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quantities of interest: the kaon masses, the kaon decay constants and the neutron-proton mass
splitting.
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1. Introduction

Nowadays, with the increasing precision of the experimental determinations of many physical
quantities, and in some cases with the improvement of the theoretical predictions, the control over
isospin breaking effects is becoming phenomenologically relevant.

In the past, isospin breaking effects due to the light quarks mass difference have been ac-
commodated within the chiral perturbation theory (ChPT) framework [1–6], while several attempts
to compute electromagnetic effects for the hadron spectroscopy in lattice QCD have been pre-
sented [7–10].

Isospin breaking effects in the Standard Model are induced both from light quark masses
(QCD effects) and charges difference (QED effects). In the real world the separation between the
two terms is conventional due to different additive renormalization of u,d quark masses in presence
of electromagnetism. In the present work we consider the well-defined theoretical limit in which
the electromagnetic interactions are switched off, and present a new method to compute the leading
QCD isospin breaking effects with high precision. The method is based on the expansion of the
lattice path-integral in powers of the small parameter md−mu and is applicable in principle to any
hadronic observable which can be computed on the lattice.

Till now we have applied it to the computation of the kaon masses, the kaon decay constants,
and the neutron-proton mass splitting. In the future we plan to apply the method to other physical
quantities, to include QED corrections and to try also the calculation of next-to-leading corrections
such as the π+-π0 mass difference.

The results presented in this talk have been published in [11]. Here we present a shorter version
of the published work: we marked in the text the parts which are discussed in more details in the
paper.

2. Description of the method

Let us start by considering the evaluation of a generic euclidean correlation function 〈O〉 used
to extract information about physical quantities as masses, decay constants, form factors etc.,

〈O〉= 1
Z

∫
Dφ O e−S , Z =

∫
Dφ e−S . (2.1)

We can split the Lagrangian into SU(2)V symmetric and isosping violating terms,

L = L0−∆mudL̂ = Lkin +mud q̄q−∆mud q̄τ
3q, (2.2)

where qT = (u,d), mud = (md +mu)/2 and ∆mud = (md −mu)/2. By expanding at first order the
exponential of the action, S = ∑x L (x), with respect to ∆mud we obtain:

〈O〉 '
∫

Dφ O (1+∆mud Ŝ)e−S0∫
Dφ (1+∆mud Ŝ)e−S0

=
〈O〉0 +∆mud 〈O Ŝ〉0

1+∆mud 〈Ŝ〉0
= 〈O〉0 +∆mud 〈O Ŝ〉0 , (2.3)

where 〈·〉0 represent the vacuum expectation value in the isospin symmetric theory and Ŝ is the
isospin breaking term Ŝ = ∑x [q̄τ3q](x) = ∑x [ūu− d̄d](x). The correction in the denominator van-
ishes, 〈Ŝ〉0 = 0, because of isospin symmetry. We can now describe a general recipe to be used in
order to compute leading QCD isospin breaking effects on the lattice:
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• consider a given correlation function in the full theory, i.e. with mu 6= md , and for each gauge
configuration draw all the fermionic Wick contractions;

• expand the up and down quark propagators with respect to ∆mud according to

Gu/d(x1,x2) = G`(x1,x2)±∆mud ∑
y

G`(x1,y) G`(y,x2)+ · · · ; (2.4)

• retain the terms linear in ∆mud and compute the corresponding diagrams.

Eq. (2.4) can be represented diagrammatically as follows

u

d = ± + · · · , (2.5)

where plus holds for up (light blue) and minus for down (green) quarks. Black lines from x to y refer
to G`(x− y) = 〈`(x) ¯̀(y)〉, the propagator with the symmetric mass mud in the isospin symmetric
theory, whereas the cross represents the insertion of the renormalization group invariant quantity
= ∆mud ∑z

¯̀(z)`(z).
Note that the square of the G` propagator entering eq. (2.4) can be easily calculated on the

lattice by using G` itself as the source vector of a new inversion.

3. Kaon masses and decay constants

In this section we discuss in detail the strategy used to derive the isospin corrections to the
kaon masses and decay constants. To this end we start by expanding the Euclidean two-point
pseudoscalar correlation functions of kaons around the isospin symmetric point:

CK+K−(t) = ∑
~x

e−i~p·~x〈 ūγ5s(x) s̄γ5u(0)〉=−
s

u

=− − +O(∆mud)
2 ,

CK0K0(t) = ∑
~x

e−i~p·~x〈 d̄γ5s(x) s̄γ5d(0)〉 =−
s

d

=− + +O(∆mud)
2 . (3.1)

The spectral decomposition of CK0K0 (the analysis of CK+K− proceeds along similar lines) is

CK0K0(~p, t) = ∑
~x

e−i~p·~x〈d̄γ5s(~x, t) s̄γ5d(0)〉 =
G2

K0

2EK0
e−EK0 t + · · · , (3.2)

By differentiating eq. (3.2) with respect to ∆m it is easy to see that from the ratio of the two
correlators

δCKK(~p, t) =
∆CKK(~p, t)
CKK(~p, t)

=− = δ

(
G2

K

2EK

)
− t∆EK + · · · , (3.3)
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Figure 1: Left panel: extraction of meson energies from the effective mass of CKK(~p, t). Right panel: fits of
δCKK(~p, t)/a∆mL

ud : as it can be seen numerical data follow theoretical expectations. The data correspond to β = 3.9,
amL

ud = 0.0064, amL
s = 0.0177, with amL

q the bare mass for quark q.

it is possible to extract the leading QCD isospin breaking corrections to kaon energies and decay
constants. Indeed ∆EK appears directly in the previous equation as the “slope" with respect to t
whereas δFK can be extracted from the “intercept" according to

FK = (ms +mud)
GK

M2
K
, δFK =

∆mud

ms +mud
+δGK−2δMK . (3.4)

On a lattice of finite time extent T with quark fields satisfying anti-periodic boundary conditions
along the time direction and given our choice of the kaon source and sink operators, the pseu-
doscalar densities, eq. (3.3) has to be properly modified.

In this work we have used the N f = 2 dynamical gauge ensambles generated and made publicly
available by the European Twisted Mass Collaboration. These gauge configurations have been
generated by using the so called Twisted Mass lattice discretization of the QCD action [12]. For the
present analysis we have used the same 13 gauge ensembles taken into account in [13], using the
same values of renormalization constants and lattice spacings there mentioned, and considering a
statistics of about 150 configurations per ensemble. The computation of all the correlation functions
has been carried out on AURORA machine in Trento. The full set of parameters can be found in
the appendix A of [11], where we discuss also the relevance of isospin breaking effects at finite
lattice spacing caused by the Twisted Mass regularization.

As can be seen from Figure 1, δCKK(~p, t) is determined with high precision, given the strong
statistical correlation existing between the numerator and the denominator of the ratio in eq. (3.3).

Our results do not show a visible dependence with respect to mud within the quoted errors.
Therefore we simply extrapolated the correction to the meson mass square (which is a finite quan-
tity in the chiral limit) to the continuum using the expression:[

∆M2
K

∆mud

]
(mud ,a) =

[
∆M2

K

∆mud

]QCD

+CMa2 . (3.5)

In the left panel of Figure 2 we show the continuum extrapolation of ∆M2
K/∆mud . Adding a linear

and a (chiral) logarithmic term according to the formulae obtained within the unitary SU(3)L×
SU(3)R in ref. [1] leads to compatible results for [∆M2

K/∆mud ]
QCD, with a 3% difference which we

considered as an estimate of systematic error, adding it in quadrature to the lattice uncertainty.
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Figure 2: Left panel: combined chiral and continuum extrapolations of ∆M2
K/∆mud , in physical units. Right panel:

combined chiral and continuum extrapolations of δFK/∆mud . Black points correspond to the coarser lattice spacing,
a = 0.098 fm, dark magenta points correspond to a = 0.085 fm, green points to a = 0.067 fm and blue points to
a = 0.054 fm. Red lines are the results of the continuum extrapolations.

In the case of δFK/∆mud (right panel of Figure 2), the dependence upon mud is significant, and
we have included in the fitting function the leading and next-to-leading terms expanded in powers
of mud/ms plus a lattice artifact term, i.e.[

δFK

∆mud

]
(mud ,a) =

[
δFK

∆mud

]QCD

+CFa2 +B1

(
mud−mQCD

ud

)
+B2 mud log

(
mud

mQCD
ud

)
. (3.6)

The systematics associated to this extrapolation has been estimated by replacing the logarithmic
term with a quadratic one, and it has been found of the order of 5%.

Using the value mQCD
ud = mQCD

ud (MS,2GeV ) = 3.6(2) MeV from refs. [13, 14] we obtain[
∆M2

K

∆mud

]QCD

MS,2GeV
= 2.57(8)×103 MeV ,

[
δFK

∆mud

]QCD

MS,2GeV
= 3.3(3)×10−3 MeV−1 . (3.7)

Having neglected the QED effects from our calculations, we cannot directly use the exper-
imental determination of M2

K0 −M2
K+ to extract [md −mu]

QCD. By taking the Chiral Perturbation
Theory (ChPT) estimate of the electromagnetic corrections to M2

K0−M2
K+ we can obtain the theoret-

ical value of the kaons squared mass difference in absence of electromagnetic interactions [7–10],
ref. [14], which reads: [

M2
K0−M2

K+

]QCD
= 6.05(63)×103 MeV2 . (3.8)

Using eq. (3.8) with our numerical results given in eq. (3.7), we get

[md−mu]
QCD (MS,2GeV ) = 2.35(8)(24) MeV

[
FK0−FK+

FK

]QCD

= 0.0078(7)(4) (3.9)

where the first error comes from our calculation and combines in quadrature statistics and system-
atics while the second comes from the uncertainty on QED effects. At first order in ∆mud , due to
the fact that pions don’t get corrections and that K+ and K0 get opposite corrections, we have[

FK+/Fπ+

FK/Fπ

−1
]QCD

= −0.0039(3)(2) . (3.10)

This is significatively higher than the estimate obtained in ref. [6] by using chiral perturbation
theory, where the value -0.0022(6) was found.
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Figure 3: Left panel: Correlation functions δCNN(t)/a∆mL
ud . Right panel: Chiral extrapolation of ∆MN/∆mud . The

data are at fixed lattice spacing a = 0.085 fm for different values of mud .

4. Nucleon masses

Having determined ∆mQCD
ud , we can now predict the QCD part of the difference between the

masses of the neutron and of the proton. We consider for proton the correlation function

C±pp(t) = ∑
~x
〈
[

εabc(ūaCγ5d̄T
b )ūc

1± γ0

2

]
(x)
[

εde f
1± γ0

2
ud(uT

e Cγ5d f )

]
(0)〉 , (4.1)

and similarly for neutron, with u↔ d. To increase statistic, we consider the combinations

Cnn(t) =C+
nn(t)−C−nn(T − t) , Cpp(t) =C+

pp(t)−C−pp(T − t) . (4.2)

Quark fields have been “Gaussian smeared” according to the values found in ref. [16]. The cor-
rection to such correlation function with respect to the isospin symmetric theory can be found
by expanding eq. (4.2) and computing all the required contractions, as already shown in previous
section in the case of kaons.

The extraction of physical information from nucleon euclidean two point functions proceeds
along the same lines described in detail in the case of the kaons. By extracting the slope in
t of δCNN(t), we can determine ∆MN = (Mn −Mp)/2. In the left panel of Figure 3 we show
δCNN(t)/a∆mL

ud , that we have fitted with the linear function: δCNN = c+ t∆MN .
In the right panel of Figure 3 we show the chiral extrapolation of ∆MN/∆mud performed by

using the following fitting function [17][
∆MN

∆mud

]
(mud) =

[
∆MN

∆mud

]QCD

+BN(mud−mQCD
ud ) . (4.3)

By using the results of the fit and the value of ∆mQCD
ud given in eq. (3.9), we get

[Mn−Mp]
QCD = 2∆mQCD

ud

[
∆MN

∆mud

]QCD

= 2.8(6)(3) MeV ×
[
M2

K0−M2
K+

]QCD

6.05×103 MeV2 , (4.4)

where the first error takes into account the lattice uncertainties while the second comes from the
uncertainty on QED contribution. This is our best estimate at present but it has been obtained at
fixed lattice spacing and with limited statistics. A refinement of this calculation is in progress.
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5. Conclusions and Outlooks

In this talk we have proposed a new method to compute with high precision the QCD isospin
breaking effects in relevant physical quantities at the lowest non trivial order in the up-down mass
difference. The method can be easily extended with minor modifications to higher orders. We
have computed the corrections to meson and nucleon masses and meson decay constants, showing
that, in spite of the limited statistics, our approach is already competitive, or even better, than other
calculations based on the effective QCD chiral lagrangian.

To obtain the complete physical results, our method has to be combined with the calculations
of the electromagnetic corrections, which is currently under investigation. In this work, for a com-
parison with calculations in different theoretical frameworks, we have taken the electromagnetic
corrections to the meson masses evaluated in ref. [14].

As the method looks very promising, we are planning to extend this work to other physical
observables, such as the form factors of semileptonic K`3 decays, for which we have presented
preliminary results in the full paper [11].

Acknowledgements

Work partially supported by the Programme IDEAS, ERC-2010-AdG, DaMESyFla Grant
Agreement Number: 267985, and by the MIUR (Italy) under the contracts PRIN08 and PRIN09.
V.L. acknowledges the support of CNRS and the LPT, Université Paris-Sud 11, where part of this
work was completed. Computation performed on AURORA computing center.

References

[1] J. Gasser, H. Leutwyler, Nucl. Phys. B250 (1985) 465.

[2] J. Gasser, H. Leutwyler, Nucl. Phys. B250 (1985) 539.

[3] G. Amoros, J. Bijnens, P. Talavera, Nucl. Phys. B602 (2001) 87-108. [hep-ph/0101127].

[4] J. Bijnens, K. Ghorbani, [arXiv:0711.0148 [hep-ph]].

[5] A. Kastner, H. Neufeld, Eur. Phys. J. C57 (2008) 541-556. [arXiv:0805.2222 [hep-ph]].

[6] V. Cirigliano, H. Neufeld, Phys. Lett. B700 (2011) 7-10. [arXiv:1102.0563 [hep-ph]].

[7] A. Duncan, E. Eichten, H. Thacker, Phys. Rev. Lett. 76 (1996) 3894-3897. [hep-lat/9602005].

[8] S. Basak et al. [ MILC Collaboration ], PoS LATTICE2008 (2008) 127. [arXiv:0812.4486 [hep-lat]].

[9] T. Blum et al., Phys. Rev. D82 (2010) 094508.

[10] A. Portelli et al. [ Budapest-Marseille-Wuppertal Collaboration ], PoS LATTICE2010 (2010) 121.

[11] G. M. de Divitiis et al., arXiv:1110.6294 [hep-lat].

[12] R. Frezzotti et al. [ Alpha Collaboration ], JHEP 0108 (2001) 058. [hep-lat/0101001].

[13] B. Blossier et al. [ ETM Collaboration ], Phys. Rev. D82 (2010) 114513. [arXiv:1010.3659 [hep-lat]].

[14] G. Colangelo et al., Eur. Phys. J. C71 (2011) 1695. [arXiv:1011.4408 [hep-lat]].

[15] J. Gasser, A. Rusetsky, I. Scimemi, Eur. Phys. J. C32 (2003) 97-114. [hep-ph/0305260].

[16] C. Alexandrou et al. [ European Twisted Mass Collaboration ], Phys. Rev. D78 (2008) 014509.

[17] J. Gasser, H. Leutwyler, Phys. Rept. 87 (1982) 77-169.

7


