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Abstract: This article describes an investigation on the relative motion between wheel-set and
rails. Through the search of an equilibrium configuration, the positions of contact points between
rails and wheels are first located. The detection methods allow also the definition of the normal
unit vectors to rail and wheel at contact points. To reduce computing time, the results are stored
in a lookup table accessed during the dynamic analyses of wheel-sets, bogies, or trains. The use
of lookup table considerably speeds up contact detection when numerically integrating with
respect to time.
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1 INTRODUCTION

The solution of wheel–rail contact problem is required
by the dynamic analysis of railways systems. Since
most of the computer time is spent on contact
search, this phase is crucial in all the available com-
puter codes [1]. Many different approaches have been
proposed that overcome the simple assumption of
rigid contact, by introducing appropriate contact stiff-
ness evaluations. The method proposed by Sanborn
et al. [2], based on the numerical solution of index-
1 sparse differential-algebraic system of equations,
requires online contact search and analysis. Their
approach, although accurate, appears computation-
ally very intensive. The method herein proposed is
based on the numerical integration of a system of Ordi-
nary Differential Equations that offer better numeri-
cal performances. Moreover, off-line contact search,
although less accurate, allows considerable savings
of CPU time. These issues are significant for the
simulation of an entire train convoy.

In reference [3], there is a brief but exhaustive
synthesis of the so-called on-line and off-line con-
tact search. The method herein proposed is based on
the off-line approach. According to this criterion, a
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contact lookup table is preliminarily compiled before
numerical integration of the equations of motion.

For each wheel-set and rail coupling it is necessary
to define the spatial attitude of the axle in its feasi-
ble workspace, to locate the actual wheel–rail contact
points and to compute the value of the normal force
components.

The compilation of a lookup table – where
the numeric relationships between co-ordinates are
stored – makes possible the development of a compu-
tationally efficient software dedicated to the dynamic
simulation of the wheel-set, the bogie, or, more gener-
ally, the entire railway convoy. Thus, different types of
analyses [4–8] can be carried out, such as the determi-
nation of wheel-set critical speed and the computation
of contact forces under dynamic conditions.

During the dynamic analysis, the implemented soft-
ware solves numerically the equations of motion. At
each time step the dependent coordinates, consis-
tent with the contact constraints, are obtained through
interpolation from the lookup table.

The advantages of the methods herein presented
are:

(a) reduction in the computation time, since the iden-
tification of the contact conditions is obtained by
a linear interpolation scheme;

(b) possibility to extend the analysis over a long time
interval;

(c) capability of a real-time simulation of an entire
convoy with the appropriate hardware;
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(d) possibility to study the dynamics with different
wheel-set and rail profiles through an update of
the lookup table.

Different methodologies for the investigation on
wheel–rail contact are available [9–14]. These can
be classified into two main groups. The first group
searches for the contact points by solving the system
of algebraic-differential equations that includes the
constraints due to rigid contact between wheels and
rails. The second group, to which the methods herein
presented belongs, introduces elasticity between the
mating surfaces.

In reference [9], the contact points are determined
through the concept of difference surface, defined as
the distance – measured along the normal direction –
between the wheel and rail surfaces.

If such difference surface has only positive values,
then the rail and the wheel are not in contact. If
the difference surface shows at least some negative
values, then there are one or more contact areas. Con-
tact points are located where the difference surface
reaches its local minima, with a negative value of
the function. Accordingly, at these points the indenta-
tion between the contact bodies attains a maximum.
This criterion is also used to estimate the contact
force components. In order to calculate the minimum
of the difference, the simplex method is iteratively
exploited.

The results obtained using this method are com-
pared with those achieved using the grid method.
This last evaluates the function in a series of points
and finds the minima comparing all obtained val-
ues. The reliability of the grid method depends mainly
on the number of points chosen to evaluate the
function. Even if the grid method is conceptually
simple and reliable, it cannot be used for this type
of application because of its high computational
cost.

In references [10] to [12], a method alternative
to those based on lookup tables is considered. The
contact characteristics are calculated on-line dur-
ing the dynamic simulation, considering the sections
of the rails and the wheels for each feasible position of
the wheel-set on the rails. For each section a group
of nodal points is used through spline interpolation
to mimic the profiles of the contact surfaces. The posi-
tion of the contact points and directions of normal unit
vectors are then calculated. In particular, it is required
that the vector joining the contact points, one on the
rail and the other on the wheel, and the vector normals
through these points, belong to the same straight line.
This method allows the online change of surface pro-
files. This feature is useful in case of rail-switch, local
gauge, and slope variations.

In references [13] to [16], two methods for the deter-
mination of the contact points are presented: the
constraint method and the elastic method, with which

the normal forces on the surfaces can be calculated
as well.

In the constraint method, the contact points on
both solids coincide since the kinematic contact con-
straint is enforced. In the elastic method the contact
points do not, in general, coincide. The contact point
on the first body is located inside the volume of
the second body when the solids interact with each
other. In this case, the contact points are selected
within the intersecting volume. Points presenting the
maximum normal distance are the elected contact
points.

Since in the constraint method the surfaces are
rigid, no penetration is allowed between the bodies.
On the other hand, in the elastic method penetration
occurs and this is used to evaluate the contact forces.
These are null when penetration is absent. Two sur-
face parameters are used to describe the geometry of
each of the two surfaces in contact. In the analysis,
the contact points are grouped in batches. A batch is a
collection of sets of pairs of nodal points on the wheel
and rail, respectively. A limit of two contact batches is
assumed. The two points (one on the wheel and one
on the rail) that lead to the maximum indentation are
selected as the points of contact for any given batch.
The number of points of contact between the wheel
and the rail is assumed to be equal to the number of
the contact batches.

All methods share the difficulties of lengthy com-
puting time and of managing great amounts of data.
In fact, these analyses usually require many iterations
and the matrices containing the surface geometries
are huge.

In this article, three new different methods for the
compilation of a lookup table, storing precalculated
solutions for the wheel–rail contact kinematics, are
discussed. According to this point of view, the loca-
tion of contact points is preliminarily established for a
given finite set of independent variables. In a dynamic
analysis, the values of the dependent variables are
obtained through interpolation on a discrete set of
values. The accuracy of the interpolation depends
on the different factors such as the Euclidean dis-
tance between two adjacent nodes of the mesh, the
local linearized shape of the mesh, and the admissi-
ble penetrating gap. The numerical tests carried out
herein confirm the reliability and the computational
efficiency of the method.

Although the authors’ software was running in a
non-compiled version, CPU times are comparable
with those required by commercial codes.

2 THE WHEEL-SET–RAILS SYSTEM

The shape profile of the wheels and of the rails section
are S1002 and UIC60, respectively. Rail tilt is set to 1/20.
The wheel-set has six degrees of freedom when not
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Fig. 1 The wheel-set, the rails and the fictitious spring
elements with the Cartesian coordinate systems
used: (a) axonometric view and (b) frontal view

constrained. These degrees of freedom reduce to three
due to the constraints introduced by imposing contin-
uous contact with rails. However, the wheel rotation
has no effect on the contact kinematics. Thus, only
two independent variables need to be prescribed to
compute the spatial position of the wheel-set.

With reference to Fig. 1, a fixed and a moving right-
hand Cartesian coordinate system are introduced. The
fixed inertial coordinate system, denoted by SRo, has
its origin O in the middle of the gauge, the axis Xo tan-
gent to the rails, and the Zo axis directed upwards. The
moving coordinate system, denoted by SRG, has its
origin in the centre of mass G of the wheel-set, axis
YG directed along the axis of the axle, and the ZG axis
directed upwards.

Initially the axes of the fixed and moving coordinate
systems are all parallel to each other and the centre of
mass G is on Zo axis at a distance rw from the origin O.

The absolute coordinates of G are denoted by xg , yg ,
zg whereas θx , θy , θz denote the angles between couples
of x, y, and z axes, respectively.

The displacement yg and the yaw angle θz are
assumed as independent variables; therefore, the three
dependent variables (xg , zg , θx) are deduced by impos-
ing a continuous physical contact between rails and
wheel-set. The sixth variable (θy ) follows from dynamic
equilibrium.

3 MODEL SET-UP

The first step of the modelling is the acquisition of
wheel and rail profiles, as shown in Fig. 2. The surface
of the rail is obtained by the extrusion of the rail profile
along the Xo axis.

The surface of the wheel is generated through a rev-
olution of the wheel profile about YG, as shown in
Fig. 3.

The two surfaces are meshed. The coarser the mesh,
the less the expected accuracy and the computation
time.

Fig. 2 Wheel and rail shape profile

Fig. 3 Wheel and rail surfaces in the condition of:
(a) double contact and (b) single contact
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In spite of locating the contact points, as shown in
Fig. 1, four fictitious spring elements are added to the
wheel-set: three for each dependent position variable
and one to avoid lability. The springs ends are attached
to G and to ground, respectively. Both linear (N m) and
torsion spring (N m) stiffnesses are numerically set to
107. Under static conditions the forces and torques
generated by spring elements and the contact forces
satisfy the following vector equilibrium equations

3∑
i=1

ki
elxGiH i +

nCL∑
h=1

F h
cL +

nCR∑
g=1

F g
cR = 0

3∑
i=1

ki
rotθiH i +

nCL∑
h=1

(GPh
L × F h

cL)

+
nCR∑
g=1

(GPg
R × F g

cR) = 0

(1)

4 CONTACT POINTS DETECTION

4.1 The intersecting volume

As shown in the geometry depicted in Fig. 4, the inter-
secting volume Vint is the one shared by the wheel and
rail when they contact. Let Sw and Sr denote the wheel
and rail portions of surface delimited by nw and nr

nodes, respectively, and i = 3, . . . , nw and j = 3, . . . , nr

the nodes of the wheel and rail surfaces, respectively.
The ith node and jth node are included in the inter-

secting volume only if the following inequalities are
simultaneously satisfied

V ij · N j � 0

V ij · N i � 0
(2)

Among the nodes included in the intersecting vol-
ume, those which belong to the wheel or to the
surface Sw and form the intersecting volume V w

int are

distinguished from those which belong to the rail or to
the surface Sw and form the volume V r

int. The union of
V w

int and V r
int gives the volume Vint. Thereafter, attention

is focused on the determination of the centre of con-
tact on both surfaces. However, intersecting volume
magnitudes are not really necessary. This is the reason
why nodal point coordinates are used to test contact
conditions.

4.2 The contact points

Three different methods for computing wheel–rail
contact points are proposed and discussed. All the
methods share the same objective of locating the inter-
sections between V w

int and V r
int. These methods are

termed as follows:

(a) maximum distance;
(b) maximum normal distance;
(c) load centre.

4.2.1 Method of the maximum distance

All nodes included in Vint are subject to be contact
points between the surfaces. For each node i∗ of Sw

(within Vint) it is found the node j∗ of Sr (within Vint)
such that the norm of V i∗j∗ has the minimum value. In
this way, a correspondence between the set of nodes i∗

and the set of nodes j∗ is established. The indentation
is computed by means of the scalar product

Ci∗j∗ = V i∗j∗ · N j∗ (3)

Among all the set of nodes i∗, j∗ the contact points
are those experiencing the maximum value of Ci∗j∗

Cmax = max(Ci∗j∗)

4.2.2 Method of the maximum normal distance

This method offers a refinement in the computation
of contact point P ′

r but needs the election of a ref-
erence surface. Here the wheel surface is adopted.

Fig. 4 (a) Wheel–rail intersecting volume according to the method of maximum distance;
(b) scheme of the elastic contact force
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Fig. 5 Wheel–rail intersecting volume according to: (a) the method of the maximum normal
distance, (b) method of the centre of load

The method of maximum distance is initially applied.
Then, with reference to the geometry depicted in
Fig. 5(a), the coordinates of the new contact point P ′

r

on the rail are obtained from

OP ′
r = OPw + ((OPr − OPw) · N w)N w (4)

The maximum indentation Cmax is calculated using
the formula

Cmax = (OPr − OPw) · N w (5)

With this method the accuracy of computation is
less dependent on the surface mesh coarseness. This
turns also into an overall speedup. The main limitation
of this method is that the contact points on the wheel
surface need to be located on the grid nodes.

4.2.3 Method of the centre of load

In this method the volumes of intersection V r
int and V w

int

are separately considered (Fig. 5(b)).
The contact points are made coincident with the

load centre PGw and PGr of the grid nodes on the
boundary of Vint. Analytically this leads to

OPGw =
∑nw

i=1 OPw
i

nw
; OPGr =

∑nr
j=1 OPr

j

nr
(6)

The maximum indentation Cmax is calculated by
means of the formula

Cmax = (OPGr − OPGw) · N w (7)

Since PGw does not belong to the wheel surface.

4.3 Normal contact forces

With reference to the geometry depicted in Fig. 4, the
normal contact forces F cL and F cR, in the left and

right wheel–rail interface, respectively, are computed
as follows

F cL = −C L
maxkcN L

F cR = −CR
maxkcN R

(8)

The value of kc is established through iteration. In
particular, convergence is achieved when the variables
xg , yg , zg , θx , θy , θz simultaneously satisfy both the equi-
librium equations (1) and the following inequalities

C L
max � Camm

max

C R
max � Camm

max
(9)

where C amm
max is the maximum indentation allowed.

In this investigation C amm
max = 0.01 mm is assumed.

This last value is broadly justified by some qualitative
considerations. The value should be lower than the
expected local compression, as suggested by the Hertz
theory. Furthermore, the mesh refinement should be
carried out in such a way that edge effects due to
meshing are lower than that assumed value.

It should be observed that the values of contact
stiffness, within a given range, do not influence the
position of the contact points which depends on the
surface geometry. A changing of the stiffness values for
n times, with n spanning between 1 and 10, causes the
maximum values of the contact point displacements
to be less than 10−19 m.

This result proves that the position of the contact
point is almost independent of the initial preload of
the external springs. This rests upon the convergence
of the iterative method.

The proposed algorithm for the detection of contact
points can be summarized in the following steps.

1. Prescribe the values of the independent variables
yg and θz . Set to zero the dependent variables xg , zg ,
θx , θy .
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2. Prescribe an initial value to the stiffness kc.
3. Define the intersecting volume Vint, the position of

the provisory contact points, vector normals, and
maximum indentation between the wheels and the
rails.

4. Compute the normal forces using equations (3).
5. Update the values of xg , zg , θx , θy using equilibrium

equations (1).
6. Update the intersecting volume Vint, the position of

the provisory contact points, vector normals, and
maximum indentation between the wheels and the
rails.

7. If the maximum indentation is less than C amm
max , then

store in a database the values of xg , yg , zg , θx , θy , θz ,
and the contact points;

8. If the previous condition is not satisfied, then
increase the value of kc and go back to step 4.

4.4 The maximum indentation value

The limit C amm
max = 0.01 mm, adopted as the maximum

indentation value, has been established considering
Hertz theory for the contact cylinder–plane.This rough
approximation of the contact is herein adopted only
for the search of contact points. The actual compu-
tation of the contact forces is performed within the
framework of Kalker’s theory [17, 18].

The average vertical load estimated on each wheel
is P = 75 000 N.

The width L = 5 mm of the cylinder has the same
order of magnitude of the transverse dimension for
the wheel–rail contact area.

The radius R of the cylinder is the same as that of the
wheel. The cylinder and plane are both in steel with
Young’s modulus E = 2.06 × 1011 N/m2 and Poisson’s
ratio ν = 0.3.

Hence, the maximum value of the indentation is

C amm
max = 2PK

L

(
1 + ln

(
4L3

2KPR

))
≈ 0.11 mm

where K = 1 − ν2

πE
(10)

4.5 The stiffness of the lateral flange

Because of the special shape of the wheel profile with
the presence of a lateral flange, a linearly variable value
of wheel-flange stiffness kc is herein assumed. In par-
ticular, kc is linearly interpolated only on the flange
between a maximum value Kmax at the flange base and
a minimum value Kmin at the flange tip.

Here the non-linearity of the function load displace-
ment is not considered because a given (unit) value of
the indentation is assumed, whatever is the point of
contact.

The value of Kmax at the base of the flange is
estimated considering only the deformation due to

Fig. 6 Terms contributing to the total displacement of
the flange

local Hertz approach. The value of Kmin is calculated
considering two contributions: the first one is the
Hertz type of deformation as above and the second
one regards the flange bending as a cantilever beam.
Figure 6 illustrates the two contributions to the overall
displacement caused by an applied force at the tip of
the flange.

The stiffness, assuming Hertz theory and unitary
indentation, is accounted by means of the formula [19]

Khertz = 2πG
3(1 − ν)

1√
Dmax + Dmin

√
E(g)

gW (g)(3/2)
(11)

where Dmax and Dmin depend on the local curva-
tures of the two surfaces in contact, where Dmax =
max(Dlong, Dtrasv), Dmin = min(Dlong, Dtrasv) assuming
Dlong = (1/2)(C w

long + C r
oong) and Dtrasv = (1/2)(C w

trasv +
C r

trasv), Cw
long and C r

long are the longitudinal curvatures
at contact point of the wheel and the rail, respec-
tively; C w

trasv and C r
trasv are the transversal curvatures at

contact point of the wheel and the rail, respectively;
g = min((a/b), (b/a)) is a geometrical shape factor
where a and b are the semi-axis lengths of the contact
ellipse, K (g) and W(g) are elliptic integrals, defined as
follows

W (g) =
∫π/2

0
[1 − (1 − g 2) sin2 ψ]−1/2

dψ

E(g) =
∫π/2

0
[1 − (1 − g 2) sin2 ψ]1/2 dψ

(12)

Replacing the values of the curvatures for the con-
tact on the base and the tip of the flange, the stiffness
values follow

kbf
hertz = 7.87 × 1010(N/m)

ktf
hertz = 7.09 × 109(N/m)

(13)

where kbf
hertz and ktf

hertz are the values of the Hertz
stiffness at the base and at the tip of the flange,
respectively. The second contribution ktf

el is obtained
considering the wheel flange as a cantilever beam
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Fig. 7 Model of the flange as a cantilever beam:
(a) Axonometric view and (b) schematic view

Table 1 Equivalent cantilever beam characteristics

b = 0.32 m h = 0.045 m l = 0.0275 m ktf
el = (bh3E/4l3)

= 7.6 × 1010(N/m)

(Fig. 7) whose dimensions are given in Table 1. The
lateral dimension b is such that the compliance of the
cantilever beam is almost equal to the flange bend-
ing compliance, according to an appropriate static FE
model, as discussed in reference [8].

The overall stiffness at the tip flange is

ktf = ktf
hertzktf

el

ktf
hertzx + ktf

el

= 6.48 × 109(N/m)

Fig. 8 Example of merged and split volumes of intersec-
tion

Fig. 9 Plots of x coordinate of the contact point on the left wheel: (a) method of centre of load;
(b) method of the maximum distance, and (c) method of the maximum normal distance
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whereas the ratio between the stiffnesses at the tip and
the base of the flange is given by

χ = ktf

kbf
hertz

= 0.082

The magnitude of this ratio, although significant,
seems neglected in the models available in the current
literature.

The intermediate stiffness values, within the base
and the tip of the flange, are computed adopting
a linear interpolation that assumes, as interpolating
variable, the distance between the contact point and
the axis of the wheel.

Finally, it should be observed that equation (11) is
not used for computation of the wheel–rail contact
forces during the dynamic analysis. Its use is only
limited to the compilation of the lookup table. The
numerical experience confirms that the linearization
herein introduced on the computation of Hertz stiff-
ness does not significantly affect the double-contact
search.

4.6 The double contact

In most cases, our model finds only one point of
contact between the wheel and rail surfaces.

Fig. 10 Typical results stored in the lookup table. Wheel-set coordinates: (a) zG , b) θx ; coordinate
z of the contact point on the left wheel: (c) z, (d) y; components of the normal unit vector
on left wheel: (e) z, (f ) y
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Table 2 Dynamic characteristics of the wheel-set

Wheel-set mass (kg) 1595 Izz (kg m2) 935
Ixx (kg m2) 935 Friction

coefficient
0.2

Iyy (kg m2) 174

However, in some cases a double-contact configu-
ration occurs. In these cases, two separated volumes
of intersection are generated on the same wheel.
With reference to Fig. 8, two different possibilities are
considered: (i) split intersecting volumes; (ii) merged
intersecting volumes.

In order to establish whether the intersecting vol-
umes are split or merged (i.e. the contact is double
or single), the following test is applied: if one or more
rows of aligned nodes that do not belong to Vint exists

in the group of nodes that form the surface of Vint, then
there are two contact points. As can be observed from
Figs 3 and 8, the presence of such rows implies split
intersecting volumes and double contact.

5 GENERATION OF THE LOOKUP TABLE

In order to reduce CPU time required, the points of
contact and the normal unit vectors – for a given con-
figuration of the wheel-set – are obtained from a previ-
ously compiled lookup table. This consists of matrices
in which the dependent variables are computed as a
function of the two independent variables.

The refinement adopted for the lookup table is of
course a crucial topic. The chosen refinement should
be found through a trade-off between precision and

Fig. 11 Transverse displacement of the barycentre of the wheel-set; comparison between the
proposed method and a commercial multi-body

Fig. 12 Yaw angle of the wheel-set; comparison between the proposed method and a commercial
multi-body
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computational costs. Thereafter, every matrix consid-
ered contains 37 rows and 37 columns both for left
and right wheels. The rows represent the values of
yg , whereas the columns define the yaw angle ϑz (i.e.
the two independent variables). The range of feasible
equally spaced values for the independent variables is
taken as follows

−9 mm � yg � 9 mm; −0.12 rad � ϑz � 0.12 rad

Given two values of the independent variables the
remaining four values of the dependent variables
are readily obtained through linear interpolation.
Furthermore, the position of the contact points
between wheels and rails and the normal unit vectors
are computed making use of the interpolated data. All
the stored quantities can be visualized by means of
three-dimensional diagrams. The axes represent the

coordinate yg , the angle ϑz , and vertical depth is the
quantity to visualize. As an example, Fig. 9 shows
the surface of the coordinate x of the contact point
on the left wheel, obtained with the three discussed
methods.

As explained above, the three methods are denoted
as follows: 1 (method of the centre of load), 2 (method
of maximum distance), and 3 (method of maximum
normal distance). One can observe the following.

1. The results of method 1 are much more smooth
than the other methods; this is observed on both
wheel-set positions and contact points.

2. The results of method 1 are less affected by mesh
refinement.

3. Method 2 supplies slightly irregular results, mainly
caused by the location of the contact points within
the grids points.

Fig. 13 Roll angle of the wheel-set; comparison between the proposed method and a commercial
multi-body

Fig. 14 Transverse component of the tangential force acting on the wheel-set; comparison
between the proposed method and a commercial multi-body
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4. Method 3 supplies irregular surfaces again,
although these are smoothed on the rail; this is due
to the search contact algorithm that refers to wheel
nodes.

In Fig. 10, the typical lookup table results are pre-
sented. In particular, in Figs 10(a) and (b) the depen-
dent coordinate variation versus the values of zg and
θx are shown. Since the two remaining dependent vari-
ables are very little influenced by yg and θz , their plots
are omitted. The surfaces that give the coordinates z
and y of the contact point on the left wheel are very
regular, not presenting any isolated peak as shown in
Figs 10(c) and (d). Similar results are obtained for the
right wheel. Finally, Figs 10(e) and (f) demonstrate that
even the unit vector components, giving the attitude
of the vector normals to the contact surfaces, shows a
regular behaviour. In the cited figures, all the lengths
are expressed in metres, whereas the angles are given
in radians.

6 VALIDATION OF THE LOOKUP TABLE IN
DYNAMIC ANALYSES

In order to validate the lookup tables, a code in Mat-
lab environment is developed. The code is capable of
simulating the motion of a dynamic system formed by
one or several wheel-sets (e.g. bogie, wagon [20]).

Displacements and rotations are computed for all
moving masses. When contact is experienced, the
interacting force components, tangential and nor-
mal, respectively, are also computed. The tangential
components are determined using Kalker’s linear the-
ory [17, 18] assuming a linear relation between the
creepage and the tangential component. The nor-
mal component is obtained by the product of the
normal indentation with the contact elastic stiffness,
estimated by means of Hertz theory.

The results are compared with other performed by
means of dedicated commercial multi-body software.
The compared system is formed by a wheel-set resting
upon rails, moving with an initial longitudinal velocity.
The wheel-set is also perturbed at the initial time with
a transversal velocity component equal to 0.1 m/s. A
vertical force equal to 105 N is applied on the centre of
mass of the wheel-set.

The results are computed for two values of Vlong:
12 m/s and 27 m/s. The first case concerns a stable
behaviour of the wheel-set, that is to say that the
longitudinal velocity is lower than the critical value
[5, 7, 9, 13]; the second computation deals with an
unstable motion when the velocity is higher than the
critical speed.

The dynamic characteristics of the wheel-set are
reported in Table 2.

Figures 11 to 14 compare our code results with those
given by the dedicated commercial software, which
is also based on an off-line contact search and data

extrapolation, for the following quantities:

(a) transversal displacement of the wheel-set centre
of mass;

(b) wheel-set yaw and roll angle;
(c) transversal component of the tangential contact

force.

The agreement confirms the reliability of the pro-
posed method, thus validating our results at least
for the wheel-set motion in both stable and unsta-
ble behaviour. In Fig. 14, it is interesting to highlight
the small numerical perturbations occurring when the
wheel changes its attitude. As a matter of fact, the rel-
evant precision with which the contact is computed
in the lookup table is not affected by any artificial
smoothing of their values.

7 CONCLUSIONS

The topic of the article is the analysis of contact con-
ditions of a wheel-set with rails. In particular, this
analysis, given the two independent position variables
of the wheel-set, determines the contact points on
the wheel and on the rail, the relative normal unit
vectors and the remaining four dependent position
coordinates.

In order to reduce the computing time in a dynamic
simulation of a system where several wheel-sets are
present (truck or railway convoy), a lookup table cre-
ated for a number of pre-established configurations
is compiled. This last feature is particularly helpful
for the definition of the contact conditions that can
vary at each time step. Any configuration is obtained
through linear interpolation of the values contained in
the table. The study allows both the presence of a sin-
gle contact point on the wheel, and a double contact.
Under the condition of double contact, two contribu-
tions to the stiffness are included.The first one is due to
the deformation of the flange, assimilated to an equiv-
alent cantilever beam, and the second is due to the
local deformation, according to Hertz’s theory.

The compilation of the lookup table is carried
out using three different methods. Three-dimensional
plots make evident the differences between the pro-
posed methods herein.

The method of the centre of load is by far the best
since it is less sensitive to mesh refinement.

© Authors 2011
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APPENDIX

Notation

C L
max, CR

max maximum normal indentations of
the left and right wheel, respectively

E Young’s modulus
F h

cL contact force vector at the hth
contact points on the left wheel

F g
cR contact force vector at the g th

contact points on the right wheel
G tangential module of elasticity
GPh

L vectors oriented from G to the hth
left point of contact

GPg
R vectors oriented from G to the gth

right point of contact
H i unit vector oriented along the ith

axis of SRo
kc contact stiffness
ki

el stiffness of the spring acting along
the ith axis (i = x, y, z) of SRo

ki
rot stiffness of the torsion spring which

counteracts rotations about the ith
axis (i = x, y, z) of SRo

nCL, nCR number of contact points on left and
right wheel, respectively

nw, nr nodes number of the intersection
volumes of the wheel and the rail,
respectively

N i outward unit vector normal to
surface Sw at the ith node

N j outward unit vector normal to
surface Sr at the jth node

N L, N R outward unit vectors normal to the
left and right wheel, respectively

N w normal unit vector to the wheel
surface at point Pw

OPGw, OPGr position vectors of the barycentre of
the grid nodes on the boundaries of
V r

int and V w
int, respectively

OPw
i , OPr

j position vectors of generic grid
nodes on the boundaries of V r

int and
V w

int, respectively
OPw, OPr position vector of the contact point

on the wheel-rail computed with
method of the maximum distance

V ij vector joining the nodes i and j

ν Poisson’s ratio
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