =

⎛⎜⎜⎜⎜⎜⎜⎝
μ1 μ2 − 1

μ3 − 1 μ4

⎞⎟⎟⎟⎟⎟⎟⎠ .

For any two vectors a, b ∈ C
n with a1 = b1 we obviously have [Tn(a, b), Xμ] = [Tn(a, b), X] +

[Tn(a, b),Mμ]. Thus it is possible to prove the result for the tau algebra T and then for all the other

algebras Tμ.

Proposition 4.3. Let A ∈ M(n) be Toeplitz, Hankel or the sum of them. Then A ∈̃ Tμ for any μ ∈ C
4,

precisely rank[A, Xμ] � 8.

Proof. Notice that rank(Mμ) � 2 for all μ ∈ C
4, thus rank([A,Mμ]) � 4. Moreover note that given

any Toeplitz T = (ti−j)ij or Hankel H = (hi+j)ij , the matrix T + H satisfies the cross-sum rule with

non-null boundary conditions, that is

ti−1−j + hi−1+j + ti+1−j + hi+1+j − (ti−j+1 + hi+j−1 + ti−j−1 + hi+j+1) = 0

for any i, j ∈ Z. Therefore the boundary conditions are given exactly by the border columns and rows of

the (n+2)×(n+2)matrix embedding the given T+H n×nmatrix andmaintaining its same structure.

Such columns and rows can not be null except for trivial cases. As a consequence, since A ∈ T if and

only if it satisfies the cross-sum with null boundary conditions, we have that rank[Tn + Hn, X] � 4,

namely



416 F. Tudisco et al. / Linear Algebra and its Applications 438 (2013) 405–427

[Tn + Hn, X] =

⎛⎜⎜⎜⎝
∗ · · · ∗
... On−2

...

∗ · · · ∗

⎞⎟⎟⎟⎠
where ∗ are in general non-null entries and On−2 is the null matrix of order n − 2. �

Proposition 4.4. Let a, b, c, d ∈ C
n with a1 = b1 and cn = d1. Then

[Tn(a, b), X] = Θ(a, b) − JΘ(a, b)TJ, (13)

[Hn(c, d), X] = Θ(d, Jc)J − JΘ(d, Jc)T (14)

where Θ(a, b) is the rank two matrix

Θ(a, b) = e1(Πb)T − (Πa)eT1 . (15)

Proof. Displacement formula (14) for Hn(c, d) clearly follows from the previous one (13), since

Hn(c, d) = Tn(d, Jc)J and

[Hn(c, d), X] = [Tn(d, Jc), X]J = Θ(d, Jc)J − JΘ(d, Jc)T.

By Proposition 4.3 only the border rows and columns of [Tn, X] are non-null, for a Toeplitz matrix Tn.

Thus we just need to check (13) for such four vectors. For instance, noting that X = Π0 +ΠT
0 , we have

[Tn(a, b), X]e1 = Tn(a, b)e2 − Xa = ΠT
0 a + b2e1 − Xa = b2e1 − Π0a

and analogously

eT1 [Tn(a, b), X] = bTX − eT2 Tn(a, b) = (Π0b)
T − a2e

T
1 .

Therefore (13) holds for the first row and column, if we define Θ(a, b) with Π0 in place of Π . It is not

difficult to observe that the same can be said also for the last row and column. Moreover, thanks to

arithmetic cancellations for the corner positions (1, n) and (n, 1), identity (13) holds for our definition

of Θ(a, b), given in terms of Π . �

The above proposition gives us an explicit formula for the displacement rank of a Toeplitz or Hankel

matrix into the tau-algebra T. Then, if S = S(0,1,1,0) is the sine transformwhich diagonalizes T, we can

apply the DR-scheme to the case where U = S and A = Tn + Hn is the sum of any two Toeplitz and

Hankel matrices.

Anyway, by Proposition 4.3, the displacement rank of a Toeplitz or Hankel matrix into any trigono-

metric algebraTμ does not exceed 8. Let us first derive an explicit formula for the dyadic decomposition

of [Tn, Xμ]. Since
Mμ = e1(μ1e1 + (μ2 − 1)e2)

T + en((μ3 − 1)en−1 + μ4en)
T,

we have

[Tn(a, b),Mμ] = c1(a, b)
(
μ1e1 + (μ2 − 1)e2

)T + cn(a, b)
(
(μ3 − 1)en−1 + μ4en

)T

− e1

(
μ1c1(a, b) + (μ2 − 1)c2(a, b)

)T

− en

(
(μ3 − 1)cn−1(a, b) + μ4cn(a, b)

)T

where ck(a, b) is the kth column of Tn(a, b). The required formula is obtained by summing the latter

one and (13). A similar computation provides a formula for [Hn, Xμ] and thus the DR-scheme can be

applied when U = Sμ, Cμ is any trigonometric transform and A = Tn + Hn.
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4.3. Hartley-type algebras

Let Hk = sdHk denote a generic Hartley-type algebra, we can characterize Hk as the set [23]

Hk = {A | [A, Yϕ] = [A,Mk] = 0} (16)

where ϕ ∈ {1, −1} andMk ∈ M(n) depend on the Hartley-type algebra. We are considering. Despite

it is obviously possible to define Hk as the set ker ∇W for some non derogatory matrix W , it is not

always easy to find a “simple” W with such property. Therefore here we make use of (16) and derive

an easy variant of the DR-scheme.

Theorem 4.5. Let X and Y be two distinct normal matrices which commute. Let λi(X), λi(Y) be the

eigenvalues of X, Y corresponding to the same common eigenvector. Consider the algebra A = {A |
[A, X] = [A, Y] = 0}. Then A is n dimensional if and only if λi(X) = λj(X) implies λi(Y) 	= λj(Y), for
any pair of distinct indices (i, j).

Proof. Denotewithλ1, . . . , λn andμ1, . . . , μn theeigenvaluesofX andY , respectively. Since [X, Y] =
0 we have X = UDλU

∗ and Y = UDμU
∗, where Dλ and Dμ are the diagonal matrices such that

(Dλ)ii = λi and (Dμ)ii = μi.

First let us prove the implication (⇐). Take A ∈ A , then U∗AUDλ = DλU
∗AU and U∗AUDμ =

DμU
∗AU. Let (U∗AU)ij = âij . By writing the first relation entrywise we get âij(λj − λi) = 0, therefore

âij must be zero ifλi 	= λj .Whenλi = λj weuse the second relation obtaining âij(μj−μi) = 0,which

gives us âij = 0 due to our hypothesis. As a consequence we have âij = 0 ∀i 	= j, hence U∗AU ∈ D

and dimA = dim sdU = n.

Viceversa, since any A ∈ sdU is an element of A and dimA = n, we have A = sdU. Now proceed

by absurd and assume the claim to be false.Without loss of generality, supposeλ1 = λ2 andμ1 = μ2,

and consider the matrix

A = U

⎛⎜⎜⎜⎜⎜⎜⎝
d1 b

d2
. . .

dn

⎞⎟⎟⎟⎟⎟⎟⎠U∗ = UBU∗

where b 	= 0. We have U∗[A, X]U = BDλ − DλB = 0 and U∗[A, Y]U = BDμ − DμB = 0. Therefore A

commutes with both X and Y , namely A ∈ A . This is impossible since A /∈ sdU. �
By the above theorem it is clear how to adapt the DR-scheme for Hartley-type algebras

Assume [A, Yϕ] = ∑ρ
s=1 xsy

∗
s and [A,Mk] = ∑τ

s=1 wsz
∗
s .

1. (Preprocessing) Compute the 2(ρ + τ) fast transforms x̂s = H∗
k xs, ŷs = H∗

k ys, ŵt = H∗
k wt ,

ẑt = H∗
k zt , s = 1, . . . , ρ , t = 1, . . . , τ .

2. Start the black-dot iterations

2.1. if (H∗
k AHk)ij is required, compute it via the identity

(H∗
k AHk)ij =

∑ρ
s=1(̂xs)i(̂ys)j

λj(Yϕ) − λi(Yϕ)

if λi(Yϕ) 	= λj(Yϕ), or

(H∗
k AHk)ij =

∑τ
s=1(ŵs)i(̂zs)j

λj(Mk) − λi(Mk)

otherwise

3. Proceed with the iterations until convergence, passing through 2.1 if necessary
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Note that in this modified version the DR-scheme requires one more assumption, since the matrix A

we are considering should have small displacement rankwith respect to two differentmatrices Yϕ and

Mk , rather than only one. Of course there are many matrices which satisfy such assumption, however

it is not obvious if among them there are also Toeplitz or Hankel matrices. The rest of the section is

devoted to observe that this is true in particular cases.

First of all, note that thematricesYϕ arederogatory andonly dim Cs
ϕ of their eigenvalues are distinct,

in fact Yϕ is the generator of the family of algebras

Cs
ϕ = {C ∈ Cϕ | C = CT}.

Note that in (6) we derived an explicit formula for the spectrum of Y±1.

Moreover it is clear from Propositions 4.2 that for any Toeplitz matrix A we have rank[A, Yϕ] � 4.

The same conclusion holds for [A, Yϕ] with A Hankel. Namely

Proposition 4.6. Assume |ϕ| = 1. Let a, b ∈ C
n such that a1 = b1. Then

[Tn(a, b), Yϕ] = �ϕ(a, b) − �ϕ(b, a)T + J
(
�ϕ(b, a) − �ϕ(a, b)T

)
J,

where �ϕ(x, y) is the rank one matrix in (12).

Let c, d ∈ C
n with cn = d1. Then

[Hn(c, d), Yϕ] = e1d
T(JΠ − ϕI) − (JΠ − ϕI)deT1 + enc

T(Π J − ϕI) − (Π J − ϕI)ceTn .

Proof. The formula for Tn(a, b) immediately follows from (11), noting that Tn(a, b)
T = Tn(b, a) and

that [A, BT] = −[AT, B]T, ∀ A, B ∈ M(n). The second one, for Hn(c, d), follows from (14) and the

decomposition Yϕ = X + Rϕ , being Rϕ = ϕ(ene
T
1 + e1e

T
n ). In fact Hn(c, d)en = d, Hn(c, d)e1 = c,

eT1 Hn(c, d) = cT and eTn Hn(c, d) = dT. �

Clearly we can also represent [Tn(a, b), Yϕ] by means of Θ(a, b), in fact

[Tn(a, b), Yϕ] = Θ(a, b) − JΘ(a, b)TJ + ϕJ(beT1 − e1b
T) + ϕ(aeT1 − e1a

T)J

which easily comes from (13).

Now, concerning Mk , let us fix four choices among the eight possible indices k, precisely k =
1, 2, 5, 6, and consider the corresponding Hartley-type algebras H = H1, K = H2, η = H5 and

μ = H6. For such choices we can characterizeMk somehow explicitly, in fact in [4] it is shown that

Mk = J +
⎛⎝ 0 0T

0 τ(zk)

⎞⎠ , (17)

where τ(zk) = τ(0,1,1,0)(zk) ∈ M(n − 1) and the vectors zk ∈ R
n−1 are, respectively,

z1 = 1
2
(e2 − en−1), z2 = − 1

2
(e2 + en−1), z5 = z6 = 0.

As a consequence we get τ(z5) = τ(z6) = On−1, and

τ(z1) = 1
2
X(I − J), τ (z2) = − 1

2
X(I + J)

where X = X(0,1,1,0) ∈ M(n − 1) is defined in (4). Also note that for the algebras H5 = η and

H6 = μ a more elegant characterization does hold. We state it by means of the following

Proposition 4.7. Let η and μ be the Hartley-type algebras defined in Table 4. Then

η = ker ∇Y1+J μ = ker ∇Y−1+J .



F. Tudisco et al. / Linear Algebra and its Applications 438 (2013) 405–427 419

Proof. Clearly η ⊂ ker ∇Y1+J ,μ ⊂ ker ∇Y−1+J and the equalities hold if and only if Y1 + J and Y−1 + J

are non-derogatory. If H5 is the unitary matrix diagonalizing η, it is not difficult to observe that

H∗
5 JH5 =

⎛⎝ Im

−In−m

⎞⎠
where m = n/2 if n is even and m = (n + 1)/2 otherwise. This remark and (6) imply that the

eigenvalues λi(Y1 + J) = λi(Y1) + λi(J) are all distinct; thus Y1 + J is non derogatory, and the thesis

follows for η. In the same way one proves the thesis also for μ. �

It is now clear that we can apply the modified DR-scheme to a quite general class of Toeplitz and

Hankel matrices. In fact for any symmetric Toeplitz matrix Tn and any persymmetric Hankel matrix

Hn we have [Tn, J] = [Hn, J] = 0, therefore [Tn, XJ] = [Tn, X]J and [Hn, XJ] = [Hn, X]J. Using (13)

and (14), it is now straightforward to derive the formulas for the commutator of Tn and Hn with Mk,

for k = 1, 2, 5, 6, taking into account that the matrix X which appears into (17) has order n − 1. This

eventually allows us to apply the modified DR-scheme to the case A = Toeplitz symmetric + Hankel

persymmetric.
We conclude this section by noting that using only Yϕ and formula (9) we can compute at least

n(n − 2) entries of H∗
i AHi, for any i = 1, . . . , 8. The elements • of H∗

i AHi that we can not compute
this way, are in the positions shown in the figure below (we represent them for n = 5, 6).

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

•
• •

• •
•

• •
• •

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
even

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

•
• •

• •
• •

• •

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
odd

(ϕ = 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

• •
• •

• •
• •

• •
• •

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
even

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

• •
• •

•
• •

• •

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
odd

(ϕ = −1)

5. Algebra-plus-low-rank approximation of a matrix

Asweunderlined the previous section, an optimal rank preconditioner P should realize the splitting

A = P + R + E (18)

where‖E‖ � ε and rank R isminimum.WhenA is Toeplitz, it can be shown that optimal or Strang-type

preconditioners P, chosen inside suitable sdU algebras, realize an analogous decomposition where in

general rank R = O(ε−p)O(n), for a p > 0 [1,4,8]. In this section we show that for particular classes

of matrices A and algebras A there exists P ∈ A that realizes the splitting (18) with ‖E‖ � ε and

rank R = o(n).
If T is the unit circle T = {z ∈ C | |z| = 1}, let us denote with Tn,Hn : L∞(T, C) → M(n) the

Toeplitz andHankel operators, respectively, whichmap f ∈ L∞(T, C) into the n×n Toeplitz or Hankel

matrices Tn(f ), Hn(f ). Finally call L(T) the subset of L∞(T, C) of all piecewise holomorphic functions

with logarithmic singularities, i.e., functions given by an holomorphic function plus a function with

logarithmic singularities. A generic f ∈ L(T) has the form
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f (z) = g(z) +
p∑

k=0

q∑
h=0

αkh · (z − zh)
k log(z − zh), z ∈ T,

with g holomorphic over a set containing T and zh ∈ T, h = 0, . . . , q.
In [3] it is shown that for an f ∈ L(T) the Toeplitz matrix Tn(f ) admits the decomposition

Tn(f ) = P + R + E, rank(R) = O

(
log

1

ε

(
log

1

ε
+ log n

))
,

where P is a circulant matrix and E is a small perturbation as usual. The space L(T) is a special

class of symbol functions that, however, covers all examples considered in literature on superlinear

preconditioners [2].

In this section we will show that a splitting analogous to the one in [3] also holds for Hn(f ) and P

chosen inside a generic ϕ-circulant algebra, ϕ ∈ T. Wewill explicitly describe suchmatrix P in several

cases, and we will discuss also the case of Hartley-type algebras.

Let us consider a λ ∈ C and define the vector

p(λ) =
(
1 λ λ2 · · · λn−1

)T
.

It is not difficult to observe that the Toeplitz matrix

Tn(p(λ), λ1−nJp(λ)) = p(λ)p(λ−1)T

is a rank onematrix. Moreover, by requiring a Toeplitz matrix to be of rank one, we observe in fact that

rank Tn(a, b) = 1 ⇐⇒ ∃λ | a = p(λ) and b = λ1−nJp(λ).

Given a real number λ set

Zn(λ) = Tn(p(λ), e1) =

⎛⎜⎜⎜⎜⎜⎜⎝
1

λ 1
...

. . . . . .

λn−1 · · · λ 1

⎞⎟⎟⎟⎟⎟⎟⎠ .

This is the Toeplitz matrix generated by the symbol

ζλ(θ) = 1

1 − λeiθ
, λ, θ ∈ R.

By noting that p(λ) satisfies

Πϕp(λ) = λp(λ) + (ϕ − λn)en

we obtain the following identities

�ϕ(p(λ), e1) = ϕene
T
1 − Πϕp(λ)eT1 = (λnen − λp(λ))eT1 ,

�ϕ(p(λ), λ1−nJp(λ)) =
(
(ϕλ1−n − λ)p(λ) − (ϕ − λn)en

)
eT1

which lead to

Lemma 5.1. For any λ ∈ R there exists Pϕ ∈ Cϕ such that the triangular Toeplitz matrix Zn(λ) splits into
Zn(λ) = Pϕ + R, with rank R = 1.
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Proof. Using (11) and the formulas above we have

[Tn(p(λ), e1), Πϕ] =
[

λn

λn − ϕ
Tn(p(λ), λ1−nJp(λ)), Πϕ

]
.

Notice, in fact, that, after the subtraction between �ϕ and J�T
ϕ J, the term ϕene

T
1 is canceled. �

Observe that we can explicitly write the ϕ-circulant matrix Pϕ in Lemma 5.1, in fact it is given by

the difference

Pϕ = Tn(p(λ), e1) − λn

λn − ϕ
Tn(p(λ), λ1−nJp(λ)). (19)

Hence, using the operator Cϕ : C
n → Cϕ defined in Section 2.1, we have the equality

Zn(λ) = Cϕ(xϕ(λ)) + R, xϕ(λ) = 1

ϕ − λn
JΠϕp(λ).

As a consequence, the following characterization holds

Proposition 5.2. The eigenvalues of Cϕ(xϕ(λ)) are

ζ λ

ϕ1/n

(
2πk

n

)
, k = 0, . . . , n − 1.

Proof. Observe that for a generic ν the following formulas hold

Πϕp(ν) = νp(ν) + (ϕ − νn)en, Jp(ν) = νn−1p(ν−1).

Then note that

√
nFT

ϕ xϕ(λ) =
√

n

ϕ − λn
F	ϕ JΠϕp(λ)

=
√

n

ϕ − λn
F	ϕ(λJp(λ) + (ϕ − λn)e1) = λn

√
n

ϕ − λn
F	ϕp(λ

−1) + e

= λn

ϕ − λn

⎛⎜⎜⎜⎝
...

1−ϕλ−n

1−λ−1ϕ1/nωk

...

⎞⎟⎟⎟⎠ + e =

⎛⎜⎜⎜⎝
...

1

1−λϕ−1/nω−k

...

⎞⎟⎟⎟⎠ .

The thesis follows by recalling that, given y ∈ C
n, the eigenvalues of Cϕ(y) are the entries of the vector√

nFT
ϕ y. �

Consider now the matrix

Kn(λ) = Zn(λ) + Zn(λ)T − I,

i.e., the well known Kac–Murdock–Szego (KMS) matrix generated by the symbol

κλ(θ) = 2
ζλ(θ) − 1 = ∑
n∈Z

λ|n|einθ = 1 − λ2

1 − 2λ cos θ + λ2
. (20)
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Observe that when λ is real, we have the identity, Kn(λ) = 2
Zn(λ)− I. It is also easy to show that

κλ(θ) > 0 ⇐⇒ |λ| < 1 or, equivalently, Kn(λ) > 0 ⇐⇒ |λ| < 1. Therefore

Proposition 5.3. For a given λ ∈ R, let Kn(λ) be the corresponding KMS matrix. Then

1. For any ϕ ∈ T there exist Qϕ ∈ Cϕ and R of rank 2 such that Kn(λ) = Qϕ + R

2. Let ξϕ(λ) =
(

1
ϕ−λn JΠϕ + ϕ

ϕ−λn

)
p(λ) − 1. Then Qϕ = Cϕ(ξϕ(λ))

3. The eigenvalues of Qϕ are κ λ

ϕ1/n

(
2πk
n

)
, k = 0, . . . , n − 1

Notice that we also have Kn(λ) > 0 ⇐⇒ Qϕ > 0.

Proof. By Proposition 5.1 we have the equality Kn(λ) = (2
Cϕ(xϕ(λ)) − I) + R where R is a rank

two Hermitian matrix. Note that the matrix 
Cϕ(xϕ(λ)) belongs to Cϕ , and this proves (1). Moreover

its eigenvalues are the real part of the eigenvalues of Cϕ(xϕ(λ)). Therefore from (20) we derive (3).

Concerning (2) just observe that, for any y ∈ C
n, Cϕ(y)∗ = ϕCϕ(JΠϕy), and use such remark to

compute the first row of 2
Cϕ(xϕ(λ)) − I. �

It is important to note that the ϕ-circulant matrix Qϕ in the previous proposition is indeed the

optimal rank ϕ-circulant preconditioner for a KMS matrix. This fact can be easily proved by a

direct calculation. Just try to impose that the difference between Kn(λ) and a rank one matrix is

ϕ-circulant to reach an absurd. Therefore we have an explicit formula for the optimal rank pre-

conditioner of Kn(λ). Note that it outperforms, from the clustering point of view, any other known

preconditioner for a KMS matrix [8,24]. In fact the preconditioned matrix Q−1
ϕ Kn(λ) has only three

distinct eigenvalues.

Theorem5.4. Letp, qbe twocomplexvaluedmutuallyprimepolynomialsdefinedonT, such that0 /∈ q(T),
deg p < deg q, andqhasall distinct roots. Then, for allϕ ∈ T, the lower triangular Toeplitzmatrix generated

by p/q satisfies the identity

Tn(p/q) = Pϕ + R, Pϕ ∈ Cϕ, rank R � deg p + 1.

Moreover, if the roots of q are real, then also the Hermitian Toeplitz matrix generated by 
(p/q) splits
into

Tn(
(p/q)) = Qϕ + R̃, Qϕ ∈ Cϕ, rank R̃ � 2 rank R.

Proof. By the fundamental theorem of algebra, any polynomial f : T → C admits the splitting

f (z) = ∏deg f
i=1 (z− zi). As a consequence, the rational function

p(z)
q(z)

admits the simple fractions decom-

position

p(z)
q(z)

=
deg q∑
i=1

ρi

z − zi

where ρi is the residual given by ρi = (z − zi)
p(z)
q(z)

∣∣∣
z=zi

and zi are the roots of q. Therefore, by the

linearity of the Toeplitz operator Tn : L2(T) → M(n) we have the identity

Tn(p/q) = −
deg q∑
k=1

ρk

zk
Zn(1/zk).

Now the existence of Pϕ and R follows from Proposition 5.1. Finally, if all the roots of q are real, then

the residuals ρi are real, and
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Tn(
(p/q)) = −
deg q∑
k=1

ρk

2zk
(Kn(1/zk) + I),

which together with Proposition 5.3 concludes the proof. �

Notice that, if all the roots of q are known, then one can explicitly compute theϕ-circulantmatrices

of Theorem 5.4, obtaining not exactly the optimal but a rank bounded preconditioner for an important

class of Toeplitz matrices.

There follows one further lemma, whose proof can be found in [25] as underlined in [3].

Lemma 5.5. Let k ∈ {1, . . . , n} and α ∈ R. For any ε > 0 there exist ai, bi such that∣∣∣∣∣∣k−α −
ρ∑

i=1

ai

(
e−bi

)k∣∣∣∣∣∣ � εk−α

with ρ � log ε−1(β0 + β1 log ε−1 + β2 log n), and the coefficients βi depend only on α.

Byusing the result stated in Lemma5.1,we can reformulate the above Lemma5.5. Let‖ · ‖C denotes

the Chebyshev norm on M(n),

A = (aij)ij ∈ M(n), ‖A‖C = max
ij

|aij|.

Consider the lower triangular Toeplitz matrix Tn = [(i − j)−α]i�j . Then, for any ε > 0, there exist

P(k)
ϕ ∈ Cϕ and Rk of rank one, such that∥∥∥Tn − ∑ρ

k=1 akZn(e
−bk)

∥∥∥
C

=
∥∥∥Tn − ∑ρ

k=1 P
(k)
ϕ + Rk

∥∥∥
C

� ε‖Tn‖C

where ρ is bounded as in Lemma 5.5. By taking the transpose of Tn and then subtracting by I, one

immediately observes (via Proposition 5.3) that also the symmetric Toeplitz matrix Ts
n = (|i − j|−α)ij

admits the decomposition

‖Ts
n − Cϕ − R‖C � ε‖Ts

n‖C, Cϕ ∈ Cϕ

for a matrix R whose rank is bounded by 2ρ .

From now on when referring to Lemma 5.5 we will always think at the latter two inequalities.

Observe that the results obtained at this stage are enough to say that for any polynomial f and any

symmetrized polynomial g(x) = f (|x|), the Toeplitzmatrices Tn(f ) and Tn(g) admit the decomposition

Tn = Cϕ + R + E

where Cϕ ∈ Cϕ , R has sufficiently small rank and ‖E‖C � ε. Notice furthermore that the same can

be said for continuous symbol functions, since they can be approximated by polynomials (Weiestrass

theorem).

An even better result can be obtained for the Toeplitz matrix whose entries are positive integer

powers of the indexes, namely

Lemma 5.6. Let Tn = [(i − j)p]i�j and Ts
n = (|i − j|p)ij . Then for any ϕ ∈ T, we have Tn = Pϕ + R and

Ts
n = Qϕ + R̃ with Pϕ,Qϕ ∈ Cϕ and rank R̃ � 2 rank R � 2(p + 2).

Proof. If we prove the decomposition for Tn, the thesis for Ts
n follows because of the identity Ts

n =
Tn + TT

n . Fix p ∈ N and consider the polynomial χϕ such that deg(χϕ) � p + 1 and

χϕ(k) − ϕχϕ(k − n) = kp, k = 1. . . . , n − 1.
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Call vp the first column of Tn, i.e., Tn = Tn(vp, 0), then set

a(χϕ) =

⎛⎜⎜⎜⎜⎜⎜⎝
χϕ(0)

χϕ(1)
...

χϕ(n − 1)

⎞⎟⎟⎟⎟⎟⎟⎠ , b(χϕ) =

⎛⎜⎜⎜⎜⎜⎜⎝
χϕ(0)

χϕ(−1)
...

χϕ(1 − n)

⎞⎟⎟⎟⎟⎟⎟⎠ .

It follows that ϕJb(χϕ) − Πϕa(χϕ) = −Πϕvp, and therefore

�ϕ(a(χϕ), b(χϕ)) = �ϕ(vp, 0), [Tn(a(χϕ), b(χϕ)), Πϕ] = [Tn(vp, 0), Πϕ].
The thesis for Tn follows by noting that rank Tn(a(χϕ), b(χϕ)) � p + 2. �

Now consider a polynomial f of degree d. By the previous Lemma we can affirm that the Toeplitz

matrix whose entries are f (|i − j|) can be decomposed into the sum of a ϕ-circulant matrix and a

matrix R whose rank is bounded by
∑d

i=1 i + 2 = O(d2). Such particular Toeplitz matrix is indeed a

generalized KMS matrix. For the sake of completeness we recall that, given the matrix

Kn(f , λ) =
(
f (|i − j|)λ|i−j|)

ij

a generalized KMS matrix is defined as

Gn =
m∑

k=1

γkKn(fk, λk)

where γk and λk are all real and fk are polynomials of degree dk .

It is clear that using both Proposition 5.3 and Lemma 5.5 we have

‖Gn − Pϕ + R‖C � ε‖Gn‖C, Pϕ ∈ Cϕ,

with rank R = O(log 1
ε
(log 1

ε
+ log n)

∑m
k=1 dk).

Proposition 5.7. Set f (z) = log(z − z0), z0, z ∈ T. Then, for any ε > 0 there exist Pϕ ∈ Cϕ and Rε with

rank Rε � log ε−1(β0 + β1 log ε−1 + β2 log n) such that

‖Tn(f ) − Pϕ − Rε‖C � ε‖Tn(f )‖C .

Proof. By the logarithmic singularity of f there follows the equality

f (z) = log z0 + ∑
k�1

zk

kzk0
,

and thus for i > j, we have

Tn(f )ij = 1

(i − j)z
i−j
0

= (i − j)−1Zn(z
−1
0 )ij.

Note that the log z0 term gives rice to a multiple of the identity, thus to an element of Cϕ . Therefore

we do not care about it. By Lemma 5.1, the matrix Zn(z0) has the form P̃ϕ + R for a P̃ϕ ∈ Cϕ and a rank

one matrix R. Therefore by Lemma 5.5, for any ε > 0 there exist P(k)
ϕ and a rank one Rk such that
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∑
k

(P(k)
ϕ + Rk)

∥∥∥∥∥∥
C

� ε‖Tn(f )‖C .

As a consequence we have the thesis, since (̃Pϕ + R)
∑

k(P
(k)
ϕ + Rk) = Pϕ + Rε , with Rε and Pϕ as in

the statement. �

We can, finally, combine Theorem 5.4, Lemma 5.6 and Proposition 5.7, to obtain

Theorem 5.8. Let f ∈ L(T). For any ε > 0 there exist Pϕ,Qϕ ∈ Cϕ such that

‖Tn(f ) − Pϕ − Rε‖C � ε‖Tn(f )‖C = O(ε),

‖Tn(
f ) − Qϕ − R̃ε‖C � ε‖Tn(
f )‖C = O(ε)

with rank R̃ε � 2 rank Rε � 2 log ε−1(a + b log ε−1 + c log n) + d, and all the coefficients a, b, c, d do

not depend on n neither on ε.

The Hankel case can be discussed analogously. It is not difficult to check that Hn(a, b) = JTn(Ja, b),
for anya, b ∈ C

nwitha1 = b1. AsbeforewecallH(Tn(a, b)) suchmatrix. Thereforewecan reformulate

the results obtained in this section simply multiplying them by J on the left, since this clearly does not

affect the rank neither the arbitrariness of ε. Moreover, we can write the Hankel matrix generated by

the symbols

ζμ(θ) = 1

1 − μeiθ
, g(z) = log(z − z0), z, z0 ∈ T,

in terms of H(Zn(λ)). In fact, for instance, we have

Hn(ζμ) = μn−1 JZn(μ
−1) = μn−1 H(Zn(μ

−1)) (21)

and a similar identity holds for Hn(g).
We finally stress the fact that our initial problem is not well posed when f is a rational function

and the linear system is defined by the Hankel matrix with symbol f . In fact such matrix Hn(f ) has in
general a small rank which equals the number of poles of f (due to the Kronecker theorem, 1881 [26])

and therefore the linear system Hn(f )x = y, when n is large enough, could even be unsolvable.

Hartley-type algebras

Let us conclude with few observations concerning Hartley-type algebras. In studying this case the

arbitrariness of ϕ ∈ T is crucial, in fact it allows us to use both circulant and skew-circulant matrices

and thus to consider Hartley-type algebras. If H is a generic Hartley-type algebra, recall that Cs
ϕ ⊂ H

with ϕ ∈ {−1, 1}.
Observe that by Proposition 5.3 we already know that the KMS matrix Kn(λ) admits the splitting

Kn(λ) = H + R where rank R = 2 and H is an element of Cs±1 ⊂ H. In fact we have Kn(λ) =
Cϕ(ξϕ(λ)) + R where the matrix Cϕ(ξϕ(λ)), ϕ ∈ {1, −1}, is circulant or skew-circulant symmetric,

respectively. Thus by the definitions in Table 4, when ϕ ∈ {1, −1}, Cϕ(ξϕ(λ)) ∈ H.

Let us summarize this remark into the following:

Lemma 5.9. Let λ ∈ R. For any Hartley-type algebra H there exists H ∈ H and R of rank two, such that

Kn(λ) = H + R.

Proof. Specialize Proposition 5.3 for ϕ = 1 and ϕ = −1 and use the definitions in Table 4. �

Nonetheless we would stress the fact that all the results we obtained in terms of symmetric ϕ-

circulants may also be seen as involving Hartley-type algebras. One just need to specialize them for

ϕ = 1 or ϕ = −1.
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6. Conclusions

We have tried to produce a first step towards the generalization of the ideas presented in [2]. After

a brief overview about matrix algebras of low complexity, their generators and main properties, we

have proposed a way to extend the applicability of the black-dot algorithm, proposed in [2] for the

construction of optimal rank circulant preconditioners for a Toeplitz system, to other types of linear

systems (including Toeplitz plus Hankel like) and to preconditioners chosen in other low complexity

matrix algebras. Then we have shown that, in fact, a suitable class of Toeplitz and Hankel matrices is

indeed representable as the sum of a ϕ-circulant matrix and a small rank perturbation, for any ϕ of

modulus one. Combining such representation for ϕ = 1 and ϕ = −1 we then derive an analogous

decomposition involving matrices from a Hartley-type algebra and a low rank perturbation.

It is important to note that for a significant class of Toeplitz (and Hankel) matrices associated with

a rational symbol, the optimal rank ϕ-circulant and Hartley-type preconditioners (as we called it) can

be explicitly computed without the use of the black-dot method, provided that the symbol function

and its poles are explicitly known.
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