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SUMMARY

Cancer cells acquire pathological phenotypes
through accumulation of mutations that perturb
signaling networks. However, global analysis of
these events is currently limited. Here, we identify
six types of network-attacking mutations (NAMs),
including changes in kinase and SH2 modulation,
network rewiring, and the genesis and extinction of
phosphorylation sites. We developed a computa-
tional platform (ReKINect) to identify NAMs and
systematically interpreted the exomes and quantita-
tive (phospho-)proteomes of five ovarian cancer cell
lines and the global cancer genome repository. We
identified and experimentally validated several
NAMs, including PKCg M501I and PKD1 D665N,
which encode specificity switches analogous to the
appearance of kinases de novo within the kinome.
We discover mutant molecular logic gates, a drift
toward phospho-threonine signaling, weakening of
phosphorylation motifs, and kinase-inactivating
hotspots in cancer. Our method pinpoints functional
NAMs, scales with the complexity of cancer ge-
nomes and cell signaling, and may enhance our
capability to therapeutically target tumor-specific
networks.
INTRODUCTION

Since the discovery of the first oncogene, Src (Stehelin et al.,

1976), and tumor suppressor, Rb (Friend et al., 1986), more

than three decades ago, our understanding of some of the

specific genetic aberrations supporting cancer progression has

steadily risen. Recent advances in next-generation sequencing

technologies have led to the identification of large numbers of
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somatic cancer mutations through whole genome and exome

sequencing of tumors. Given how complex it is to assess the

relevance of this enormous repertoire of reported somatic can-

cer mutations (currently running in excess of 1 million variants)

(Forbes et al., 2011), the discovery of new somatic mutations

has vastly outpaced our ability to unravel their functional roles

(Figure S1A).

Despite the fact that alterations to the physiological cellular

responses to environmental cues are fundamental hallmarks of

cancer cells (Hanahan and Weinberg, 2000) and that cellular

responses to input cues are driven by signaling networks, a

comprehensive understanding of how mutations perturb these

networks is still missing. In fact, new conceptual paradigms

and computational strategies allowing better assessment of

the intrinsic complexities of cancer cells, such as the integration

of cancer genomic and proteomic data, have been recently pin-

pointed as key requirements in the field of cancer research

(Weinberg, 2014; Yaffe, 2013). Specifically, new approaches

for decoding mutations that perturb signaling networks (or as

we term them, ‘‘network-attacking’’ mutations [NAMs]) (Creixell

et al., 2012a) and the mechanisms by which they may statically

or dynamically alter these networks will be fundamental in clos-

ing this gap (Figure S1B) (Yaffe, 2013). Here, we describe and

validate such a conceptual and computational framework

capable of identifying, classifying and unraveling the impact of

numerous predicted NAMs.
RESULTS

Classifying Mutations Affecting Signaling Networks
In order to evaluate whether cancer mutations perturb signaling

networks, we initially developed a classification system with

concrete types of NAMs. We divide NAMs into three funda-

mental classes.

The first and relatively well-described type of NAM is one

that disrupts signaling network dynamics by constitutively acti-

vating or inactivating a protein kinase, thereby maintaining the
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information flow either ‘‘on’’ or ‘‘off’’ uninterrupted over time. Ex-

amples of such ‘‘on’’ mutations are those substitutions that

mimic activation loop phosphorylations, whereas examples of

‘‘off’’ mutations include those that alter catalytically essential

residues of kinases, or residues in SH2 domains that are critical

for phospho-tyrosine binding. Since the timely activation and

termination of signals is critical for the proper cellular homeo-

stasis as well as phenotypic responses to environmental

stimuli, such mutations lead to aberrant information processing

(Figure 1A).

A second, largely undescribed type of NAMs are those muta-

tions that shift the signaling network structure by ‘‘rewiring’’

upstream or downstream interactions (of the mutated protein

or node). Upstream rewiring can be caused by mutations in a

kinase substrate that disrupt the linear motif around a phosphor-

ylation site, thus causing a new upstream kinase to phosphory-

late the mutant substrate. Downstream rewiring, in contrast,

can be caused by drifts in the peptide specificity upon mutation

of the determinants of specificity (DoS) in kinase (or SH2) do-

mains (Creixell et al., 2015 [this issue of Cell]) (Figure 1A).

Finally, we hypothesized that a third type of NAMs could exist

where mutations would generate or destroy phosphorylation

sites, effectively generating new molecular logic gates in cancer

cells (Figure 1A).

Node inactivation and node activation would fall within the

categories of what is traditionally referred to as loss-of-function

and gain-of-function hypermorphic mutations, while the other

mutations would fit best within a gain-of-function neomorphic

classification.

The ReKINect Methodology
With the aim of systematically identifying NAMs in phosphoryla-

tion-based signaling networks, we developed a computational

approach, ReKINect, capable of predicting these defined func-

tional mutations (Figures 1A and 1B; http://ReKINect.science).

We began by assembling comprehensive sequence and posi-

tional information covering all known 538 kinase domains, 111

SH2 domains, and 149,838 phosphorylation sites in the human

proteome (refer to the Experimental Procedures for further

information). This information facilitated the mapping of NAMs

onto these domains and the modeling of the likely functional

effect of mutations (Figure 1B). Mutations in established or pre-

dicted functional residues (essential residues on the different

domains, determinants of specificity identified in our accompa-

nying paper [Creixell et al., 2015] as well as phosphorylation

sites) would then be predicted to lead to the dysregulation of

network dynamics, network rewiring, and gain or loss of phos-

phorylation sites (Figure 1B).

Below, we provide an overview, further details, and experi-

mental evidence using a wide range of techniques (including

genome-specific global phospho-proteomics, peptide speci-

ficity, or phenotypic data) for the different predictions generated

by the ReKINect algorithm and explore the impact on signaling

networks of the NAMs we identify.

Quantifying NAMs in Cancer Repositories and Cell Lines
Having defined the different NAMs, we next intended to assess

their existence and abundance in cancer. We thus collected
a set of 678,050 unique missense somatic cancer variants

from COSMIC (version 67) (Forbes et al., 2011) and deployed

ReKINect on this set to predict a large number of instances

across the NAM classes (Figure 2).

In order to experimentally investigate NAMs, we performed a

global integrative analysis by combining exome next-generation

sequencing (NGS) and quantitative mass spectrometry (MS)-

based (phospho-)proteomics on a set of five ovarian cancer

cell lines (ES2, OVAS, OVISE, TOV-21, and KOC-7C; Figures

S1 and S2) and conducted genome-specific proteomics

analyses (Experimental Procedures). By following a Spike-in

SILAC-based labeling strategy (Geiger et al., 2011) (Figures S1

and S2; Experimental Procedures), we could identify and accu-

rately quantify on average more than 6,000 unique phosphoryla-

tion sites across over 2,000 proteins in each of the five cell lines.

Furthermore, NGS identified close to 9,000 unique missense

variants per cell line (including SNPs and germline mutations

aswell as somaticmutations) that were subsequently interpreted

by ReKINect (Figure 2).

As shown in Figure 2 (and Data S1–S6) ReKINect could identify

functional mutations covering each class of NAM included in

our model as well as enrichments in these functional mutations

(Figure S1). In addition, we computed the frequency at which

different protein domains are affected by cancer mutations in

the global repository of somatic cancer mutations as a means

to provide general estimations of the likelihood of finding

perturbations in different modular protein domains in cancer

(Figure S1).

Given our currently limited knowledge about the different

processes that can lead to the different NAMs (e.g., phospho-

mimicking mutations are the only case currently covered by

ReKINect that result in kinase activation) the number of func-

tional mutations presented in Figure 2 is most likely a significant

underestimation. Nevertheless, in the following sections we

provide further details and evidence supporting the existence

of these predicted NAMs in cancer signaling networks.

Genesis and Extinction of Phosphorylation Sites
and Circuitry
Having collected both exome sequencing and proteomic data

on the same set of cancer cell lines, we were able to address

the question of whether mutations could create new phosphory-

lation sites or destroy existing ones, thereby generating new

cancer-associated molecular logic gates within a cancer cell

signaling circuitry. To identify such events, we specifically

inquired the global sequencing data for the appearance of phos-

phorylatable residues resulting from mutations, some of which

could be experimentally verified to be bona fide sites by mass

spectrometry. Strikingly, this approach uncovered several ex-

amples of mutations that lead to the genesis of new phosphory-

latable sites, which become recognized and phosphorylated

by kinases (Figures 3A and S2). Among the proteins harboring

these neomorphic phosphorylation sites were TANC1 and

HSF1 (Figure 3A). While little is known about TANC1, HSF1 is a

heat-shock protein previously reported to be associated with

carcinogenesis and poor prognosis, as well as supporting malig-

nancy in a variety of cancers (Dai et al., 2007). Thus, further

investigations of this new phosphorylation site on HSF1 and its
Cell 163, 202–217, September 24, 2015 ª2015 The Authors 203
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Figure 1. Network-Attacking Mutations

(A) Six distinct types of network-attacking mutations (NAMs) can be defined based on perturbations of signaling network dynamics, network structure, and

dysregulation of phosphorylation sites. Cancer mutations could generate or destroy molecular logic gates, for example by creating new, or by removing existing,

phosphorylation sites. Alternatively, mutant proteins could become activated by new upstream proteins (incoming edges) or start perturbing new downstream

substrates (outgoing edges). Finally mutations could turn signaling proteins (e.g., protein kinases) constitutively ‘‘on’’ or ‘‘off.’’ The effect of these NAMs on the

cue-signal-output flow of information is illustrated for each comparing the wild-type (WT) and mutant (Mut) cases.

(B) After mapping mutations at the genomic and proteomic level, every NAM class defined in (A) is modeled on the different protein domains and motifs currently

included in ReKINect following a distinct procedure: mutations on the essential residues of the kinase and SH2 domains are classified as node inactivating. Acidic

mutations mimicking the phosphorylated/active state of kinases are classified as node activating. Mutations perturbing phosphorylation motifs and causing

changes in the upstream kinase phosphorylating the target protein are classified as upstream rewiring. On the other hand, mutations in residues that determine

specificity of the kinase or SH2 domains (Creixell et al., 2015) perturb domain specificity and are classified as downstream rewiring. Finally, our genome-specific

MS experiments enable the identification of mutations generating phosphorylatable residues or the extinction of phosphorylation sites by mutating away from

phosphorylatable residues.

See also Supplemental Experimental Procedures.
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Figure 2. Overview of NAMs in Cancer Cell Lines and in the Global Repository of Cancer Somatic Mutations as Predicted by ReKINect

For each cell line and for the global repository of cancer somatic mutations we show the number of unique missense variants and howmany of these variants fall

within kinase proteins, SH2 proteins or phosphorylation sites (using a five-residue flanking region window surrounding the phosphorylation site). From these

we then illustrate the fraction of variants falling within the respective domains and the fraction that can be interpreted by ReKINect. In the case of ES2, all of the

27 variants hitting an SH2 protein, hit outside SH2 domains, thus ReKINect could not make any predictions as to their effect (ghosted). It should be noted that

the genesis of phosphorylation sites cannot be predicted from in silico analysis alone but require genome-specific-MS experiments. See also Figure S1.
predicted cell-cycle-dependent upstream kinase, CDK2, may

lead to new insights on the role of this heat-shock protein in can-

cer (Figure 3A).

In order to discover NAMs destroying phosphorylation sites,

we combined our exome sequencing data with those from the

quantitative mass-spectrometry analysis of the phospho-pro-

teomes of the five ovarian cancer cell lines. This enabled us

to perform genome-specific searches of the mass-spectra, in

order to identify direct proteomic evidence of the destruction

of phosphorylation sites (Figure 3B) by identifying the mutated

but unmodifiable peptides. This approach enabled us to identify

380 variants in our five cell lines and 6902 in the global repository

of cancer mutations destroying phosphorylation sites (Experi-

mental Procedures and Figure 2).

Two such events from the cell lines illustrated in Figure 3B, are

RAB11FIP1 (T281M) and TNKS1BP1 (S1533G).Whereas the role

of RAB11FIP1 in cancer is not as clear, Tankyrase-1-binding

protein (TNKS1BP1) binds Tankyrase, which in turn, associates
with TRF1 protein at the telomeres. This complex is not only

tightly regulated during cell-cycle progression but critically it

regulates telomere length by binding on the double-stranded

TTAGGG repeat of telomeres. This, together with the fact

that Aurora Kinase B (AurKB), a key cell-cycle mitotic kinase

(Alexander et al., 2011), is predicted by NetworKIN (Linding

et al., 2007) to phosphorylate the wild-type form of TNKS1BP1,

suggests a potential role in cell-cycle and telomere length dysre-

gulation for this mutant variant.

In order to provide further characterization and assess the

phenotypic impact of mutations resulting in genesis and

destruction of phosphorylation respectively, we performed

siRNA-based knockdown experiments of both TANC1 and

RAB11FIP1 across the five cell lines. While knockdown

effect could certainly be attributable to many other factors

besides these specific mutations, surprisingly, as shown in

Figure S3 and detailed in the Supplemental Experimental Pro-

cedures, we indeed observed phenotypic effects supporting
Cell 163, 202–217, September 24, 2015 ª2015 The Authors 205
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Figure 3. NAMs Leading to Genesis and Extinction of Phosphorylation Sites

(A) Two examples of network-attacking mutations generating new phosphorylation sites on HSF1 and TANC1, as evidenced by exome sequencing data and MS

spectra matching the phosphorylated mutation.

(B) Two examples of network-attacking mutations causing the extinction of known phosphorylation sites on RAB11FIP1 and TNKS1BP1, supported by exome-

sequencing data and MS spectra matching the unphosphorylatable mutated residue.

See also Figures S2 and S3.
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the most parsimonious expectations arising from ReKINect’s

predictions.

Above, we aimed to provide the most accurate and evident

instances of NAMs that generate and destroy phosphory-

lation sites and achieved this through integration of exome-

sequencing and MS experimental data following stringent

selection criteria (Experimental Procedures). Thus, we speculate

that many more NAMs leading to the genesis and extinction of

molecular logic gates will undoubtedly exists.

Kinase Downstream Rewiring
Next, in order to explore if cancer mutations can hit residues

that determine kinase specificity (determinants of specificity

[DoS]) and thereby impose downstream rewiring, we included

the results from the KINspect algorithm, described in the accom-

panying article (Creixell et al., 2015), in the ReKINect platform.

Sourcing from the global repository of cancer-associated

somatic mutations we could predict a large set of putative

NAMs leading to downstream rewiring (Experimental Proce-

dures; Table S1).

Following a prioritization procedure described in the Supple-

mental Experimental Procedures, we compiled a ranked list of

cancer somatic mutations with the highest potential to cause

downstream rewiring (Table S1). The list includes 1,871 unique

missensemutations predicted to alter determinants of specificity

by hitting the kinase domain residues most likely to play

significant roles in specificity (specificity score higher than 0.9).

Even with maximum stringency filters and focusing on the single

kinase position most likely to drive specificity (highest specificity

score of 1.0, previously reported by the literature as a determi-

nant of specificity [Brinkworth et al., 2003] and in direct physical

contact with the substrate with a distance of <3 Å), we identified

42 unique missense mutations on this specific position covering

all branches of the human kinome tree (Table S1).

As detailed in the Supplemental Experimental Procedures,

identifying the cases more suitable to experimental validation

narrowed our candidates down to mutations on three positions

in direct contact with the substrate and high KINspect score

(Creixell et al., 2015) leading to the cloning, expression, and

purification of these mutant kinases as well as their wild-type

variants (Figures 4A–4E). First, we purified the two PKCg mu-

tants, D484G and M501I, predicted to perturb the determinants
Figure 4. NAMs Causing Downstream Rewiring

(A) Three positions in direct contact with the substrate peptide, named aD1, HR

positions P�3, P�2, and P0 (i.e., the phospho-acceptor site), respectively, harb

mental validation.

(B) Experimental validation by position scanning peptide library (PSPL) array of

normalized, averaged data from two independent experiments illustrating the spe

in substrate positions P�3, P�2, and P0, respectively. The results are also sho

and mutant specificity switch position (logos generated using Seq2Logo [Thoms

(C) The P0 specificity switch of the PKCg variant M501I was subsequently confi

containing either Ser or Thr at the phosphorylation site position (RRRRRSWYFG

shows the mean ± SD (n = 4).

(D) PKCg expression levels are markedly increased in the tumor sample harborin

(E) Comparison of the differences in substrate specificity typically observed be

reported here (black arrows). As evident from the plot, in two out of the three ca

comparable to the specificity difference existing between different wild-type kina

See also Figure S4.
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of specificity in alignment positions 651 and 995, respectively

(Figures 4A and 4B). Since the determinant of specificity per-

turbed by the mutant variant D484G was located four residues

downstream of the conserved HRD motif on the kinase domain,

we named this determinant as HRD+4 (Figure 4A). Given this

spatial location and proximity to the P�2 position of the sub-

strate peptide, we predicted this first mutant would affect P�2

specificity. In contrast, the mutant variant M501I was found

immediately downstream of the conserved DFG motif within

the kinase activation loop (DFG+1), a residue for which there is

recent evidence for its role driving serine-threonine specificity

at the phosphorylation site (P0 i.e., central S/T(/Y) residue) posi-

tion (Chen et al., 2014). As shown in Figures 4B and S4, experi-

mental determination of the peptide specificity of both variants

by positional scanning peptide library (PSPL) (Hutti et al., 2004)

corroborated the specificity drift of both these mutants. In the

case of the variant PKCg D484G, our results uncovered a loss

of Arg preference in position P�2 of the substrate peptide for

the mutant variant (Figures 4B and S4). As predicted in the

case of the variant M501I, PSPL results demonstrated a change

in phosphoacceptor residue preference from Ser to Thr (Fig-

ure 5B). This specificity ‘‘switch’’ was further confirmed by

performing phosphorylation assays on both the wild-type and

mutant variants using a pair of matched peptide substrates of

identical sequence save for having Ser or Thr in the P0 position

(Figure 4C). As seen with PSPL analysis, WT PKCg preferred

Ser over Thr, while theM501Imutant by contrast phosphorylated

the Thr peptide most efficiently. Given that PKCg is a critical

regulator of migration in development (Kramer et al., 2002),

that it has been linked to metastasis (Yang et al., 2014), and

that its overexpression in epithelial cells triggers a malignant

phenotype and tumorigenic behavior in vivo (Mazzoni et al.,

2003), we speculate that these specificity drifts ReKINect has

predicted could provide tumorigenic, invasive, and metastatic

capabilities to cancer cells. While these PKCg mutants were

identified in lung cancer samples (Kan et al., 2010) wild-type

PKCg is typically expressed only in the brain (Sundram et al.,

2011). Interestingly, PKCg was overexpressed in the tumor

bearing the M501I mutation (Figure 4D) to levels substantially

higher than in tumors where this genomic region had been

amplified (as reported by cBioPortal [Gao et al., 2013]). A recent

report highlighted loss-of-function mutations on PKC kinases
D+4, and DFG+1, and likely involved in determining specificity for substrate

or several cancer somatic mutations, three of which were selected for experi-

the specificity drift caused by downstream rewiring NAMs. Heat maps show

cificity drift for the cancer variants PKD1 D665N and PKCg D484G and M501I

wn in logo form plotting the normalized information content in the wild-type

en and Nielsen, 2012]).

rmed by quantifying the phosphorylation rate of identical peptide substrates

G and RRRRRTWYFGG) by mutant and wild-type kinase variants. The graph

g the PKCg M501I downstream rewiring mutation.

tween wild-type human kinases (gray histogram) and those mutant kinases

ses, the magnitude of the specificity drift caused by the cancer mutations is

ses.
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Figure 5. NAMs Causing Upstream Rewiring

(A) Upstream rewiring mutations will cause a new kinase (from K1 to K2) to phosphorylate the mutant protein (S, red). By plotting the probability of both kinases to

phosphorylate the wild-type and mutant variants of the protein, we can visualize, quantify, and compare different upstream rewiring mutations.

(B) The rewiring power and the rewiring angle can be computed by considering the necessary trajectory that the mutation causes (from the ‘‘origin’’ right-bottom

triangle to the ‘‘destination’’ left-top triangle). The rewiring power is equivalent to the magnitude of the vector and measures the rewiring capacity of the mutation.

The rewiring angle is the angle of the vector from the diagonal and distinguishes whether the rewiring effect is mainly driven by kinase resignation (i.e., a loss of

phosphorylating ability of the wild-type kinase, angle >45�), depicted in blue, or by kinase take-over (i.e., an increase of phosphorylation ability of a new kinase,

angle <45�), depicted in green. The three examples illustrate how three different mutations (A–C) can lead to different outcomes, such as the same rewiring power

but different main driving force (A and B) or the same driving force but different magnitude (B and C).

(C) Illustration of the two main driving processes that cause upstream rewiring, namely the reduced ability of the original kinase to phosphorylate the new mutant

substrate variant (resignation) and the increased ability of a second kinase to phosphorylate the mutant substrate protein (take-over).

(D) Representation of all the upstream rewiring mutations identified in the global repository of somatic mutations at different distances relative to the phos-

phorylation site (from five residues before a phosphorylation site, P�5, to five residues after a phosphorylation site, P+5). Rewiring events mainly driven by

resignation are shown in blue and those mainly driven by take-over are shown in green.

(legend continued on next page)
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(Antal et al., 2015), including PKCg. By having altered substrate

specificity, the two PKCg mutants characterized here are likely

to both lose the ability to phosphorylate some endogenous sub-

strates while gaining the capacity to phosphorylate new de novo

substrates.

Next, we purified the mutant variant of PKD1 predicted to

perturb the determinant of specificity in alignment position

494 (Figures 4A and 4B) that we named aD1, given its location

on the first residue of a helix D of the kinase domain. As with

the PKCg mutants, the PSPL experiments validated the speci-

ficity drift in PKD1 D665N (Figures 4B and S4). Specifically, this

mutation causes loss of an essential feature of the WT kinase

phosphorylation signature, namely selectivity for Arg at the

P�3 position. An Arg residue is found at the P�3 position in

critical targets of PKD1, including CREB, SSH1L, HDACs 5

and 7, HPK1, MARK2, and HSP27. This variant is therefore

expected to perturb signaling downstream of PKD1, a kinase

with roles in the development and metastatic progression of

several cancers including prostate, breast, gastrointestinal,

pancreatic, and skin cancers (Sundram et al., 2011). Having

made this prediction for a mutation originating from a prostate

cancer sample (Lindberg et al., 2013), potential deregulation

between PKD1 and its substrate HSP27 is particularly notable,

as its phosphorylation is closely related to androgen receptor

function in prostate cancer (Hassan et al., 2009; Sundram

et al., 2011). In addition to breaking these interactions in

the signaling network, because the D665N mutation renders

PKD1 a less specific kinase, we anticipate that the mutation

will generate many new connections through phosphorylation

of non-native substrates, some of which may contribute to

the malignant phenotype.

We next assessed the magnitude of the specificity switches

caused by these cancer mutations, by comparing the wild-type

to mutant drift in specificity to the specificity differences

observed between wild-type human kinases across the kinome.

As shown in Figures 4E and S4, two out of the three downstream

rewiring mutations cause a specificity drift of a magnitude com-

parable to the specificity difference that exists between different

wild-type human kinases. Effectively, this implies that a single

cancermutation can lead to a specificity switch that is analogous

to a new kinase appearing in the genome.

With these validated examples at hand, we set out to further

investigate whether other cancer mutations could cause similar

dramatic specificity drifts and switches in other human kinases.

By analyzing predictions from ReKINect based on cancer muta-

tions identified to hit validated DoS residues (Table S1), in many

cases with amino acid substitutions analogous to the ones we

experimentally tested above, we could indeed identify additional

cancer mutations that with high likelihood cause downstream

rewiring. In the case of the HRD+4 site, 41 additional cancer

mutations were identified substituting this site to multiple other

residues (Table S1).
(E) Quantification of the percentage of mutations leading to upstream rewiring de

(F) Assessment of the median magnitude of rewiring for mutations based on thei

(G) The median rewiring angle (orange and yellow bars) and the ratio of take-over o

mutation relative to the phosphorylation site.

See also Figure S5.
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Moreover, in addition to the PKCg M501I mutant, we could

identify 29 other cancer mutations hitting the DFG+1 site, eight

of which with analogous substitutions of large hydrophobic res-

idues with b-branched aliphatic residues (Haspin L669I, DDR1

M793I, ITK M503V, TRKA M671T, IRAK3 M314I/M341V/

M341T, and BRAF L597V), the type of substitution that most

likely leads to a specificity switch from a preference for phos-

phorylating Ser to Thr (Figure S4; Table S1). In contrast, no

mutant was found that would perturb specificity in the opposite

direction (fromThr toSer phosphorylation preference; Figure S4).

Thus, it appears there is a general trend toward increased phos-

phoThr-driven signaling in cancer.

Of these 29mutants, the identification of a likely mechanism of

action for BRAF L597V is of critical relevance as it is not only a

germline mutation in Noonan syndrome and cardio-facio-cuta-

neous syndrome, but also plays a significant role in the develop-

ment of cancer when acting in epistatic synergy with Ras G12V

(Andreadi et al., 2012; Davies et al., 2002). While the molecular

mechanisms of this epistatic interaction could potentially be

linked to changes in BRAF dimerization, our results suggest

that Ras G12V could ensure the hyperactivity of this signaling

network, whereas BRAF L597V rewires it by a drift in BRAF’s

kinase specificity. Such a scenario is reminiscent of previous

interactions between different mutations promoting cancer

development in a synergistic manner (Creixell et al., 2012a; Wu

et al., 2010). Finally, we could identify 40 cancer mutations in

addition to the PKD1 D665N mutation perturbing the aD1 site,

eight of which containing the same amino acid substitution D

to N (PKCb D427N, TSSK1 D97N, TTBK1 D116N, CDK11b

D507N, CDK8 D103N, PFTAIRE1 D198N, PDGFRa D681N, and

STYK1 D201N) and thereby constituting high-confidence down-

stream rewiring mutants (Figure S4; Table S1).

Altogether, these results represent the discovery of three new

downstream rewiringmutations on three distinct determinants of

specificity (HRD+4, DFG+1, and aD1) and show that single-point

NAMs can drive downstream rewiring of a magnitude that is

analogous to a new kinase suddenly appearing within the human

kinome. They also suggest that the prioritized collection of

mutations we provide is likely to contain even more cancer mu-

tations causing rewiring (16 of which being clear high-confidence

candidates, Figure S4).

Upstream Kinase Rewiring
Complementary to the downstream rewiring NAMs, we next

investigated whether mutations could also cause upstream re-

wiring (i.e., when a substrate is, due to the impact of a mutation,

being phosphorylated by different upstream kinases) by perturb-

ing phosphorylation motifs on the substrate (Figure 1). By

analyzing mutations that fall within 5 flanking residues of known

phosphorylation sites (see Experimental Procedures) with the

NetPhorest (Miller et al., 2008) and NetworKIN (Linding et al.,

2007) algorithms on the wild-type and mutant variants of the
pending on their position relative to the phosphorylation site.

r position relative to the phosphorylation site.

ver resignation rewiring mutations (gray line) conditioned on the position of the



same protein, we could predict the likely upstream rewiring ef-

fects of mutations on substrates. As detailed in Figure 5 (see

also Figure S5 and Tables S2 and S3), for a given predicted re-

wiring event (i.e., where the upstream kinase predicted for the

wild-type and mutant variants of the substrate is non-identical)

we defined two variables termed ‘‘rewiring power’’ and ‘‘rewiring

angle’’ based on the predicted probability for the most likely up-

stream kinase in the wild-type and mutant substrate variants

(Figures 5A and 5B).

The rewiring power measures the magnitude of the rewiring

event, by accounting for the loss of phosphorylation potential

of the old upstream kinase as well as the gain in phosphorylation

potential of the new upstream kinase. The number of rewiring

events and their rewiring power showed a non-uniform distribu-

tion where, generally, mutations closer to a phosphorylation

site have a higher chance of causing upstream rewiring and

the rewiring event itself will be of higher magnitude (rewiring

power) (Figures 5D–5F). This global trend is observed for all po-

sitions except for the position just before the phosphorylation

site, P�1, where mutations are less likely to lead to rewiring

events and will most often be of lower magnitude. In fact, such

distribution with the singularity of P�1 resembles the positional

distribution of information content of kinase substrate specificity

(Figure S5), underlining a fundamental link between the criticality

of a given position for substrate recognition by upstream kinases

and the disruptive potential of cancer somatic mutations hitting

those positions. In other words, positions critical to and in direct

close contact with the phosphorylating kinase (e.g., P+1, P+2,

P�2, or P�3, as opposed to P�1 that makes very few contacts

with the kinase) (Brinkworth et al., 2003) are far more likely to

harbor strongly rewiring mutations.

The repertoire of potential upstream rewiring events allowed

us to address the central question of whether rewiring is most

often driven by an increased phosphorylation propensity for

the mutant substrate variant by a new kinase (which we term

‘‘kinase take-over’’) or, inversely, if caused by a reduced pro-

pensity for the original kinase upon mutation (which we term

‘‘kinase resignation’’) (Figure 5C). The rewiring angle does, in

effect, measure which of the two forces is stronger, with rewir-

ing events mainly driven by kinase take-over leading to a rewir-

ing angle <45� from the diagonal in Figure 5B, while rewiring

events mainly driven by kinase resignation would be associated

with rewiring angles >45�. As shown in Figure 5G, our results

based on the median rewiring angle as well as the ratio of

take-over/resignation events measured at different positions

relative to the phosphorylation site show that, regardless of

the position, upstream rewiring events are predominantly driven

by kinase resignation forces. Illustrative examples of this can

be found in Tables S2 and S3, where many of the most strongly

rewiring events are caused by cancer mutations disrupting, for

instance, proline residues in P+1 positions of CDK substrates.

For example, a mutation juxtaposed to a phosphorylation site

on position 721 of damage-specific DNA binding protein 1

(DDB1 P721Q) is predicted to cause an upstream shift from

CDK1 to ATM and a similar mutation on CCP110 (CCP110

P171L) leads to a predicted upstream rewiring from CDK1 to

PLK1 (Table S3). Finally, mutations on ORC1 (P312S), CDC23

(P583T), and NUMA1 (P113H) illustrate how disruption of pleio-
tropic recognition motifs, such as the one for CDK1 kinase, can

lead to upstream rewiring events.

Overall, these results suggest that cancer mutations may

rewire upstream signaling typically by worsening an optimal sub-

strate site for a given upstream kinase and not by generating

a more optimal substrate better matching another upstream

kinase. Considering the fact that it has taken millions of years

to evolve exquisitely fine-tuned motifs around phosphorylation

sites that would confer signaling specificity and fidelity (Tan

et al., 2009; Zarrinpar et al., 2003), it is not so surprising that

cancer mutations most often perturb this finely evolved system

by generating weaker phosphorylation motifs.

Constitutive Activation and Inactivation of Kinases
As a final group of NAMs on protein kinases, we also analyzed

the presence of mutations that would lead to the constitutive

activation and inactivation of protein kinases (Figure 1).

Starting from the former case, we used the so-called phos-

pho-mimicking effect of acidic mutations in close proximity to

(just before, P�1, or after, P+1) activating phosphorylation sites

on the activation segments of kinase domains (Davies et al.,

2002) to identify in silico missense mutations that can result in

a constitutively active kinase.

Taking the well-characterized case of BRAF V600E, a phos-

pho-mimicking activating mutation, as a positive test case, we

confirmed that ReKINect could identify this mutation in one of

the ovarian cell lines (ES2) and predict it as kinase activation.

We subsequently experimentally confirmed the hyper-phos-

phorylated state of the BRAF substrate, MEK by immuno-blot

in the ES2 line (Figures 6A and 6B).

In addition to this well-known case, ReKINect predicted 23

other instances of potential constitutively activating kinase mu-

tations (Table S4). Although some of these mutations fall nearby

or on phosphorylation sites that have not yet been shown to

regulate enzymatic activity, for a considerable fraction of them

there is substantial evidence they could lead to kinase activation

(Table S4). One exciting example of a predicted phospho-

mimicking mutation was identified on the hematopoietic progen-

itor kinase 1 (HPK1), namely the mutant variant HPK1 A164D.

Alanine 164 is immediately adjacent to the activating phos-

phorylation site T165 on the activation segment of HPK1, and

mutation to Asp is predicted to confer constitutive activation of

HPK1 and the likely engagement of its downstream JNK and

NF-kB signaling (Arnold et al., 2005). Thus, the ReKINect predic-

tions suggest a role for cellular stress response and potentially

hematopoietic involvement in lung cancer, the cancer type in

which this mutation was identified.

To model kinase inactivating mutations, we hypothesized that

mutations that alter catalytically essential residues (e.g., resi-

dues mediating ATP binding, Mg2+ coordination or phospho-

transfer, as defined in Zeqiraj and van Aalten, 2010 and Table

S5) could lead to kinase inactivation. The high number of

instances identified by ReKINect and detailed in Table S6

(427 unique kinase inactivation events) suggests that a large

number of kinases become inactivated during cancer develop-

ment. While it has previously been shown that inactivating

mutations on kinases could lead to Peutz-Jeghers syndrome

(Mehenni et al., 1998) or to pseudo-kinases throughout natural
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Figure 6. Constitutive Activation and Inactivation of Kinases by NAMs

(A) ReKINect identified ES2 cells as containing the constitutively activating BRAF V600E mutation.

(B) An immunoblot and associated quantification, illustrating the phosphorylation of BRAF substrateMEK in themutant cell line ES2 (in red) compared to the wild-

type cell lines (in black), using total MEK and b-tubulin for normalization.

(C) ReKINect identified several cancer mutations in catalytically essential residues of kinase domains.

(D) A quantification of all mutations from the global repository of cancer somatic mutations predicted to inactivate kinases and the catalytically essential positions

they hit. Mutations leading to kinase domain catalytic inactivation are enriched (c2 test, p = 1.693 10�16) in cancer somatic mutations (with particular preference

for the aspartate, D, and glycine, G, in the DFG motif).
evolution (Zeqiraj and van Aalten, 2010), our results indicate that

kinase inactivation may hitherto have been largely under-appre-

ciated in the interpretation of cancer genomes.

A closer inspection of these predicted inactivating mutations

reveals a bias toward specific critical residues. In particular the

first and third residues of the DFG motif (i.e., the glutamate and

glycine, respectively) that defines the start of the activation

segment, harbors approximately one-third of all inactivating
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mutations (Figures 6C and 6D). While mutations in other essen-

tial residues are likely to equally lead to kinase inactivation (see

Table S5 for further information on the kinase catalytically

essential residues included as part of ReKINect), our results

suggest a significant preference for these two residues being

mutated in the context of kinase inactivating mutations in

cancer (c2 test, p = 2.2 3 10�16). Thus, these two positions of

the DFG motif are predicted to constitute structural and



biochemical hotspots for NAMs leading to inactivation of protein

kinases in cancer.

Overall, these results suggest that ReKINect is capable of

predicting NAMs that constitutively activate or inactivate protein

kinases and that, in addition to BRAF V600E, numerous other

similar mutations are likely to exist that directly affect the cata-

lytic activity of kinases in cancer signaling.

Functional Mutations in SH2 Domains and Global
Phenotypic Impact of NAMs
The SH2 domain is of seminal importance to signaling fidelity,

cellular organization, and function across Metazoan species

and is often part of protein kinases and perturbed in human dis-

ease (Bibbins et al., 1993; Manning et al., 2002; Marengere et al.,

1994; Pawson et al., 2001). Thus, we reasoned that the inclusion

of the SH2 domain as part of ReKINect would enable us to make

integrated predictions of higher accuracy and relevance from a

signaling perspective. SH2 domains possess an essential Arg

residue found within a highly conserved sequence motif

(FLVRES) that makes direct contact with phosphoTyr residues

in its binding partners (Bibbins et al., 1993). By incorporating

this critical residue for the phospho-tyrosine binding function

of SH2 domains into ReKINect, we could predict 20 distinct

instances (including mutations on ABL, SYK, and GRB10) where

cancer mutations disrupt a critical functional residue, thus im-

pairing the ability of the mutant SH2 domains to bind their sub-

strates (Table S7).

As with the mutations causing kinase downstream rewiring,

by mapping cancer mutations onto the determinants of speci-

ficity of the SH2 domain identified by our algorithm KINspect

(Creixell et al., 2015), ReKINect predicted 93 NAMs causing

SH2 downstream rewiring (Table S8) by changing positions

within the domain that show a high likelihood of playing a critical

role in substrate specificity (specificity score higher than 0.9).

The comparably lower number of inactivating and downstream

rewiring mutations in SH2 domains compared with kinase do-

mains, is attributable at least in part to the smaller number and

size of SH2 domains in comparison with kinase domains

(Figure S1).

Finally, to systematically explore the potential functional or

phenotypic impact of the NAMs described above, we per-

formed RNAi knockdown of kinase and SH2 domain containing

proteins across the ovarian cancer cell lines. The effect of these

perturbations on nuclear number was then determined using a

regressor network model of protein-protein interactions and

NAMs (Figure S3; Experimental Procedures). We found that if

ReKINect classified NAMs were present in the network vicinity

of the RNAi target gene a significant impact on the phenotypic

response, either pro- or anti-proliferative, was observed (p =

7.1 3 10�13). These results would suggest that network attack-

ing mutations, predicted by ReKINect, are not only biochemi-

cally functional but also lead to significant phenotypic changes

in cancer cell models, on a global scale.

DISCUSSION

Given that protein kinases are one of the protein classes most

frequently encoded by cancer genes (Futreal et al., 2004) and
mutated in cancer (Figure S1) as well as a major molecular target

of therapeutic drugs (Anastassiadis et al., 2011; Davis et al.,

2011), it is essential to identify how phosphorylation-based

signaling networks drive cancer. Thus, the number of distinct

NAMs cataloged by ReKINect represents promising new leads

for future studies. Serving as a systematic complement to previ-

ous efforts identifying the function that individual cancer muta-

tions may play (Davies et al., 2002; Friend et al., 1986; Stehelin

et al., 1976), ReKINect is designed to predict the underlying

signaling mechanisms and perturbations caused by mutations

in cancer, or other complex diseases, using first principles

governing protein function from evolution, protein chemistry,

and protein structure and architecture.

Evidence for NAMs and Signaling Trends in Cancer
Through integration of low and high-throughput computational

and experimental technologies, we have discovered the exis-

tence of the NAMs described in Figure 1. Having analyzed the

data generated here and in global genome sequencing efforts,

we conclude that there is ample evidence supporting the hypoth-

esis that all the different types of NAMs described do indeed

occur in cancer.

In addition, our results also uncovered a variety of interesting

signaling trends resulting from cancermutations: first, our results

demonstrate the existence of new molecular logic gates in can-

cer. The genesis of new phosphorylation sites by mutations as

uncovered here illustrate how cancer cells can acquire novel

and prominent signaling flows and altered information process-

ing that may result in new phenotypic states to be reached.

We identified and experimentally confirmed three striking ex-

amples of cancer mutations directly leading to a catalytic spec-

ificity drift, PKD1D665N, PKCgD484N, andM501I. Downstream

rewiring had until now been the most elusive type of NAMs, as

reflected by the fact that only a single instance of this type of mu-

tation, where a kinase is altered in specificity through mutation,

RET M918T, had been reported in the literature (Borrello et al.,

1995; Santoro et al., 1995; Songyang et al., 1995). The discovery

of these three new NAMs, using a global yet selective and sensi-

tive approach, would suggest that manymore such events could

exist in cancer.

Supporting this, we could pinpoint 16 additional cancer

mutations that, given that they harbor identical amino acid sub-

stitutions to the ones we tested, are most likely to also encode

downstream rewiring events. Next, when studying NAMs that

would lead to downstream rewiring on a position that was

recently confirmed to drive peptide specificity on the phospho-

acceptor of phosphorylation sites (Chen et al., 2014), we could

identify nine cancer mutations that are predicted to steer

signaling toward phosphorylation of Thr, whereas no mutants

were found in the opposite direction (Figure S4). Despite the

fact that these numbers are not sufficiently high to enable robust

statistics and that a large number of wild-type kinases originally

encode Ser-directing residues in the DFG+1 position (thereby

partially explaining the lack of Thr-to-Ser mutants), this bias sug-

gests that specific cancers may harbor increased Thr-based

signaling. Given that, due to its unique mutational and physico-

chemical properties, serine has been identified as a mutational

hub (Creixell et al., 2012b) and thereby a likely result of cancer
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mutations, we speculate that through such Ser-to-Thr signaling

rewiring cancer cells might evolve less dependency on serine

signaling.

Furthermore, if by affecting a large number of substrates,

downstream rewiring NAMs are likely to have a broader impact

at the network level, the fact that two of the downstream rewiring

mutants described here lead to a less specific kinase and are

thus likely to phosphorylate more substrates, highlights even

further the potential impact of these NAMs. These results sig-

nificantly extend our previous observations that less-specific

kinases tend to be cancer mutation targets (Miller et al., 2008)

and serve as a critical resource that we hope will start paving a

new avenue on signaling specificity in cancer research.

Similar to the case of kinase downstream rewiring, relatively

few mutations on SH2 domains had been reported to obliterate

tyrosine-binding or shift their specificity (Marengere et al.,

1994; Pawson et al., 2001), highlighting that this might also be

a hitherto hidden and yet perhaps a fundamental signaling trend

in cancer.

Finally, an over-representation of kinase-resignation upstream

rewiring events suggests that cancer mutations most often lead

to upstream rewiring by worsening existing optimal substrates

rather than generating super-optimal new substrates for other

upstream kinases. Given the amount of fine-tuning achieved

over millions of years of evolution at the substrate level (Tan

et al., 2009; Zarrinpar et al., 2003), it is perhaps to be expected

that mutations in substrates will most often lead to poorer phos-

phorylation motifs.

Finally, our results suggest both the existence of previously

unknown constitutively activating mutations in kinases as well

as the presence of mutational hotspots on two specific positions

leading to the inactivation of protein kinases, namely the Asp and

Gly within the DFG motif at the beginning of the activation

segment. It could be the aim of future studies to elucidate why

these spots are preferred by cancer mutations when inactivating

kinases.

Non-Recurrent yet Functional NAMs
While a large fraction of recurrent and/or conserved mutations

can directly or indirectly be considered NAMs as they typically

perturb signaling networks (as exemplified here with BRAF

V600E) and they typically operate as functional driver mutations,

in this study we have demonstrated that non-recurrent and non-

conserved mutations also can be functional NAMs (Figure 7B).

This may be most evident from the observation that downstream

rewiring mutations can lead to a switch of specificity of a com-

parable magnitude to the specificity difference between two

distinct kinases in the human kinome. Thus, despite the fact

that previous studies of cancer mutations, including some on

kinase domains, have disregarded non-recurrent variants as be-

ing non-functional passenger mutations (Greenman et al., 2007),

our results suggest that many of these do indeed have a func-

tional role. Still, pinning down the actual contribution of these

less frequent yet functional mutations, or combinations thereof,

and under which context they drive oncogenesis will require a

concerted research effort by both the genomics and signaling

communities. If we move from a perception of oncogenes and

tumor-suppressors operating in isolation to drive oncogenesis,
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toward a new paradigm, where numerous mutations play a

driving role under specific cellular contexts (e.g., when appear-

ing in combination with other mutations) (Creixell et al., 2012a;

Wu et al., 2010), it will be important to acknowledge that it is

likely that several of these functional NAMs drive cancer in a

concerted fashion.

As shown in Figure 7A, some of the NAMs we have identified

here are likely to impose dramatic alterations in signaling

networks, such as specificity switches that are analogous to

introducing a new kinase and thus may play a driving role in

oncogenesis.

The fact that there are multiple strategies in which the same

signaling output can be achieved by distinct cancer mutations

(as shown for instance by inactivating mutations in Figure 6D)

and that we have identified overexpression of an instance of

one of these functional NAMs, further supports the importance

of such less frequent functional mutations (Figure 7B).

Perspectives
Our results suggest that signaling networks are both dynami-

cally and structurally rewired in cancer cells to an extent far

beyond what was previously anticipated. Such rewiring in-

cludes constitutive activation and inactivation of kinase and

SH2 domains, upstream and downstream rewiring of phos-

phorylation-based signaling, and the extinction and genesis of

phosphorylation sites. These findings will be critical for network

medicine efforts where drug targets for complex diseases are

defined at the network level and for the individual patient or

tumor.

Here, we demonstrated six distinct NAMs as proof-of-princi-

ple and verified all the NAMs described in Figure 1A are present

in cancer. Future expansions of the KINspect (Creixell et al.,

2015) and ReKINect algorithms to include other protein

domains, PTMs, and linear motifs, more complex genetic pertur-

bations (such as copy-number variations or genomic re-arrange-

ments leading to protein fusions) and the advancement of

sequencing and MS technologies, will likely facilitate the discov-

ery of many additional NAMs. Such advancements to link cancer

genomic and proteomic data will become valuable resources for

dealing with the intrinsic complexities of tumors (Weinberg,

2014; Yaffe, 2013).

In the last century, Schechter et al. (1984) and Ullrich et al.

(1984) connected the discovery of the oncogene Her-2/neu to

its hyperactivity in a fraction of breast cancers (Slamon et al.,

1987) and the development of targeted therapies such as Tras-

tuzumab (Carter et al., 1992). Others linked the discovery of

the BCR-ABL fusion protein (Rowley, 1973) to CML leading to

the development of Imatinib (Druker et al., 1996) and newer gen-

eration inhibitors. Similarly, we hope that ReKINect, and similar

tools, can be utilized to close the cancer mutation interpretation

gap. Boosting genomic interpretation capacity should ideally

parallel the rate at which next generation technologies identify

new mutations in order to help meet the bench-to-bedside

challenge (Figure 7C), assist clinicians in making better

treatment decisions for those patients carrying infrequent yet

functional cancer mutations and facilitate the development of

novel ‘‘magic bullets’’ (Strebhardt and Ullrich, 2008) and preci-

sion medicines (Creixell et al., 2012a).
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Figure 7. Evidence and Model for Functional Mutations and Tumor-Specific Network Medicine

(A) The functional mutations found in this study are clear examples of single amino acid mutations that can severely perturb signaling networks.

(B) Our study shows how non-recurrent cancer mutations on non-conserved residues can be functionally important and that functional recurrent (orange) and

non-recurrent (red) NAMs can converge at the signaling network level. We also identified a case where a functional mutation in a low-abundant protein is

accompanied by its overexpression.

(C) The deployment of tools like ReKINect should enable the proposition of more refined signaling mechanisms underlying cellular cancer phenotypes and

identification of driver and therapeutically relevant mutations.
EXPERIMENTAL PROCEDURES

Building Comprehensive Sets of Sequences: Kinome, SH2ome,

and Phosphorylation Sites

We built comprehensive sets of sequences covering all human kinase proteins

(Manning et al., 2002), 120 SH2 domains (Liu et al., 2006), and a broad set of

known human phosphorylation sites (Hornbeck et al., 2004). With these sets,

we performed domain-centered sequence alignments using ClustalW and

Omega (Sievers et al., 2011) followed by subsequent manual refinement.

These alignments were then deployed by identifying functional residues on

them and mapping these residues back to the wild-type version of the mutant
sequences analyzed with ReKINect. Similarly, phosphorylation site peptides

were matched to the wild-type variants of all mutations, so that the distance

between each mutation and its closest phosphorylation sites could be

determined.

Collecting a Global Repository of Somatic Cancer Mutations

We compiled a global set of publicly available somatic cancer mutations from

COSMIC v67 (Forbes et al., 2011) and generated the FASTA files required by

ReKINect containing both the wild-type and mutant versions of all coding

missense variants, using purpose-made Python scripts and ENSEMBL’s

VEP resource (Flicek et al., 2014).
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Computing Minimum Distance to Substrate from PDB Files

Minimum distances to substrates were computed as described in the accom-

panying article (Creixell et al., 2015) and further detailed in the Supplemental

Experimental Procedures.

Protein Kinase Specificity Assays

Kinases and mutants were expressed by transient transfection of encoding

plasmids in HEK293T cells, purified by FLAG affinity purification, and PSPL

experiments were performed as described (Mok et al., 2010). Further details

can be found in the Supplemental Experimental Procedures.

Furtherdetails about themaintenanceof cell lines,preparationof sequencing,

mass spectrometry, and RNAi screening samples and their computational

analysis can similarly be found in the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, eight tables, and six data files and can be found with this article

online at http://dx.doi.org/10.1016/j.cell.2015.08.056.

AUTHOR CONTRIBUTIONS

P.C. and R.L. conceived the project. P.C., E.M.S., C.D.S., J.L., C.J.M., H.J.L.,

L.P., T.R.C., N.Z., and B.B. performed wet-lab experiments. P.C., E.M.S., A.P.,

A.W., and J.F.-B. performed computational experiments. P.C. generated the

lists of NAMs assisted by A.P. P.C. and B.E.T. prioritized the list of NAMs likely

to drive downstream rewiring. H.I. provided cell lines. All authors analyzed

different parts of the data generated. P.C. and R.L. wrote the article with

help from the other authors.

ACKNOWLEDGMENTS

This article is dedicated to the memory of late Tony Pawson, whose ground-

breaking research represented a fundamental foundation to this work. We

thank T. Gibson for technical assistance with sequence alignments, S.

Knapp’s group and the Structural Genomics Consortium for providing plas-

mids, G. Manning for sharing unpublished data, and members of the R.L.

laboratory for critical reading of this manuscript, particularly C. Santini. We

are further indebted to J. Kim for assistance with NetworKIN, NetPhorest,

and KinomeXplorer and X. Robin for assisting in developing and maintaining

the ReKINect website. We are also indebted to several members of the Paw-

son laboratory, especially A. Pasculescu for his assistance in collecting phos-

phorylation site information, G. Gish for discussions on potentially essential

SH2 residues, and B. Larsen for his suggestions on MS spectra annotation.

Similarly, we thank members of the Yaffe laboratory for discussions on critical

parts of this manuscript. This work was funded by The Lundbeck Foundation

and the European Research Council under the European Union’s Seventh

Framework Programme (FP/2007-2013)/ERC grant (KINOMEDRIFT) and was

conducted using the VKR funded Instrument Center for Systems Proteomics

(VKR 022758). J.T.E. and L.P. are supported by a Hallas Møller Stipend from

the Novo Nordisk Foundation. Work in the B.E.T. laboratory was partly sup-

ported by NIH grant R01 GM104047, and C.J.M. was supported by NIH

training grant T32 GM007324. P.C. is currently funded by a Ludwig Fund Post-

doctoral Fellowship. The algorithms and software developed in this work

will be released under the Creative Commons licensing schemes at the web-

sites http://KinomeXplorer.science, http://ReKINect.science, and http://

KINspect.science. For further information see also http://lindinglab.science.

Received: August 25, 2014

Revised: April 9, 2015

Accepted: August 12, 2015

Published: September 17, 2015

REFERENCES

Alexander, J., Lim, D., Joughin, B.A., Hegemann, B., Hutchins, J.R.A., Ehren-

berger, T., Ivins, F., Sessa, F., Hudecz, O., Nigg, E.A., et al. (2011). Spatial ex-
216 Cell 163, 202–217, September 24, 2015 ª2015 The Authors
clusivity combined with positive and negative selection of phosphorylation

motifs is the basis for context-dependent mitotic signaling. Sci. Signal. 4, ra42.

Anastassiadis, T., Deacon, S.W., Devarajan, K., Ma, H., and Peterson, J.R.

(2011). Comprehensive assay of kinase catalytic activity reveals features of

kinase inhibitor selectivity. Nat. Biotechnol. 29, 1039–1045.

Andreadi, C., Cheung, L.K., Giblett, S., Patel, B., Jin, H., Mercer, K., Kamata,

T., Lee, P., Williams, A., McMahon, M., et al. (2012). The intermediate-activity

(L597V)BRAF mutant acts as an epistatic modifier of oncogenic RAS by

enhancing signaling through the RAF/MEK/ERK pathway. Genes Dev. 26,

1945–1958.

Antal, C.E., Hudson, A.M., Kang, E., Zanca, C., Wirth, C., Stephenson, N.L.,

Trotter, E.W., Gallegos, L.L., Miller, C.J., Furnari, F.B., et al. (2015). Cancer-

associated protein kinase C mutations reveal kinase’s role as tumor suppres-

sor. Cell 160, 489–502.

Arnold, R., Patzak, I.M., Neuhaus, B., Vancauwenbergh, S., Veillette, A., Van

Lint, J., and Kiefer, F. (2005). Activation of hematopoietic progenitor kinase 1

involves relocation, autophosphorylation, and transphosphorylation by protein

kinase D1. Mol. Cell. Biol. 25, 2364–2383.

Bibbins, K.B., Boeuf, H., and Varmus, H.E. (1993). Binding of the Src SH2

domain to phosphopeptides is determined by residues in both the SH2 domain

and the phosphopeptides. Mol. Cell. Biol. 13, 7278–7287.

Borrello, M.G., Smith, D.P., Pasini, B., Bongarzone, I., Greco, A., Lorenzo,

M.J., Arighi, E., Miranda, C., Eng, C., Alberti, L., et al. (1995). RET activation

by germline MEN2A and MEN2B mutations. Oncogene 11, 2419–2427.

Brinkworth, R.I., Breinl, R.A., and Kobe, B. (2003). Structural basis and predic-

tion of substrate specificity in protein serine/threonine kinases. Proc. Natl.

Acad. Sci. USA 100, 74–79.

Carter, P., Presta, L., Gorman, C.M., Ridgway, J.B., Henner, D., Wong, W.L.,

Rowland, A.M., Kotts, C., Carver, M.E., and Shepard, H.M. (1992). Humaniza-

tion of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl.

Acad. Sci. USA 89, 4285–4289.
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