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methods, which generalize the classical BFGS method, are 
based on an iterative formula which exploits, at each step, 
an ad hoc chosen matrix algebra L(k). A global convergence 
result is obtained under suitable assumptions on f .
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1. Introduction

Quasi-Newton methods for the unconstrained minimization of a function f : Rn → R

are based on iterative schemes of the form xk+1 = xk + λkdk, where dk is a descent 
direction in xk, i.e. ∇f(xk)Tdk < 0, and λk is the steplength.
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Let us recall that any descent direction dk for f in the current guess xk solves the 
equation Akdk = −gk for some real symmetric positive definite (pd) matrix Ak approx-
imating the Hessian of f in xk, where gk is the first derivative vector ∇f(xk) (see [9]).

A good property that quasi-Newton methods should have, seems to be that Ak+1
satisfies the equation Ak+1sk = yk (Secant equation), where sk = xk+1 − xk and 
yk = gk+1−gk. Quasi-Newton methods with such property will be referred to as Secant. 
Apparently, the secant equation is far to be a mere optional condition. In [12, p. 24] it is 
observed that the equality Ak+1sk = yk mimics the fundamental property of the Hessian 
∇2f(xk+1)sk ≈ yk, whereas in [4, p. 54] the same equality “is central for the develop-
ment of quasi-Newton methods, and therefore it has often been called the quasi-Newton 
equation”. Also in [1, p. 223] the secant equation appears as a fundamental ingredient in 
the definition of quasi-Newton methods.

In [7,10,8,9,6] it was introduced a new class of algorithms, named LQN, which includes 
methods of Secant type, in particular the well known BFGS method, and, at the same 
time, some methods which are not Secant but have relevant good properties (f.i. global 
convergence). The main purpose consisted in saving the second order information of the 
matrix Bk, produced by the BFGS method to approximate a full (not sparse) Hessian 
of f , in a form that allows to reduce the high (O(n2)) computational cost per step of 
BFGS. More in detail, a substantial generalization of the BFGS scheme has been therein 
proposed by an updating Hessian approximation formula of the form

Bk+1 = Φ(B̃k, sk,yk) (1)

where B̃k is a suitable approximation of Bk and Φ is the BFGS-type rank-two correction 
of B̃:

Φ(B̃, s,y) := B̃ − 1
sT B̃s

B̃ssT B̃ + 1
yT s

yyT .

The BFGS method is retrieved if B̃k = Bk for all k. Moreover, a suitable choice of B̃k

yields the important class of LQN methods, where the quasi-Newton matrix approx-
imating the Hessian is defined also in terms of a matrix algebra L. The matrices of 
this algebra L are simultaneously reduced to diagonal form by a unitary matrix U , i.e. 
L = sdU = {L = Ud(z)UH} where d(z) denotes the diagonal matrix of the eigenvalues 
zi of L. In fact, if B̃k is the best approximation LBk

in L of Bk in Frobenius norm, then 
from (1) we obtain a simple single-array iteration to compute the eigenvalues of LBk+1

from the eigenvalues of LBk
[7]. At least two choices are possible for the new descent 

direction dk+1:

dk+1 = −B−1
k+1gk+1 or dk+1 = −B̃−1

k+1gk+1.

The first choice yields a Secant (S) algorithm, because Bk+1sk = yk, whereas the second 
choice yields a Non-Secant (NS) procedure, as B̃k+1sk is in general different from yk. 
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If U is defined by a fast transform (Fourier, Hartley or others), then in both cases the 
essential computation can be reduced to exactly two fast transforms at each step k, with 
a total cost of O(n log n) FLOPS per step and O(n) memory allocations.

The gain of efficiency with respect to BFGS and its variants is due, essentially, to the 
simple fact that the matrix LB inherits from a matrix B its main spectral properties. In 
particular we have that

B pd ⇒ LB pd

(pd = real symmetric positive definite; L spanned by real matrices), and, if νj(X), 
j = 1, . . . , n, denote the eigenvalues of X in non-decreasing order, then [14]

i∑
j=1

νj(B) ≤
i∑

j=1
νj(LB),

n∑
j=i

νj(LB) ≤
n∑

j=i

νj(B).

Thus in LQN algorithms the information given by the single array zBk
of the eigen-

values of LBk
captures the essential of the second order information that Bk inherits 

from ∇2f(xk). Moreover, a global convergent result has been obtained for NSLQN
algorithms [7]. However, one may expect that their secant version SLQN, with more 
cumbersome formulas but roughly with the same cost per step, are more efficient than 
NSLQN, even if no proof of convergence of SLQN has been found. In fact, numerical 
experiments have shown a better efficiency of Secant with respect to Non-Secant LQN
procedures, and especially for large scale minimization problems, as in the case of neural 
networks learning [2] or impulse noise removal from images [3], SLQN methods can be 
extremely competitive, even with L-BFGS (limited memory BFGS [12]).

In this paper we improve the idea, preliminarily investigated in [6] and [8], to change 
at each step the structure of the pd matrix B̃k involved in the Hessian approximation 
updating formula (1), or, equivalently, the matrix algebra L = sdU where to choose B̃k. 
We do this in a way that appears nearly optimal.

In particular, we are interested in L(k)QN algorithms where, at each step, as soon as 
the (efficient) secant search direction dk+1 = −B−1

k+1gk+1 is computed, a matrix algebra 

L(k+1) = sdUk+1 and a pd matrix B̃k+1 ∈ L(k+1) are chosen so that the Non-Secant
search direction −B̃−1

k+1gk+1 achieves the same aim and the same effect of dk+1. So, our 
L(k)QN algorithms, should satisfy, in principle, the following fundamental conditions:

• At each step of L(k)QN, even if B̃k+1 does not satisfy the secant equation, its inverse 
B̃−1

k+1 produces the same effect of the updated matrix B−1
k+1 = Φ(B̃k, sk, yk)−1 on the 

vector gk+1. Precisely, given the secant search direction dk+1 = −B−1
k+1gk+1, the matrix 

B̃k+1 satisfies the equality

−B̃−1
k+1gk+1 = σk+1dk+1 (2)

for a real σk+1 > 0.
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• L(k)QN methods have a linear computational cost per step, in terms of FLOPS and 
memory allocations.

• L(k)QN methods are globally convergent.

We will prove that the equality (2) can be obtained if and only if a special condition 
on the minimal and maximal eigenvalues of B̃k+1 is verified. In particular, if such condi-
tion holds, then (2) is obtained by choosing B̃k+1 in a suitable algebra L(k+1) = sdUk+1

where Uk+1 is defined as the product of two Householder unitary matrices, and the effect 
of this choice is to reduce to O(n) both computational cost per step and memory alloca-
tions. Moreover, the L(k)QN methods obtained by forcing at each step equality (2) turn 
out to be globally convergent, and this is not surprising since the sequence of approxi-
mations {xk}k∈N they yield can be seen as produced by the corresponding Non-Secant
L(k)QN methods defined in terms of the search directions −B̃−1

k+1gk+1 (it is known that 
Non-Secant L(k)QN methods are globally convergent [7,8]).

In conclusion, with the L(k)QN methods introduced in this paper, it is solved implicitly 
the degree of freedom, and thus of uncertainty, in choosing the space L of the LQN
algorithms, and, simultaneously, it is nullified the difference between the classes of Secant 
and Non-Secant algorithms since, eventually, the search directions produced by the new 
L(k)QN methods are simultaneously of Secant and of Non-Secant type.

2. Notation and preliminaries

We will freely use familiar properties of symmetric positive definite matrices and 
fundamental results concerning algebras of matrices simultaneously diagonalized by a 
given unitary transform.

We use the shorthand pd to denote a real symmetric positive definite matrix. Given 
a vector z ∈ Rn we write z > 0 to denote entrywise positivity. We let d(z) be the 
diagonal matrix whose diagonal entries are the components of z, analogously the symbol 
diag(xi, i = 1, . . . , n) denotes the diagonal matrix whose diagonal entries are the xi, 
writing briefly diag(xi) when no ambiguity may occur. Thus for instance d(z) = diag(zi).

Let Mn(C) be the set of all n × n matrices with complex entries. Given a unitary 
matrix U ∈ Mn(C) (i.e. UH = U−1), set

L := sdU =
{
Ud(z)UH : z ∈ Cn

}

The space L is a closed subspace of Mn(C) which is a Hilbert space with respect 
to the inner product (X, Y ) =

∑n
i,j=1 xijyij . Note that the norm induced by (·, ·) is 

the Frobenius norm ‖X‖F = (
∑n

i,j=1 |xij |2)
1
2 . Thus, by the Hilbert projection theorem, 

given a matrix B ∈ Mn(C) there exists a unique element LB ∈ L such that

‖LB −B‖F ≤ ‖X −B‖F , ∀X ∈ L, (3)
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or, equivalently, such that

(X,B − LB) = 0, ∀X ∈ L.

For the sake of completeness we recall hereafter few important results on pd matrices 
and on the projection LB. For further details see [15,11,7].

Lemma 1 (Kantorovich inequality). Let A be a hermitian positive definite matrix and 
z ∈ Cn. If λmax and λmin denote the maximum and the minimum eigenvalue of A, 
respectively, then

1 ≤ (zHAz)(zHA−1z)
(zHz)2 ≤ (λmax + λmin)2

4λmaxλmin
= (1 + μ(A))2

4μ(A) (4)

where μ(A) = λmax/λmin is the condition number of A in the spectral norm.

Lemma 2.

1. LB = Ud(zB)UH where [zB ]i = [UHBU ]ii, i = 1, . . . , n; in particular zxyT =
d(UHx)UTy, where x, y ∈ Cn.

2. If B = BH , then LB = LH
B and min ν(B) ≤ ν(LB) ≤ max ν(B) where ν(X) denotes 

the generic eigenvalue of X. Therefore LB is hermitian positive definite whenever B
is hermitian positive definite.

3. If B ∈ Rn×n then LB ∈ Rn×n provided that L is spanned by real matrices or more 
generally whenever L ⊂ L (i.e. L is closed under conjugation).

Lemma 3. Let L = sdU and let B ∈ Mn(C). Then

1. tr(LB) = tr(B)
2. det(B) ≤ det(LB).

Proof. Use Lemma 2 and Hadamard’s inequality for the determinant of a matrix. �
For a more exhaustive treatment of the contents of Lemma 2 and Lemma 3, and their 

relevance for LQN minimizations algorithms and optimal preconditioning, one can see 
[11] and [7].

3. The Secant scheme

Let f : Rn → R and consider the minimum problem

find x∗ such that f(x∗) = min f(x). (5)

x∈Rn
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In [7] it is proposed a Secant BFGS-type algorithm for the solution of (5), whose main 
instructions are summarized in Algorithm 3.1 here below:

Algorithm 3.1: Secant BFGS-type.
Data: x0 ∈ R

n, g0 = ∇f(x0), B̃0 pd, d0 ∈ R
n s.t. dT

0 g0 < 0;
1 while gk �= 0 do
2 xk+1 = xk + λkdk; /* λk verifies (36) */
3 sk = xk+1 − xk, gk+1 = ∇f(xk+1);
4 yk = gk+1 − gk;
5 Bk+1 = Φ(B̃k, sk, yk);
6 dk+1 = −B−1

k+1gk+1;
7 Construct B̃k+1 pd;

where

• B̃k is chosen for all k as a suitable, step-by-step approximation of Bk, such that, if 
Bk is pd, then B̃k is pd;

• Φ(B̃, s, y) = B̃ + 1
yT syyT − 1

sT B̃s B̃ssT B̃ is a Hessian approximation BFGS-type 
updating formula.

Observe that the matrix

Bk+1 = Φ(B̃k, sk,yk)

verifies the secant equation Bk+1sk = yk. For this reason we refer to Algorithm 3.1 as 
Secant BFGS-type. For B̃k = Bk one has the BFGS method, which is a well known 
secant quasi-Newton minimization algorithm [5,12].

Moreover, observe that, by the Sherman–Morrison–Woodbury formula, we have

B−1
k+1 = Ψ

(
B̃−1

k , sk,yk

)
(6)

where

Ψ(H̃, s,y) =
(
I − 1

yT s
ysT

)T

H̃

(
I − 1

yT s
ysT

)
+ 1

yT s
ssT . (7)

Identities (6), (7) assure that the new search direction

dk+1 = −B−1
k+1gk+1

can be computed with at most O(n2) FLOPS (the cost of computing a general matrix-
vector product B̃−1

k z, z ∈ Rn), which turns out to be an estimation of the total 
computational cost per step (as it will be clear afterwards, we assume that less than 
O(n2) FLOPS are sufficient to compute the matrix B̃−1

k from Bk).
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An important property of the Hessian approximation updating formula Φ, used in the 
definition of the Secant BFGS-type Algorithm 3.1, is that, assuming B̃ pd, the matrix 
Φ(B̃, s, y) is a well defined pd matrix iff yT s > 0. If f is continuously differentiable and 
lower bounded, whenever the positive parameter λk is chosen, at each step, so that the 
two Armijo–Goldstein conditions are satisfied – briefly λk ∈ AG – we have that the value 
of f(xk+1) is less than f(xk) − ηk, with ηk > 0, and yT

k sk > 0 (see Section 5 for a more 
precise definition of ηk). Thus Bk+1 is pd and Secant BFGS-type yields a well defined, 
strictly decreasing sequence {f(xk)}k∈N.

Of course, we have an analogous result if, in the above Algorithm 3.1, the matrix B̃k+1
is constructed immediately after the definition of Bk+1, and the secant search direction 
dk+1 = −B−1

k+1gk+1 is replaced by the alternative

dk+1 = −B̃−1
k+1gk+1, (8)

which may be called Non-Secant search direction.

Remark 1. Note that any pd matrix B̃k we use in BFGS-type algorithms has the structure

B̃k = Ukd(zk)UH
k , Uk unitary, [zk]i > 0.

If for each step the eigenvalues of B̃k – i.e. the [zk]i of Remark 1 – are such that

det(Bk) ≤ det(B̃k) =
∏
i

[zk]i, tr(Bk) ≥ tr(B̃k) =
∑
i

[zk]i, (9)

then the NS BFGS-type algorithms (where dk+1 is defined as in (8)) are convergent [7]
without any assumption on the matrix which diagonalizes B̃k – i.e. on the Uk of Re-
mark 1 –. In particular, it is easy to check that such conditions (9) are satisfied when 
[zk]i = (UH

k BkUk)ii, i = 1, . . . , n (Hadamard inequality is used for the first of (9)). But 
these [zk]i are nothing else than the eigenvalues of the best approximation in Frobenius 
norm of Bk in the space

L(k) := sdUk =
{
Ukd(z)UH

k : z ∈ Cn
}
.

In [7,8] this approximation of Bk is denoted by L(k)
Bk

, so the choice [zk]i = (UH
k BkUk)ii

corresponds to the choice B̃k = L(k)
Bk

.
On the other hand numerical experiments, performed mainly with L(k) equal to a fixed 

L for all k, show that the NSL(k)QN algorithms, defined by the search direction dk+1 =
−(L(k+1)

Bk+1
)−1gk+1, have a slow convergence rate, whereas the SL(k)QN algorithms, with 

dk+1 = Φ(L(k)
Bk

, sk, yk)−1gk+1, appear competitive, even with methods like L-BFGS [2].
Now the crucial question is the following: is it possible to design a BFGS-type algo-

rithm with minimum cost per step which combines the convergence of Non-Secant with 
the efficiency of the Secant L(k)QN methods? We will see that this approach, where 
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the adaptive character of the L(k)QN algorithm is exploited, will yield a Non-Secant
algorithm with the same efficiency of a Secant one in solving minimization problems or, 
equivalently, to a Secant algorithm which is convergent as a Non-Secant one.

In particular, one could impose directly that the NS algorithm yields the same search 
direction of the S one. In this case B̃k+1 should be chosen such that

B̃−1
k+1gk+1 = σk+1B

−1
k+1gk+1, B̃k+1 = Uk+1d(zk+1)UH

k+1, σk+1 > 0. (10)

Notice that (10) is equivalent to say that

Bk+1sk+1 = σk+1B̃k+1sk+1, (11)

that is Bk+1 and B̃k+1 act as the same operator on the vector sk+1.

Remark 2. Every Secant BFGS-type algorithm satisfying (9) and (10) (or (11)), turns 
out to be at least convergent (see Section 5). Recall that any convergent quasi-Newton 
method xk+2 = xk+1 − λk+1A

−1
k+1gk+1, with Ak+1 pd and satisfying the Dennis–Moré 

condition

lim
k→+∞

‖(Ak+1 −∇2f(x∗))sk+1‖
‖sk+1‖

= 0, (12)

has a superlinear rate of convergence. Thus, in our context, assuming that Uk+1 and 
zk+1 solving (9) and (10) (or (11)) depend on a set of free parameters, one may try, 
at least in principle, to use these parameters to impose (12) with σk+1B̃k+1 replacing 
Ak+1 = Bk+1, in order to obtain a secant BFGS-type superlinearly convergent method.

In the following we investigate in two different cases if (10) or (11) can be effectively 
verified (note that in both cases the conditions (9) automatically hold):

• L(k)QN
The matrix B̃k+1 is the best approximation of Bk+1 in L(k+1), i.e.

B̃k+1 = L(k+1)
Bk+1

= Uk+1 diag
((
UH
k+1Bk+1Uk+1

)
ii

)
UH
k+1. (13)

• Hybrid L(k)QN
The matrix B̃k+1 is chosen in L(k+1) as follows:

B̃k+1 = Uk+1 diag
((
V H
k+1Bk+1Vk+1

)
ii

)
UH
k+1, (14)

where Vk+1 is an arbitrary unitary matrix; in other words [zk+1]i = (V H
k+1Bk+1Vk+1)ii

are free and are not forced to be the eigenvalues of L(k+1)
B .
k+1
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Concerning the first choice of B̃k+1, one could formulate the problem of calculating 
Uk+1 as follows:

Problem 1 (Totally Non-Linear Problem (TNLP)).

Given gk+1 ∈ Rn, Bk+1 = Φ(B̃k, sk,yk) pd and dk+1 = −B−1
k+1gk+1

find a unitary Uk+1 ∈ Rn×n, such that, if L(k+1) = sdUk+1,

then −
[
L(k+1)
Bk+1

]−1gk+1 = σk+1dk+1 for some σk+1 > 0.

For the sake of clarity, let us remember, once more, that L(k+1)
Bk+1

= Uk+1d(z(k+1)
Bk+1

)UH
k+1

where [
z(k+1)
Bk+1

]
i
=

(
UH
k+1Bk+1Uk+1

)
ii
, i = 1, . . . , n. (15)

If for each step Problem 1 has a solution, then the following L(k)QN method (Algo-
rithm 3.1 with B̃k = L(k)

Bk
for all k) is well defined and turns out to be globally convergent 

(see Theorem 3 and Remark 5 in Section 5).

Algorithm 3.2: L(k)QN.
Data: x0 ∈ R

n, g0 = ∇f(x0), B0 pd, d0 ∈ R
n s.t. dT

0 g0 < 0, define L(0);
1 while gk �= 0 do
2 xk+1 = xk + λkdk; /* λk verifies (36) */
3 sk = xk+1 − xk, gk+1 = ∇f(xk+1);
4 yk = gk+1 − gk;
5 Bk+1 = Φ(L(k)

Bk
, sk, yk);

6 dk+1 = −B−1
k+1gk+1;

7 Construct L(k+1) s.t. −[L(k+1)
Bk+1

]−1gk+1 = σk+1dk+1, σk+1 > 0;

Observe, however, that the dependence of the vector z(k+1)
Bk+1

in identity (15) from the 
unknown operator Uk+1, gives rise to a four degree non-linear problem for each entry of 
the matrix Uk+1 we are looking for. At the moment, no low complexity solution has been 
found for Problem 1 (we don’t know even if such solution exists) and thus Algorithm 3.2
has a theoretical interest.1

So, in the next section we shall deal with the second case (hybrid L(k)QN), i.e. we will 
calculate suitable matrices Uk+1 and Vk+1 to define B̃k+1 as in (14) and satisfying (10)
(or (11)).

4. Existence of solution of PNLP

In this section, for the sake of simplicity, the index k + 1 will be dropped. We now 
give necessary and sufficient conditions for the existence of a solution of the following

1 Obviously Problem 1 is solved by the space L(k+1) such that L(k+1)
Bk+1

= Bk+1, but such L(k+1) is in 
general not of low complexity and, of course, is not cheaply computable.
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Problem 2 (Partially Non-Linear Problem (PNLP)).

Given g ∈ Rn,d = −B−1g, where B pd
(
⇒ gTd < 0

)
,

and z ∈ Rn, zi > 0 i = 1, . . . , n, find a unitary U ∈ Rn×n, such that

−
[
Ud(z)UH

]−1g = σd, σ ∈ R. (16)

Given z > 0 let us write:

zm = min
i=1,...,n

zi, zM = max
i=1,...,n

zi.

Lemma 4. If there exists a unitary matrix U solution of Problem 2 then:

σ = ‖g‖
‖d(z)UHd‖ = dT (−g)

dTUd(z)UHd , (17)

(dT (−g))2

‖d‖2‖g‖2 ∈
[

4zmzM
(zm + zM )2 , 1

]
. (18)

Proof. To prove (17) observe that from Problem 2 we have

g = −σUd(z)UHd ⇒ dTg = −σdTUd(z)UHd. (19)

As dTg < 0 and dTUd(z)UHd > 0, we obtain σ > 0. Moreover, being U unitary, we 
obtain

‖g‖ = σ
∥∥Ud(z)UHd

∥∥ = σ
∥∥d(z)UHd

∥∥,
thus (17). Regarding (18), observe that from (17) and (19) we have:

(dT (−g))2

‖d‖2‖g‖2 = (dTUd(z)UHd)2

(dTUd(z)2UHd)(dTd) . (20)

Setting

y = d(z) 1
2UHd

(
⇒ d = Ud(z)− 1

2 y
)

we obtain

(dT (−g))2

‖d‖2‖g‖2 = (yTy)2

(yT d(z)y)(yT d(z)−1y) ∈
[

4zmzM
(zm + zM )2 , 1

]
(21)

where the inclusion statement follows from the Kantorovich inequality. �
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Lemma 5. Given z > 0 and a real number c such that 0 < c2 ≤ 1, if there exists a pair 
of indexes (h, k) such that

4zhzk
(zh + zk)2

≤ c2

then there exists a vector y ∈ Rn such that

(yTy)2

(yT d(z)y)(yT d(z)−1y) = c2. (22)

Proof. Set y = αeh + βek. We will show that there exists α, β ∈ R for which identity 
(22) holds. Substituting the expression for y, and requiring that ‖y‖ = 1 we obtain:

{
α2 + β2 = 1
α4 + β4 + α2β2mhk = c−2 (23)

where

mhk = zh
zk

+ zk
zh

= z2
h + z2

k

zhzk
.

From the first row of (23) we get β2 = 1 − α2 and substituting in the second one:

α4(2 −mhk) − α2(2 −mhk) + 1 − c−2 = 0.

Setting t = α2 and solving we obtain:

t± = 1
2 ±

√
Δ, Δ = 1

4 − c−2 − 1
mhk − 2 . (24)

Thus a real t± exists only if 1
4 ≥ c−2−1

mhk−2 , i.e.

(zh + zk)2

4zhzk
≥ c−2

which is true by hypothesis. So Δ ≥ 0 and, moreover, 
√

Δ ≤ 1
2 . We conclude that 

t± ∈ [0, 1] (t± ∈ (0, 1) if c2 < 1) and the solutions of the system (23) are:

α2 = t+, β2 = 1 − t+ or α2 = 1 − t+, β2 = t+. �
Theorem 1. If the zi are such that

4zmzM
(zm + zM )2 ≤ (dT (−g))2

‖d‖2‖g‖2 , (25)

then there exists a unitary matrix U solution of Problem 2. In particular, U can be 
effectively constructed in O(n) FLOPS as the product of two Householder matrices.
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Proof. Solution will be built explicitly. To this end set

U = H(w)H(v),

where H(x) = (I − 2
‖x‖2 xxH) = (I − xxH) with ‖x‖ =

√
2. Substituting the expression 

of U in Problem 2 we obtain:

[(
vHH(w)g

)
I + σ

(
vHH(w)d

)
d(z)

]
v = H(w)g + σd(z)H(w)d (26)

where the unknowns are the vectors w, v. Suppose to choose w such that

vHH(w)d = 0, ‖w‖ =
√

2 (27)

(we will show later that this choice is possible). The identity (26) becomes:

(
vHH(w)g

)
v = H(w)g + σd(z)H(w)d. (28)

Let us search a solution of the form:

v = α
(
H(w)g + σd(z)H(w)d

)
, ‖v‖ =

√
2. (29)

Using the identity

vHH(w)g = α
(
gHg + σdHH(w)d(z)H(w)g

)
,

by (28) we obtain

α2 = 1
‖g‖2 + σdHH(w)d(z)H(w)g (30)

and, forcing ‖v‖ =
√

2,

σ2 = ‖g‖2

dHH(w)d(z)2H(w)d . (31)

The identity (27) becomes, substituting in v the expressions (31) found for σ:

dHg + ‖g‖dHH(w)d(z)H(w)d√
dHH(w)d(z)2H(w)d

= 0, (32)

from which
(

dH(−g)
)2

= (dHH(w)d(z)H(w)d)2
H 2 H

. (33)
‖g‖‖d‖ (d H(w)d(z) H(w)d)(d d)
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By setting

y = d(z) 1
2H(w)d

(
⇒ d = H(w)d(z)− 1

2 y
)

(34)

in the right hand side of the above identity (33), we obtain
(

dH(−g)
‖g‖‖d‖

)2

= (yHy)2

(yHd(z)y)(yHd(z)−1y) . (35)

Since

(yHy)2

(yHd(z)y)(yHd(z)−1y) ∈
[

4zmzM
(zm + zM )2 , 1

]
,

it is possible to find y such that equality (35) holds only if (25) holds. But (25) is also 
sufficient for the existence of y solving (35). In fact due to Lemma 5 we know that there 
exists, and it is easy to compute, a vector y such that

(
dH(−g)
‖g‖‖d‖

)2

= (yHy)2

(yHd(z)y)(yHd(z)−1y) .

Observe moreover that if y satisfies the above identity, then ky satisfies the above identity 
for all k ∈ R, so it is possible to choose y such that

∥∥d(z)− 1
2 y

∥∥ = ‖d‖.

This assures that (34) has a solution w, precisely given by

w =
√

2
‖d − d(z)− 1

2 y‖
[
d − d(z)− 1

2 y
]

(see [8] where it is displayed the Householder transform mapping a vector into another 
one of the same norm). We have proved the existence of a matrix H(w) which sat-
isfies condition (27), and thus the existence of a matrix U = H(w)H(v) solution of 
Problem 2. �

Using the above results the following theorem can be stated

Theorem 2. Given z > 0 and d, g, ∈ Rn such that dTg < 0, the inequality (25) is a 
necessary and sufficient condition for the existence of a solution of Problem 2.

Remark 3 (On Totally Non-Linear Problem). Given the pd matrix B (B = Bk+1 =
Φ(B̃k, sk, yk)) and d = −B−1g, suppose there exists a unitary matrix U such that, if 
L = sdU , then

−L−1
B g = σd, σ > 0,
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i.e. U is a solution of Problem 1. Reasoning exactly in the same way of Lemma 4, and 
setting

[zB ]i =
(
UHBU

)
ii
, i ∈ {1, . . . , n},

we obtain:

σ = ‖g‖
‖d(zB)UHd‖ ,

(dT (−g))2

‖d‖2‖g‖2 ∈
[

4[zB ]m[zB ]M
([zB ]m + [zB ]M )2 , 1

]
.

It follows that, in some sense, the PNLP (Problem 2) mimics quite closely the TNLP 
(Problem 1).

Remark 4. Note that we have written a solution of Problem 2 as a product of two 
Householder matrices. As a matter of fact, it is not yet clear if one Householder matrix 
is sufficient to solve Problem 2. It is easy to prove that Problem 2 is solvable by U = H(w)
(i.e. with one Householder matrix) at least for n = 2.

5. Convergence analysis

The known result of Powell [13] on the global convergence of the BFGS method and 
the known result [7] of global convergence of NS BFGS-type algorithms are now extended 
to the Secant BFGS-type Algorithms 3.1, by adding few simple hypotheses on B̃k. We 
first recall the following

Proposition 1. (See [5].) Let B̃k be a pd n × n matrix and let sk, yk ∈ Rn. Then the 
matrix Φ(B̃k, sk, yk) is a well defined pd matrix iff yT

k sk > 0.

By Proposition 1 it is possible to state that, if the positive parameters λk are prop-
erly chosen, then Algorithm 3.1 yields a well defined and strictly decreasing sequence 
{f(xk)}k∈N. In particular, for a continuously differentiable and lower bounded function f , 
such a sequence is obtained if the step length λk satisfies the Armijo–Goldstein (AG) 
prescriptions (see [5]), that is, λk belongs to the set Λk defined here below.

Definition 1. Fix two constants c1, c2, 0 < c1 < c2 < 1, and set χk(λ) = f(xk + λdk). 
Then the AG set Λk is the set of all λ ∈ R+ such that

{
χk(λ) ≤ χk(0) + λc1χ

′
k(0),

χ′
k(λ) ≥ c2χ

′
k(0). (36)

In fact, since dk is a descent direction in xk (χ′
k(0) = gT

k dk < 0), the set Λk is 
nonempty, and the choice λk ∈ Λk yields the inequalities f(xk+1) ≤ f(xk) −ηk < f(xk), 
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ηk = −λkc1χ
′
k(0) > 0, and sTk yk = λk(χ′

k(λ) − χ′
k(0)) ≥ λk(c2 − 1)χ′

k(0) > 0. So, by 
Proposition 1, Bk+1 in Algorithm 3.1 is a well defined pd matrix and

χ′
k+1(0) = gT

k+1dk+1 = −gT
k+1B

−1
k+1gk+1 < 0

(unless gk+1 = 0), i.e. dk+1 is a well defined descent direction in xk+1.
Denote by I0 the level set {x : f(x) ≤ f(x0)}. As a consequence of Proposition 1 and 

the subsequent considerations, we have

Proposition 2. Assume that the step-lengths λk satisfy the AG conditions in (36). Then 
Algorithm 3.1 yields a sequence of points xk+1, k = 0, 1, . . . , such that

f(xk+1) < f(xk) and yT
k sk > 0.

Therefore, xk+1 belongs to the set I0 and the matrix Bk+1 = Φ(B̃k, sk, yk) is well defined 
and pd, until gk = 0.

Now assume that gk = 0, ∀k (otherwise the algorithm terminates in a finite number of 
steps at a stationary point for f). Since {f(xk)}k∈N is a lower bounded strictly decreasing 
sequence, obviously limk→∞ f(xk) ≥ inf f(x).

In the following fundamental theorem we prove that under special prescriptions on 
B̃k and suitable analytical properties of f , a subsequence of {gk}k∈N converges to the 
null vector. For the sake of completeness we recall all the steps of the proof of global 
convergence of NS BFGS-type algorithms in [7]. The present proof is different only for 
the last part, where it is shown the role of the third further condition in (37) in proving 
the convergence of S BFGS-type methods.

Theorem 3. Let B̃k in Algorithm 3.1 satisfy the conditions:

trBk ≥ tr B̃k, (37a)

detBk ≤ det B̃k, (37b)

‖Bksk‖2

(sTkBksk)2
≤ ‖B̃ksk‖2

(sTk B̃ksk)2
. (37c)

If ∃M > 0 such that

‖yk‖2

yT
k sk

≤ M (38)

then

lim inf ‖gk‖ = 0. (39)
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Proof. The points xk+1 are in the level set I0 and satisfy conditions (36):

AG1 : f(xk+1) ≤ f(xk) + λkc1gT
k dk

AG2 : gT
k+1dk ≥ c2gT

k dk

Applying AG1 for k = 0, . . . , j we have:

c1

j∑
k=0

λk

(
−gT

k dk

)
≤ f(x0) − f(xj+1) ≤ f(x0) − inf f(x) < ∞.

From the convergence of 
∑+∞

k=0 λk(−gT
k dk) we have:

λk

(
−gT

k dk

)
= −gT

k sk = ‖gk‖‖sk‖ cos θk → 0 (40)

where θk = ̂(−gk)dk. On the other hand, by (37) for k = 0, . . . , j:

trBk+1 = tr B̃k + 1
yT
k sk

yT
k yk − 1

sTk B̃ksk
(B̃ksk)T (B̃ksk)

≤ trBk + 1
yT
k sk

‖yk‖2 − 1
sTk B̃ksk

‖B̃ksk‖2. (41)

Hence:

trBj+1 ≤ trB0 +
j∑

k=0

1
yT
k sk

‖yk‖2 −
j∑

k=0

1
sTk B̃ksk

‖B̃ksk‖2. (42)

Thus, by (38)

trBj+1 ≤ trB0 + M(j + 1) ≤ c3(j + 1).

Let us remember that, given n real positive numbers ai, it holds:

n∏
i=1

ai ≤
(∑n

i=1 ai
n

)n

(43)

from which we obtain:

detBj+1 =
n∏

i=1
νi(Bj+1) ≤

(∑n
i=1 νi(Bj+1)

n

)n

≤
(
c3(j + 1)

n

)n

. (44)

Let us remember moreover that from (42), since Bj+1 is positive definite, we have:

j∑ 1
sT B̃ksk

‖B̃ksk‖2 ≤ trB0 − trBj+1 +
j∑ 1

yT sk
‖yk‖2
k=0 k k=0 k
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≤ trB0 +
j∑

k=0

1
yT
k sk

‖yk‖2 ≤ c3(j + 1) (45)

and applying once more (43) we have:

j∏
k=0

1
sTk B̃ksk

‖B̃ksk‖2 ≤ cj+1
3 . (46)

From (37) and from direct calculation of the determinant it holds:

detBk+1 = sTk yk

sTk B̃ksk
det B̃k ≥ sTk yk

sTk B̃ksk
detBk, k = 0, . . . , j,

from which we obtain:

j∏
k=0

sTk yk

sTk B̃ksk
≤ detBj+1

detB0
. (47)

Let us observe that AG2 implies

yT
k sk ≥ (c2 − 1)gT

k sk = (1 − c2)
(
−gT

k sk
)
.

From Eqs. (44), (46), (47) and the third in (37), we have:

(1 − c2)j+1
j∏

k=0

‖gk‖2

sTk (−gk)
≤

j∏
k=0

‖ − λkgk‖2

sTk (−λkgk)
sTk yk

sTk (−λkgk)

=
j∏

k=0

‖Bksk‖2

sTkBksk
sTk yk

sTkBksk

≤
j∏

k=0

‖B̃ksk‖2

sTk B̃ksk
sTk yk

sTk B̃ksk
≤ cj+1

3

(
c3(j + 1)

n

)n 1
detB0

(48)

and hence

j∏
k=0

‖gk‖
‖sk‖ cos θk

≤ cj+1
4 (49)

where c4 is a suitable constant. Since identities (40) and (49) hold simultaneously, a sub-
sequence of {‖gk‖}k∈N must be convergent to zero. �
Corollary 1. Let (37) and (38) hold and let I0 be bounded. Then a sub-sequence of 
{xk}k∈N converges to a stationary point x∗ of the function f and f(xk) → f(x∗).
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Proof. See [7]. �
A sufficient condition to fulfill the inequality (38) is shown in the next Proposition 3. 

It consists in a suitable convexity assumption on f .

Proposition 3. (See [13].) Assume that f is convex and has continuous and bounded 
second derivatives in a convex set I ⊂ Rn. Then, for all x, y ∈ I,

∥∥∇f(x) −∇f(y)
∥∥2 ≤ M

(
∇f(x) −∇f(y)

)T (x − y)

where ‖∇2f(x)‖ ≤ M in I.

Corollary 2. Let f be a twice continuously differentiable function in the level set I0. 
Assume I0 convex and bounded. Let B̃k satisfy the conditions (37). Then {f(xk)}k∈N

converges to the least value of f .

Remark 5. It is important to notice that a sufficient condition for the third inequality in 
(37) to be verified is that

Bksk = σkB̃ksk.

In the previous section we have proved that this condition can be imposed or, more 
precisely, we have proved that the equivalent condition

B̃−1
k gk = σkB

−1
k gk

can be forced to hold.

The above Remark 5 shows how trying to force the global convergence for the Secant 
method can be done by forcing that the Non-Secant method produces the same search 
direction of the Secant one.

6. Convergent algorithm construction

In this section we will show how the three convergence conditions (37) of Theorem 3
can be verified by B̃k+1. For the sake of simplicity, we will drop the index k + 1 in all 
symbols B, g, λ, s, y, d, z, x, L, whereas “−” and “+” will denote the k-th and (k+2)-th 
indexes, respectively.

Let x ∈ Rn be the current guess of a stationary point of f . Let g = ∇f(x) ∈ Rn

be a non-null vector, and let B ∈ Rn×n be the real symmetric positive definite matrix, 
depending on g,

B = Φ(B̃−, s−,y−),
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where B̃− = U−d(z−)UH
− ∈ L− := sdU−, U− is a unitary matrix and s− = x − x−, 

y− = g − g−.
In Algorithm 3.1, at Line 7, once the computation of d = −B−1g has been performed 

— i.e. it is available the search direction we are going to use in the next step of the 
algorithm to obtain x+ = x + λd —, it is required to define the new unitary matrix U
(the structure of B̃), the new vector z > 0 (the information content of B̃), and thus the 
new matrix B̃ = Ud(z)UH ∈ L = sdU which satisfies the conditions in (37) to ensure 
convergence of the Secant BFGS-type algorithm (see Remark 1). The new matrix B̃ we 
are going to define will be used in the next step of the algorithm in order to produce 
a Hessian approximation of the form

B+ = Φ(B̃, s,y),

and finally a new descent direction

d+ = −B−1
+ g+

in the computed guess x+. The matrix B̃ will be different from LB , but B̃ will be a 
matrix of L whose eigenvalues are the eigenvalues of MB where M = sdV and V is a 
suitable unitary matrix (possibly V = U−).

We now indicate a procedure which yields z > 0, U unitary, B̃ = Ud(z)UH

satisfying (37). Start from an arbitrary unitary matrix V and M = sdV , and set 
zi = (V HBV )ii = λi(MB). Observe that

• the zi = (V HBV )ii depend on the eigenvalues of B̃− and can be computed from 
them by the updating formula:

zi =
[
V HB̃−V

]
ii

+ 1
yT
−s−

∣∣(V Hy−
)
i

∣∣2 − 1
sT−B̃−s−

∣∣(V HB̃−s−
)
i

∣∣2, (50)

for all i ∈ {1, . . . , n}, at a cost clearly dependent on the cost of the transforms 
involving U− and V . In particular, for V = U− we have the simpler formula

zi = [z−]i + 1
yT
−s−

∣∣(UH
− y−

)
i

∣∣2 − 1
zT−|UH

− s−|2
∣∣(d(z−)UH

− s−
)
i

∣∣2 (51)

(see [7]).
• the zi = (V HBV )ii satisfy the following inequalities (see Section 2):

0 < min
j

λj(B) ≤ zi ≤ max
j

λj(B), for all i ∈ {1, . . . , n},

1 ≤ μ(MB) = maxj zj ≤ μ(B), (52)
minj zj
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det(B) ≤ det(MB) =
n∏

i=1
zi, (53)

tr(B) ≥ tr(MB) =
n∑

i=1
zi. (54)

If, moreover, the zi satisfy the following inequality

(dT (−g))2

‖d‖2‖g‖2 = (gTB−1g)2

(gTB−2g)(gTg) ≥ 4μ(MB)
(1 + μ(MB))2 , (55)

then, by Theorem 1, there exist a unitary U and σ > 0 such that

−
(
U diag(zi)UH

)−1g = −σB−1g, (56)

i.e. Problem 2 has a solution. Observe that, using Theorem 1, the matrix U can be 
constructed with O(n) FLOPS. Thus, setting L := sdU and B̃ = U diag(zi)UH ∈ L, 
and noting that μ(B̃) = μ(MB), det(B̃) = det(MB), tr(B̃) = tr(MB), from (53), (54), 
(55) it follows that the three convergence conditions (37) on B̃, in the Secant BFGS-type 
algorithm, are satisfied (by (56) and by Remark 5 we have that Bs is a multiple of B̃s
when B̃ = U diag(zi)UH , and thus (37c) holds). As a consequence of the two remarks 
here below, we shall see that, when (55) does not hold, the zi can be corrected, without 
compromising (53), (54), until (55) is verified.

Remark 6. If V is the matrix which diagonalizes B (i.e. B = MB with M = sdV ), since 
B is pd, the inequality (55) is satisfied, i.e. we have

1 ≥ (gTB−1g)2

(gTB−2g)(gTg) ≥ 4μ(B)
(1 + μ(B))2 (57)

(the inequality on the left becomes an equality if g is eigenvector of B). In fact

(gTB−1g)2

(gTB−2g)(gTg) = (yTy)
(yTB−1y)(yTBy) , y = B−1/2g,

and

4μ(B)
(1 + μ(B))2 = 4λmin(B)λmax(B)

(λmin(B) + λmax(B))2 .

Then (57) follows from the Kantorovich inequality.

Remark 7. For any V we have

1 ≥ 4μ(MB)
2 ≥ 4μ(B)

2 (58)
(1 + μ(MB)) (1 + μ(B))
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because the function

g(x) = 4x
(1 + x)2

is decreasing for x ≥ 1 and takes values in (0, 1] (see inequality (52)).

From the last two remarks it follows that if (55) is not verified, i.e. if

4μ(MB)
(1 + μ(MB))2 ≥ (gTB−1g)2

(gTB−2g)(gTg) ,

we can change M (or, directly, the zi) until (53), (54), (55) are all fulfilled. More specif-
ically, we can set V := V Q for a suitable unitary matrix Q (and hence M = sdV ), until 
the corrected zi := (V HBV )ii = λi(MB) satisfy (55) (observe that (53) and (54) are 
automatically satisfied by such zi).

Eventually, besides the good zi, we also obtain the unitary matrix V such that zi =
(V HBV )ii, and B̃ turns out to be the matrix

B̃ = U diag
((
V HBV

)
ii

)
UH .

So B̃ is not equal to LB = U diag((UHBU)ii)UH . In fact, B̃ is the matrix of L = sdU

whose eigenvalues are the eigenvalues of MB = V diag((V HBV )ii)V H , M = sd V
(compare with (14)).

Remark 8. In case (55) is not satisfied by the first zi proposed, instead of changing 
the zi one may try to give up the equality Bs = σB̃s and impose on B̃ the weaker 
condition (37c).

Remark 9. We know, from a theorem due to Zoutendijk (see [12, p. 43]), that any iteration 
xk+1 = xk+λkdk where dk is a descent direction in xk, λk satisfies the Armijo–Goldstein 
conditions, f is bounded below, and ∇f(x) satisfies the Lipschitz condition, is globally 
convergent whenever

cos(−̂gkdk) ≥ δ > 0, for infinite k. (59)

Thus, since the weak convexity assumption (38) implies a (discrete) Lipschitz inequality 
for gk, that is, ‖yk‖ ≤ M‖sk‖, we would have convergence of Secant BFGS-type algo-
rithms provided that (59) holds, or, equivalently, μ(Bk) ≤ Mδ for all k (without requiring 
the three convergence conditions (37) on B̃k). It is interesting to compare the general 
convergence condition (59) with our convergence condition (55), which regards, instead 
of general iterative schemes xk+1 = xk + λkdk, a special class of adaptive methods that 
combine the advantages of Secant and Non-Secant L(k)QN algorithms. Our algorithms 
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automatically satisfy (37a), (37b), and their adaptive character seem to require, in order 
to reach convergence (via (37c)), a condition (55), different from (59), that relates the 
condition numbers μ(B̃) and μ(B), and may require, in order to be verified, to change 
M so that μ(MB) = μ(B̃) approaches the condition numbers μ(B); note that no fixed 

lower bound δ for cos(−̂gkdk) is required.

7. The convergent algorithm

In this section, we exhibit the convergent hybrid L(k)QN algorithm whose basic step 
has been explained in Section 6. We will write K(z) = T or K(z) = F to denote that 
a vector z > 0 does or does not satisfy the inequality (25). Let us give the following 
definitions.

Definition 2. Given z > 0 such that K(z) = T we will use the notation

U = dHc(z) (60)

(double Householder construction), to denote the unitary matrix constructed in The-
orem 1. Let us underline, once more, that U is constructed as the product of two 
Householder matrices.

Definition 3. Given a vector z > 0 such that 
∑n

i=1 zi ≤ trB and 
∏n

i=1 zi ≥ detB, if 
K(z) = F , we will designate with SC (Spectrum Correction) a correction strategy such 
that, for

ẑ = SC(z)

we have

K(ẑ) = T,

n∑
i=1

ẑi ≤ trB,

n∏
i=1

ẑi ≥ detB.

Moreover, set

[2Ho](k) = sdUk, where Uk = H(wk)H(vk). (61)

Below we illustrate in detail the algorithm, where Vk+1 is, at each step, initially set 
equal to Uk (see Algorithm 7.1).

We emphasize that, by taking into account the crucial steps of Algorithm 7.1 (for-
mula (50) and the construction of Uk+1), apart from possible corrections of [zk+1]min
and [zk+1]max, the computational cost per step is O(n) FLOPS and O(n) memory allo-
cations.
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Algorithm 7.1: The hybrid L(k)QN convergent algorithm.
Data: x0 ∈ R

n, g0 = ∇f(x0), B0 pd, d0 = −B−1
0 g0,

define U0 = H(w0)H(v0), L(0) = [2Ho](0) = sdU0, B̃0 = U0d(z0)UH
0 ∈ L(0) pd, k := 0.

1 while gk �= 0 do
2 xk+1 = xk + λkdk; /* λk verifies (36) */
3 sk = xk+1 − xk, gk+1 = ∇f(xk+1);
4 yk = gk+1 − gk;
5 Bk+1 = Φ(B̃k, sk, yk) ;
6 dk+1 = −B−1

k+1gk+1;
7 Define L(k)

Bk+1
= [2Ho](k)

Bk+1
;

8 Compute zk+1 = λ([2Ho](k)
Bk+1

) = ((UH
k Bk+1Uk)ii)ni=1; /* see identity (50) with V = Uk */

9 if K(zk+1) = F then
10 Vk+1 = UkQ, M = sdVk+1;
11 ẑk+1 = SC(zk+1) = λ(M(k+1)

Bk+1
) = ((V H

k+1Bk+1Vk+1)ii)ni=1;
12 zk+1 = ẑk+1;

13 Uk+1 = dHc(zk+1) = H(wk+1)H(vk+1);
14 B̃k+1 = Uk+1d(zk+1)UH

k+1;
15 L(k+1) = [2Ho](k+1) = sdUk+1;
16 /* Note: −B̃−1

k+1gk+1 = −σk+1B
−1
k+1gk+1 = σk+1dk+1 */

17 k := k + 1

8. Preliminary experimental results

In this section we show some preliminary experimental results. Further deeper numer-
ical experiences will be collected in a paper in preparation. The experiments shown in the 
following are obtained by applying methods defined from weaker requirements compared 
to those used to construct Algorithm 7.1. In fact, we require that the condition

−B̃−1
k+1gk+1 = σk+1dk+1 where dk+1 = −B−1

k+1gk+1, (62)

sufficient to ensure inequality (37c), is fulfilled for

B̃k+1 = Uk+1d
(
z(k)
Bk+1

)
UH
k+1, σk+1 > 0, and Uk+1 = H(uk+1) (63)

(L(k)
Bk+1

= Ukd(z(k)
Bk+1

)UH
k ), i.e. we require that the vector uk+1 satisfies

[(
uH
k+1gk+1

)
I + σk+1

(
uH
k+1dk+1

)
d
(
z(k)
Bk+1

)]
uk+1 = gk+1 + σk+1d

(
z(k)
Bk+1

)
dk+1, (64)

and, moreover, we set, in (64), σk+1 = 1 and in the square brackets in (64), we replace 
uk+1 with an arbitrary wk+1 chosen in order to make (64) linear and uniquely solvable 
in uk+1. This way we have the following condition:

[(
wH

k+1gk+1
)
I +

(
wH

k+1dk+1
)
d
(
z(k)
Bk+1

)]
uk+1 = gk+1 + d

(
z(k)
Bk+1

)
dk+1. (65)

Here below we present numerical results obtained with uk+1 (in (63)) defined by (65), 
where
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wk+1 = α

(
dk+1 + ‖dk+1‖

‖gk+1‖
gk+1

)
, (66)

wk+1 = α

(
gk+1 −

‖gk+1‖2

dT
k+1gk+1

dk+1

)
(67)

and α is such that ‖uk+1‖2 = 2. Observe that the complexity of the methods obtained 
in this way is O(n) in time and space. The methods are applied to four known test func-
tions f (see [5]). In the table are reported the numbers of iterations required by the meth-
ods corresponding to (66) and (67) to ensure that the inequality f(xk) < 10−4 is fulfilled.

Problem size Rosenbrock Powell Wood n = 4 Helical n = 3
(66) n = 12 × 100 it = 15 it = 32

n = 12 × 101 it = 16 it = 62 it = 48 it = 42
n = 12 × 102 it = 11 it = 41
n = 12 × 103 it = 15 it = 60

(67) n = 12 × 100 it = 12 it = 19
n = 12 × 101 it = 17 it = 28 it = 53 it = 39
n = 12 × 102 it = 14 it = 80
n = 12 × 103 it = 11 it = 291

HQN n = 12 × 100 it = 68 it = 59
n = 12 × 101 it = 82 it = 142 it = 44 it = 35
n = 12 × 102 it = 169 it = 289
n = 12 × 103 – –

These first experiments, enough encouraging, show that the L(k)QN methods consid-
ered in this paper, even in the weaker form described above, can be competitors of the 
LQN methods (HQN method in the table is LQN where L is Hartley matrix algebra, 
see [2] and [7]), which in turn have been shown to be competitors of L-BFGS (see [2]).
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