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The efficacy of breath volatile organic compounds (VOCs) analysis for the screening of patients 
bearing breast cancer lesions has been demonstrated by using gas chromatography and artificial 
olfactory systems. On the other hand, in-vitro studies suggest that VOCs detection could also give 
important indications regarding molecular and tumorigenic characteristics of tumor cells. Aim of 
this study was to analyze VOCs in the headspace of breast cancer cell lines in order to ascertain 
the potentiality of VOCs signatures in giving information about these cells and set-up a new sensor 
system able to detect breast tumor-associated VOCs. We identified by Gas Chromatography-Mass 
Spectrometry analysis a VOCs signature that discriminates breast cancer cells for: i) transformed 
condition; ii) cell doubling time (CDT); iii) Estrogen and Progesterone Receptors (ER, PgR) expression, 
and HER2 overexpression. Moreover, the signals obtained from a temperature modulated metal 
oxide semiconductor gas sensor can be classified in order to recognize VOCs signatures associated 
with breast cancer cells, CDT and ER expression. Our results demonstrate that VOCs analysis could 
give clinically relevant information about proliferative and molecular features of breast cancer 
cells and pose the basis for the optimization of a low-cost diagnostic device to be used for tumors 
characterization.

Breast tumor is the first cause of death for cancer in woman worldwide1. Chance of cure improves 
considerably if the disease is diagnosed at an early stage when the tumor is still localized and asymp-
tomatic2. Breast cancer early detection therefore is mainly based on clinical examination and imaging 
performed by mammography, ultrasound and nuclear magnetic resonance. Mammography and ultra-
sound are the most commonly imaging tools used for the detection and characterization of breast abnor-
malities. However, both techniques are hampered by relatively low sensitivity and specificity and may 
expose patients to over-diagnosis and over-treatment of benign lesions or missed diagnosis and failure 
to treat cancerous lesions. In addition, personalized cancer treatments require a complex invasive and 
time-consuming analysis of many different parameters, such as histological type and grading, evaluation 
of Estrogen Receptor (ER), Progesterone Receptor (PgR), HER2 and Ki67 protein expression by immu-
nohistochemistry (IHC), gene mutation analysis by DNA sequencing and chromosomal alterations by 
Fluorescence In Situ Hybridization (FISH)3.
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Taken together all these aspects stimulate the research of new diagnostic tools that could promptly 
support the clinicians in breast cancer treatment decision-making.

Among them, the analysis of volatile organic compounds (VOCs) emerges as a new frontier for can-
cer diagnosis in particular because it is non-invasive and potentially inexpensive. The concept has been 
demonstrated with different types of cancer4–24. In particular, the diagnostic accuracy of VOCs detected 
in the breath of patients bearing breast cancer lesions has been extensively analyzed5–15.

Breath analysis could be applied in the early identification of tumors, but in order to provide his-
tological and molecular information useful to clinicians for the selection of the specific treatment of a 
neoplastic lesion, VOCs analysis should be applied directly to tumor.

To this regard, in vitro experiments demonstrate that artificial olfactory systems can discriminate 
between tumor and normal cell lines and also among tumors-derived cells bearing different molecu-
lar alterations16–21. The sensitivity of this technique is also sufficient to follow the evolution of cancer 
as shown in murine models for melanoma and lung cancer22. However, only few studies have been 
addressed to the analysis of the VOCs released in the headspace of breast cancer-derived cell lines to 
increase the comprehension of the metabolic alterations associated with breast cancer transformation 
and enable the development of cost-effective and non-invasive breast cancer diagnostic tools24.

In this study we searched with GC-MS for VOCs signatures that can be associated to the headspace 
of culture medium of tumor breast cell lines and that can signal the occurrence of specific breast cancer 
prognostic markers.

The analysis of GC-MS data shows that the abundance of 13 VOCs changes between different breast 
cancer cell lines and is sensitive to the cell doubling time (CDT) and to the expression of specific prog-
nostic factors such as Estrogen Receptor (ER), Progesterone Receptor (PgR) and HER2.

The same samples were also measured with a novel approach that considers a metal-oxide semicon-
ductor gas sensor operated in a thermal modulation condition. Actually this solution differs from other 
approaches that consider a sensor arrays working at room temperature13,19–22 exploiting the additional 
information obtained by a single sensor operating at different temperatures to compensate the lack of 
further sensors25–27.

A statistical analysis of the sensor signals results in a good classification of the breast cell lines based 
on transformed condition, replication time and ER expression. All these results confirm that the volatile 
compounds might provide a cost-effective diagnostic tool useful for the characterization of the breast 
tumor lesion aimed at the optimization of the therapeutic treatment.

Results
Discrimination of the breast cancer cell lines characteristic by GC-MS analysis. The VOCs 
associated with breast cell metabolism have been analyzed with GC-MS by comparing culture medium 
headspace of six breast cell lines with medium without cells (Fig. 1, Table 1).

After a preliminary phase (see material and methods), the abundances of 13 selected VOCs have been 
correlated with the different cell lines showing for each of them specific patterns (Fig.  2). Collectively 
these VOCs significantly discriminate empty control medium from medium exposed to cells (Manova 

Figure 1. Schematic of the experimental measurements. 
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p =  1.6 × 1 0−16) (Table 2). The detected compounds belong to the classes of hydrocarbons, ketons, alco-
hols, aldehydes, amine aromatic and carboxylic acid (Table 2).

Among the 13 VOCs identified, the abundance of nine of them significantly increases in the head-
space of samples related to breast cell lines (Table 2). Eight of them are absent in control medium sam-
ples, indicating a specific association of these compounds with cell metabolism (Fig.  2). Benzaldehyde 
is the only compound that was exclusively found in the control (Fig.  2, Table  2). For this reason, this 
compound has been excluded in the analyses aimed at studying the properties of breast cell lines.

Altogether, the 13 VOCs identified in previous analysis are also statistically meaningful for the dis-
crimination between non-transformed and tumor-derived cell lines (p =  7.7 ×  10−3) (Table 3). To iden-
tify the specific VOCs related with breast cancer cells, the amount of each compound was compared 
between breast non transformed cell (MCF-10A) and cancer cell lines, evidencing a list of eight specific 
compounds (Table 3). The VOCs whose abundance significantly increases in cancer cells are four hydro-
carbons (2,4-Dimethyl-1-heptene, 2-Xylene, 2,3-Dimethylhexane, 2,2-Dimethylbutane), one secondary 
alcohol (Cyclohexanol) and one ketone (2-Dodecanone). A decrease of abundance is observed for two 
ketones (2-Nonanone and 4-Methyl-2-heptanone). These results indicated that a specific VOCs signature 
characterizes the headspaces of breast tumor-derived cell lines.

A further step in the study was to investigate the relationship between the VOCs and some cancer cell 
features such as the growth rate and the expression of specific proteins. In particular, the cell doubling 
time (CDT) and the expression of the three main prognostic markers of breast cancer, such as ER, PgR 
and HER2, have been considered (Table 1, Supplementary figure 1).

MANOVA analysis shows that the same VOCs, previously identified by GC-MS analysis (Fig. 2 and 
Table 2), discriminate also the cancer cells between long (major than 48 h) and short (less or equal to 48 h)  

Cell line
Isolated 

from Histology
CDT 
(h) ER PgR HER2

Molecular 
Subtype

MCF-10a BT FD 96 − − − 

MDA-231 PE ADC 24 − − − Triple-negative

MCF-7 PE IDC 24 + + − Luminal A

SKBR-3 PE ADC 36 − − + ERB type

BT-474 PT IDC 48 − + + Luminal B

ZR75-1 PE IDC 80 + + + Luminal B

Table 1.  Characteristics of breast-derived cell lines used in the study. BT, non-malignant breast tissue; 
FD, fibrocystic disease; PE, pleural effusion; PT, primary tumor; ADC, adenocarcinoma; IDC, intraductal 
carcinoma. The results of the IHC characterization of the breast cell lines used in the study are indicated. 
ER/PgR/HER2 status: ER/PgR positivity, HER2 overexpression. The molecular classification of the breast 
cancer cell lines subtypes according to WHO guidelines is reported [3].

Figure 2. Fingerprint patterns of VOCs detected in headspace of breast-derived cell lines. Heat-map with 
all the selected VOCs from culture media headspace. Color-coding shows the abundance of each compound 
measured in the sample normalized to the maximum abundance calculated in all samples.
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CDT (p =  5 ×  10−4), ER positive from ER negative (p =  3.5 ×  10−5), PgR positive from PgR negative 
(p =  7.4 ×  10−4) and HER2 overexpressing cells (p =  0.03) (Table 4).

Considering the behavior of each compound, we observed that seven VOCs showed significant differ-
ences between high and low replicating breast cells. Six of them were more abundant in cells with short 
CDT (2,4-Dimethyl-1-heptene, 2,3-Dimethylhexane, Cyclohexanol, 2-Ethylhexanol, Isobutyric acid, allyl 
ester, 4-Methyl-2-heptanone) and 2-Dodecanone only in cells with long CDT (Table 4).

The abundance of five compounds was significantly different between ER negative and ER positive 
cell lines, four among PgR negative and PgR positive cells and, one in HER2 overexpressing cell lines 
(Table 4). Interestingly, both CDT and marker receptors correlated with the abundance of 2-Dodecanone. 
Moreover, 2-Xylene, 2-Ethylhexanol and 2-Dodecanone show the same behavior in the headspaces of 
both ER and PgR positive cell lines (Table 4) suggesting that the same VOCs could be associated with 
specific receptor-related metabolic pathways in these cells.

These results suggested that the identified VOCs signature could furnish information regarding the 
replication rate and the expression of breast cancer prognostic molecular markers.

Trend Class Compound CAS number p value

Increase Aromatic Amines Pyrrolidine 123-75-1 0.02

Hydrocarbons 2,3-Dimethylhexane, 584-94-1 1.8 ×  10−4

2,4-Dimethyl-1-heptene 19549-87-2 1.3 ×  10−9

2,2-Dimethylbutane 75-83-2 8.1 ×  10−5

1,3-Di-tert-butylbenzene 1014-60-4 1.8 ×  10−9

2-Xylene 95-47-6 0.77

Ketons 2-Nonanone 821-55-6 6.5 ×  10−21

4-Methyl-2-heptanone 6137-06-0 5.8 ×  10−11

2-Dodecanone 6175-49-1 3.6 ×  10−3

Carboxylic acid Isobutyric acid, allyl ester 15727-77-2 3.6 ×  10−10

Fatty alcohol 2-Ethylhexanol 104-76-7 0.41

Decrease Aromatic aldehyde Benzaldehyde 100-52-7 0.013

Secondary alcohol Cyclohexanol 108-93-0 0.92

Manova 1.6  ×  10−16

Table 2.  VOCs discriminating the headspace of breast-derived cell lines. Analysis of VOCs in the 
headspace of breast cell lines by GC-MS. Breast non-transformed and cancer cell lines were cultured at 
the same conditions. VOCs released (increase) or consumed/degraded (decrease) by breast cell lines are 
reported with respect to control medium. The p-values obtained by t-test analysis for each compound and 
by MANOVA analysis for all compounds are shown. A p-value <  0.05 has been considered statistically 
significant.

Trend Class Compound CAS number p value

Increase Hydrocarbons 2,4-Dimethyl-1-heptene 19549-87-2 3.0 ×  10−4

2-Xylene 95-47-6 1.0 ×  10−4

2,3-Dimethylhexane 584-94-1 1.0 ×  10−4

2,2-Dimethylbutane 75-83-2 1.0 ×  10−4

Secondary alcohol Cyclohexanol 108–93-0 2.0 ×  10−5

Ketons 2-Dodecanone 6175-49-1 0.003

Decrease Ketons 2-Nonanone 821-55-6 0.03

4-Methyl-2-heptanone 6137-06-0 0.04

Manova* 7.7 ×  10−3

Table 3.  VOCs discriminating breast non-transformed from cancer-derived cell lines. GC-MS analysis 
in the non-transformed MCF-10A and in cancer derived cell lines. The p-values obtained by t-test analysis 
for each compound and by MANOVA analysis for all compounds reported in Table 2 are shown. A 
p-value <  0.05 has been considered statistically significant. *considering all the VOCs of the Table 2.
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Discrimination of the breast cancer cell lines characteristic by metal-oxide semiconductor 
gas sensor analysis. Chemical sensors are expected to provide a full exploitation of the GC-MS 
findings in order to develop effective diagnostics tools28.

In this paper we investigated the discrimination properties of metal-oxide semiconductor gas sensor 
operated in self-temperature modulation mode as described in Fig. 3. This approach allows to overcome 
the limitation of using a single sensor in a complex discrimination task exploiting the increase of the 
information content given by a temperature modulation. Preliminary results put in evidence the poten-
tialities of the self-temperature modulation in the classification of different volatile compounds27.

A first set of experiments was aimed at distinguishing among the headspaces of the culture media 
of MCF-10A control cell line, MDA231 breast cancer cell line, culture media without cells and distilled 
water. The discrimination among the four above-mentioned classes is shown by the scores plot of the 

Class Compound

CDT ER status PgR status HER2 status

>48 h vs ≤48 h (−) vs (+) (−) vs (+) (−) vs (+)

Hydrocarbons 2,4-Dimethyl-1-heptene 2.9 ×  10−4Ï 0.78 0.30 0.89

1,3-Di-tert-butylbenzene 0.29 0.88 0.049Ï 0.25

2-Xylene 0.14 6.2 ×  10−4Ï 2.5 ×  10−5Ï 0.08

2,3-Dimethylhexane 8.4 ×  10−5Ï 0.98 0.15 0.41

Secondary alcohol Cyclohexanol 0.001Ï 0.42 0.51 0.78

Fatty alcohol 2-Ethylhexanol 1.9 ×  10−6Ï 9.1 ×  10−5Ð 0.046Ð 0.16

Carboxylic acid Isobutyric acid, allyl ester 0.04Ï 0.12 0.59 0.86

Ketons 2-Dodecanone 0.009Ð 0.003Ï 0.005Ï 0.01Ï

2-Nonanone 0.11 0.001Ð 0.58 0.85

4-Methyl-2-heptanone 0.023Ï 6.4 ×  10−4Ð 0.18 0.48

Manova 5 ×  10−4 3.5 ×  10−5 7.4  ×  10−4 0.03

Table 4.  Correlation of VOCs with replication time and molecular markers of breast-derived cell lines. 
Comparison of GC-MS results in all breast-derived cell lines grouped based on CDT, expression of ER, 
PgR and amplification of HER2. Arrows indicate the trend for each compound in each group. The p-values 
obtained by t-test analysis for each compound and by MANOVA analysis for all compounds reported in 
Table 2 are shown. A p-value <  0.05 has been considered statistically significant.

Figure 3. (A) Schematic of the self-modulation sensor. (B) Circuit implementation used in this work;  
(C) From top to bottom, examples of output signal, temperature modulation signal and sensor temperature.
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first two principal components of the PCA model built with the features of the thermal modulation 
profile (Fig. 4A).

In order to characterize the specific VOCs fingerprint of breast control and cancer cell lines, the anal-
ysis was extended to all the breast cell models. The PCA scores plot in Fig. 4B shows a difference between 
the signals from breast non-transformed MCF-10A cells and breast cancer cell lines. Interestingly, breast 
cancer cell lines cluster in two major groups (SKBR3 and BT474 in the first, MDA231, MCF7 and ZR751 
in the second one) notably separated in both components (Fig.  4B). A PLS-DA classification model 
aimed at identifying the cancer cell (cancer cell vs. not transformed cell and culture media) achieved 
about 85% of correct classification (accuracy) with a sensitivity and specificity equal to 88% and 80% 
respectively (Table  5). This result is particularly interesting since it is obtained with a single sensor 
instead as usual with a sensor array.

A PLS-DA model was calculated from the sensor signals in order to discriminate the breast cancer 
cells according to the cell features previously discussed (Table 1).

The PLS-DA model shows that the sensorial system discriminates with high accuracy breast cell lines 
with low CDT (classification rate of 88%, sensitivity of 89% and specificity of 87%) and positive for ER 
expression (classification rate of 85%, sensitivity of 86% and specificity of 83%) (Table 6A and B). PgR 
expression and HER2 overexpression are classified with accuracy lower than 75% (data non shown).

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

-10 -5 0 5 10

MFC10A
MDA231

MCF-7
ZR75I

BT474
SKBR3

PC
2 

(3
.2

0%
)

PC1 (96.8%)

-6

-4

-2

0

2

4

-10 -8 -6 -4 -2 0 2 4 6

MDA 231
Water (37˚C)

MCF 10A
Culture media (37°C)

PC
2 

(2
5.

97
%

)

PC1 (75.53%)

A B

Figure 4. Clustering relationship of self-modulated sensor outputs. (A) Score plots of the first two 
principal components built with sensor data. A clear separation is observed among the MCF10A non-
transformed control cell line (encircled in green), MDA231 cancer cell line (encircled in red), culture media 
without cells (encircled in black) and distilled water (encircled in blue). (B) Score plots of the first two 
principal components built with sensor data. A comparison of the sensor responses for the MCF-10A breast 
control cell line and five breast cancer cell lines (MDA231, MCF-7, ZR751, BT474, SKBR3) is shown.

predicted

Cancer No cancer

measured

Cancer 29 4

No cancer 3 12

Sensitivity (%) 88

Specificity (%) 80

Accuracy (%) 85

Table 5.  Confusion Matrix of self-modulation sensor outputs. Classification success of the PLS-DA 
classification model to predict breast cancer cell lines-derived samples from all other. Sensitivity =  TP/
(TP +  FN); specificity =  TN/(TN +  FP); accuracy =  (TP +  TN)/(TP +  TN +  FP +  FN). Where TP =  True 
Positive; TN =  True Negative; FP =  False Positive; FN =  False Negative.
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Discussion
The analysis of VOCs provides an elegant alternative approach to cancer diagnosis. However, the prac-
tical use is still limited by a lack of validated cancer-derived metabolites, and by a consequent lack of 
sensing technologies optimized to their detection. In this work we have analyzed the VOCs emitted by 
the culture media of different breast cancer cell lines with the GC-MS and a temperature modulated 
metal oxide gas sensor highlighting the potentialities of this approach to obtain diagnostic information 
with high impact in the clinical management of breast cancer patients.

As demonstrated in in vivo and in vitro studies, specific VOC signatures are associated with the pres-
ence of neoplastic lesions and with the molecular alterations in oncogenes and tumor suppressor genes 
in tumor cells20,21. Any rapid and cost-effective prognostic and therapeutic molecular information about 
a tumor obtained with this technique, might have a dramatic impact on clinical management of tumor 
patients and open new insight in the diagnostic potential of VOC signatures.

Different studies analyzed the potentiality of sensors for the screening of breast cancer patients by 
breath VOCs analysis5–15. However, breath analysis may not be an optimal approach to detect the VOCs 
fingerprint associated to specific molecular alterations of cancer cells. This because of the low abundances 
of the key compounds and the interfering effects of non-cancer related VOCs present in the exhaled air.

In our study we analyzed the specific odor print of breast cancer cells by analyzing a simpler and less 
contaminated sample: the headspace of conditioned culture medium of cell lines plated in proliferative 
conditions.

This kind of sample allows detecting specific VOC exchanges that take place during normal and 
tumor breast cell proliferation and could be also considered an in vitro model for VOCs modifications 
occurring in vivo between tumor cells and body fluids, like blood, interstitial or lymphatic fluids.

We demonstrated, by GC-MS analysis, that a pattern of 13 VOCs discriminates the headspace of breast 
cell lines growth media. Similar VOC patterns were reported for other cell lines29. In particular, the increase 
in 2,4-Dimethylheptene, 4-Methyl-2-heptanone, 2-Nonanone, 2-Ethylhexanol, 2,3-Dimethylhexane and 
the decrease of Benzaldehyde have been also observed in lung and hepatocellular carcinoma derived 
cell lines and in human fibroblast16,30,31. It is interesting to note that 2-Nonanone is the most sensitive 
compound. It derives from Nonane metabolism by the enzymatic activity of cytochrome P450 and its 
increase could be associated with the high activity of the different isoforms of this enzyme observed in 
breast-derived cells32–34.

The remaining compounds are never been previously observed in in vitro studies. This could be due to 
the specific cell lines analyzed in this study and the peculiar culture conditions used in our experiments. 
In fact, in contrast to the conditions used in previous studies, we plated our cell lines at low densities in 
order to collect, during the incubation time, all compounds exchanged in the proliferative phase.

The identified set of VOCs is also able to significantly discriminate breast cancer cells suggesting that 
non-transformed and tumor cell lines could be characterized by a specific VOCs signature by which it 
is possible differentiate them, as also recently demonstrated by He et al. by using different technical and 
methodological conditions24.

A)

CDT

predicted

≤48 h >48 h

measured

≤ 48 h 24 3

> 48 h 2 13

Sensitivity(%) 89

Specificity(%) 87

Accuracy(%) 88

B)

ER

predicted

Positive Negative

measured

Positive 24 4

Negative 2 10

Sensitivity (%) 86

Specificity (%) 83

Accuracy (%) 85

Table 6. Confusion Matrix of the PLS-DA classification model built using the sensor data to predict:  
A) CDT >  48 h and ≤ 48 h; B) ER positive and ER negative cells. Sensitivity =  TP/(TP +  FN); 
specificity =  TN/(TN +  FP); accuracy =  (TP +  TN)/(TP +  TN +  FP +  FN).



www.nature.com/scientificreports/

8Scientific RepoRts | 5:13246 | DOi: 10.1038/srep13246

Among compounds increased in tumor breast cancer cells the more represented classes are the hydro-
carbons, and some of these (2,4-Dimethylheptene, 1,3-Di-tert-butylbenzene, and 2-Xylene) have been 
previously detected in breath samples of breast and lung cancer patients6,7,35. Previous reports of breath 
biomarkers associated with breast cancer patients identified hydrocarbons, in particular alkanes and 
alkane derivatives (methyl-alkanes), as main VOCs breast cancer biomarkers6–15.

This enhanced production of alkanes has been supposed to be due to the increased oxidative stress 
correlated with tumor progression36. Gene and/or protein changes and increased metabolism that accom-
panied tumor cell proliferation lead to oxygen free radical production and peroxidation of polyunsatu-
rated fatty acids in membranes and, hence, to the emission of alkanes and methyl-alkanes.

As reported for other types of cancer cells, our results demonstrate that breast tumor cells can be 
classified by specific VOCs signatures, providing the rationale for the set-up of technologies aimed to 
the detection of these biomarkers.

To this purpose, we tested the performances of a commercial metal-oxide semiconductor gas sensor 
to discriminate the VOCs patterns released in the headspaces of culture medium of breast-derived cell 
lines. Results highlight that from the sensor data we can classify with high accuracy cancer-derived sam-
ples. Despite the small number of non-transformed and tumor breast cell models analyzed, our results 
encourage the application of this kind of sensors for these applications. It is straightforward that the 
system performance can be further improved increasing the number and the kinds of sensors.

Recent in vitro studies provided evidences for the existence of VOCs signatures characteristic of 
genetic mutations associated with lung cancer cells or with the metastatic potential of hepatocarcinoma 
cell lines20,21,37. As a consequence, we analyzed our data to evidence the influence of cancer cell indica-
tors such as the CDT and the expression of the most important diagnostic and prognostic immunohis-
tochemical markers used for the characterization of breast cancer biopsy, namely ER, PgR and HER2.

This analysis demonstrated that CDT elicits changes in the VOCs profile that can be measured both 
with the GC-MS and the gas sensor. These interesting preliminary evidences of the correlation of VOCs 
with cancer cell proliferation necessitate of further experiments to fully exploit VOCs as proliferation 
markers of cancer cells.

The same analysis of GC-MS data also demonstrated the relationship between the VOCs profiles and 
the molecular expression of ER, PgR and HER2. Gas sensor data discriminate between cell lines with 
different ER molecular status but low discrimination accuracy has been observed with respect to PgR 
and HER2 molecular status. This is likely due to the small difference in the VOCs signature identified 
by GC-MS analysis among PgR and HER2 positive and negative cells (Table 5).

In this study we performed our analysis using in vitro breast cancer cell line models to discriminate 
the VOCs specifically emitted by tumor cells, without interferences from other cell types that are nor-
mally present in a tumor lesion. Actually the main scope of the work is not related to early diagnosis 
of the tumor lesion but to support the medical staff in the choice of the best therapeutic treatment of 
specific kind of cancer. However, a validation on biological specimens (e.g. blood, interstitial or lym-
phatic fluids, cytological samples) obtained from breast cancer patients will be performed in a future 
investigation to understand the diagnostic potentials of the presented results.

Conclusion
In this paper a study about the potentialities of the associated VOCs of breast tumor cell lines to iden-
tify new proliferative and molecular biomarkers has been presented. To this regard the headspace of the 
culture media of cancer cell lines has been analyzed with the GC-MS and with a gas sensor operated 
under thermal modulation. The GC-MS has evidenced a list of potential VOCs whose contemporaneous 
presence is correlated with specific characteristics of the breast cancer cells. The same characteristics 
can also be captured by a simple gas sensor. The promising results obtained with a commercial sen-
sor foreshadow the possibilities to improve the system performances optimizing the sensor selection or 
considering an ensemble of sensors. Nevertheless, further in vitro and in vivo studies using many other 
cell models are necessary to validate the VOCs pattern and to optimize the sensor system for a future 
extension to clinical tests.

Material and Methods
Cell culture and immunocytohistochemistry. Six human breast cell lines were used: MDA-231, 
MCF-7, SKBR3 (kindly provided by Prof. Giannini G., Department of Molecular Medicine, “Sapienza” 
University of Rome, Rome, Italy), BT474, ZR75-1 and MCF-10A (kindly supplied by Dr. Falcioni R., 
Department of Experimental Oncology, Regina Elena National Cancer Institute, Rome, Italy)38–41. Cell 
lines have been propagated under the conditions suggested by the supplier in order to preserve their char-
acteristics after in vitro passages. The immortalized, non-transformed human mammary epithelial cell 
line MCF-10A was grown in DMEM/F12 medium (Sigma-Aldrich) supplemented with 5% fetal bovine 
serum, 20 ng/ml epidermal growth factor (EGF), 10 µ g/ml insulin, 0.5 µ g/ml hydrocortisone (Sigma-
Aldrich), 100 units/ml penicillin and 100 µ g/ml streptomycin (Sigma-Aldrich), as previously described42. 
The five human breast cancer-derived cell lines MDA-MB-231, MCF-7, SKBR3, BT474 and ZR75-1 were 
grown in DMEM high-glucose medium (Sigma-Aldrich) supplemented with 10% fetal bovine serum 
(Sigma-Aldrich), 100 units/ml penicillin and 100 µ g/ml streptomycin (Sigma-Aldrich). All cell lines were 
cultured under standard conditions at 37 °C in humidified atmosphere containing 5% of CO2. The CDT 
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of the different cell lines in the experimental culture conditions has been evaluated by cell count (Table 1). 
A doubling time major than 48 hours has been considered as low replication rate. The CDT of MCF-
10A cells was also analyzed in incubation culture medium (DMEM), used in VOCs analysis, to asses 
eventual alteration of growth rate, and no significant changes were observed up to 96 h of culture (data 
not shown). The molecular status of Estrogen Receptor (ER), Progesterone Receptor (PgR) and HER2 in 
each cell line was analized by immunocytohistochemistry (IHC). For each cell line cell block preparation 
and IHC were done as previously described43 by using the following monoclonal mouse anti-Human 
anti-ER (Clone 1D5) and anti PgR (Clone 636) antibodies (DakoCytomation, Glostrup, Denmark). HER2 
expression was assessed by using the HercepTest™  for Dako Autostainer (DakoCytomation, Glostrup, 
Denmark). IHCs were assessed by one experienced pathologists (Supplementary figure 1).

For VOCs analysis, each breast-derived cell line was seeded in six separated culture flasks (25 cm2) 
with 5 mL of its specific culture medium for 24 h. The number of plated cells was chosen based on the 
specific doubling time of each cell line, in order to maintain each cell lines in a proliferative phase and 
to obtain a comparable cell number at the end of the incubations.

After 24 h, the specific culture medium was removed and replaced with 5 mL of the DMEM cul-
ture medium. Cells were grown in these conditions for 96 hrs, up to a confluence of 50%-60% (around 
1.5 ×  106 cells/flask). After this incubation period, the DMEM culture medium was harvested, centri-
fuged at 1200 rpm for 5 min to remove detached cells, and collected in sterilized glass vials. At the end 
of the incubation, cell number and viability were evaluated respectively by cell count and Trypan Blue 
exclusion, in order to control cell density in all flasks and assess the effect of any cell stress during the 
incubation time. The control medium was obtained by incubating DMEM culture medium in the same 
conditions as the cell samples, but without seeded cells. The experimental set-up used for the cell culture 
headspace analysis is shown in Fig. 1.

Solid Phase Micro-Extraction (SPME) headspace sampling. A volume of 5 ml of the sample 
(control or conditioned medium) was closed in a 20 ml vial (Flat bottom headspace vial, SUPELCO, 
Bellefonte, PA, USA) sealed with a PTFE/Silicone crimp seal (SUPELCO, Bellefonte, PA, USA) and 
stored at 4 °C until the analysis.

Volatile organic compounds composing sample headspace were pre-concentrated onto a SPME fiber 
coated with 50/30 µ m Divinylbenzene/Carboxen/PDMS (SUPELCO, Bellefonte, PA, USA). Before each 
analysis session the fibers were conditioned at 270 °C for 1 h.

Filled vials were placed in a water bath equilibrated at 40 °C. SPME fiber was then manually exposed 
to sample headspace for 1 h.

The fiber with sampled VOCs was transferred to the GC–MS and desorbed at the injection port of 
the GC with an inlet temperature of 250 °C for 3 minutes. The analyses were conducted in the same day 
of the sample collection.

Gas Chromatography–Mass Spectrometry (GC-MS). The analyses of SPME sampled VOCs were 
performed with a GCMS-QP 2010 Shimadzu series Gas Chromatograph Mass Spectrometer, equipped 
with EQUITY-5 (poly(5% diphenyl/95% dimethyl siloxane) phase, SUPELCO, Bellefonte, PA, USA) cap-
illary column, 30 m length ×  0.25 mm I.D. ×  0.25 µ m thickness, and conducted in split-less mode using 
ultra-high purity helium as carrier gas. The instrument was controlled in linear velocity. Pressure was 
24.9 kPa, flow parameters were 5.9 ml/min of total flow, 0.7 ml/min of column flow and linear velocity 
of 30.2 cm/s. The oven temperature was programmed as follow: 40 °C for 5 min, increased by 7 °C/min 
to 220 °C, then the oven was programmed to reach 300 °C at 15 °C/min, this temperature was held for 
3 min (total run time: 39 min). The injection port was held at 250 °C.

The mass spectrometer was used with a single quadrupole analyzer in electronic ionization mode, 
scanned over a mass range of m/z 40–450 amu in the full scan mode. The detector voltage was 0.7 kV. 
The temperature of interface and ion source were kept constant at 250 °C.

The GC-MS data were analyzed using the section GCMS Post-run Analysis of the GCMS solution 
software (version 2.4, Shimadzu Corporation). Preliminary identification of compounds was done using 
both NIST 127 and NIST 147. The identification of the selected list of VOCs was then confirmed spiking 
the analyzed samples with 0.5 µ L of authentic specimens and observing the GC-MS peak overlaps.

From the experimental measurements, 5 replicas for each of the seven kind of samples (a culture 
media and the sixth cell lines shown in Table 1 have been measured with the GC-MS. Each chromato-
gram was integrated and peaks were matched and aligned in order to obtain a matrix that contains all 
the peaks found in the whole set of measurements. Firstly, we did not consider those peaks not above 
the 1% baseline, as well as those identified as arising from the column and the fiber (siloxanes). From 
the remaining set of peaks we have used for the following data analysis only those that are present in at 
least 60% of the total chromatograms. The list of the fourteen selected compounds is shown in Table 2.

Gas sensor. In this work a commercial metal-oxide semiconductor gas sensor coupled with an orig-
inal temperature modulation was used.

The sensitivity of metal oxide semiconductor gas sensors is activated at high temperature, it is known 
that the optimal temperature changes according to the gas at which the sensor is exposed25. Then the 
modulation of the sensor temperature is considered an opportunity to change the selectivity of the 
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sensor, to stabilize the response over long period and to obtain additional information about the gaseous 
mixtures under test25,26. To this regard different temporal patters of the temperature has been designed 
and investigated25,44–47. All these experiments shown that the temperature modulation achieves superior 
performance with respect to the use of a constant temperature. However this approach requires a pre-
liminary optimization of the temperature modulation profile that depends on the VOCs profile of the 
measured sample. Then the optimization of the temperature profile can be performed only when the 
composition of the measured samples is a-priori known.

To overcome this limitation we recently introduced a self-adaptive temperature modulation that 
exploits the gas response of the sensor to drive the working temperature modulation27.

Figure 3A shows the concept of the self-adaptive temperature modulation. The output signal of the 
sensor interface is also used as the input of the electronic circuit driving the temperature modulation. 
In this way, the signal to a chemical stimulus influences the sensor temperature, giving rise to a specific 
modulation for each different sample. This concept can be implemented by a variety of circuits. Here we 
have used a TGS2600 tin oxide gas sensor (Figaro inc.). The sensor interface was a square wave oscillator 
(Fig. 3B). After a transitory time, the output signal converges to a periodic pattern of pulses (Fig. 3C). If 
the sample does not change, the sequence of pulses is maintained stable and it can be processed by an 
asynchronous digital counter (included in the temperature modulation block) giving the driving signal of 
heater. The number of pulses composing the pattern is twice the modulus of the digital counter. Here the 
periodic sequence, at the equilibrium, contains 16 pulses (while the counter is a mod-8). Then for each 
measurement 32 semi-periods of the pulse pattern are extracted as the measurement descriptors and 
then used in the multivariate analysis. The signal and the corresponding sensor temperature are shown 
in Fig. 1C. More details about the self-adapted thermal modulation can be found in ref. 27.

The sensor is placed in a chamber of 8 ml of volume while the sample is enclosed in a vial and is 
headspace is maintained, by means of a thermal bath, at a constant temperature of 37 °C. In order to 
avoid any condensation problem all the tubes connecting the sample and sensor chamber are maintained 
at the same temperature. An empty vial placed in the same bath of the culture media samples has been 
used to have a similar pneumatic path of the measuring phase also for the cleaning step.

The sample headspace is delivered to the sensor by a flow of synthetic air; the same synthetic air is 
also used as reference to set the sensor baseline (Fig. 3). The sensor was exposed to a constant flow of 
40 sccm kept constant by a mass flow controller. For each measurement, the pulse pattern was acquired 
and the time lengths of the different semi-periods are used as measurement descriptors. Between two 
consecutive measurements the sensor was flowed with synthetic air for 20 minutes in order to recover 
the initial condition.

48 measurements have been collected in three measurement sessions along a period of 3 months  
(6 measures of culture medium, 9 measures of MFC-10A , MDA231 and MCF-7 culture media; six 
measures for ZR75I and BT474 and three measures for SKBR3).

Data Analysis. GC-MS data were analyzed using Welch’s t-test and MANOVA to evaluate the statis-
tical difference between the patterns of VOCs related to the cancer cells48,37.

The gas sensor data (32 semi-periods of the pulse pattern for each measurement) was analyzed with 
Principal Component Analysis (PCA). Finally the Partial Least Square Discriminant Analysis (PLS-DA) 
classification model has been used to test the discrimination capabilities of the sensor data to identify 
the cancer cells or the proliferation rate of the different cell lines (high vs low proliferation)47. The per-
formances of the model has been validated with k- fold cross-validation procedure (k =  5). Although the 
cross-validation procedure gives an overoptimistic estimation of the classification performances, it repre-
sent anyway an indication of the potentiality of the proposed approach to identify the different classes.
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