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Abstract. This paper presents a study of the total mean kinetic energy, 〈EK〉, and of
individual projections along a given molecular axis, 〈EK〉α, for D and O nuclei in D2O, derived
using a harmonic model. Our theoretical approach assumes decoupling amongst translational,
rotational and vibrational modes. Resulting values of these dynamical quantities are discussed in
terms of the anisotropy of the quantum kinetic energy tensor, its relation to the local potential,
and deviations from the hypothesis of harmonicity and mode decoupling. Results are compared
with corresponding quantities obtained from Deep Inelastic Neutron Scattering experiments
performed on liquid and solid D2O, where the short-time dynamics and local environment of
D and O atoms were probed. The present study confirms an overall picture where even small
changes in the short-range environment of D and O nuclei have a strong influence on the quantum
behaviour of heavy water.

1. Introduction
The microscopic dynamics of liquid water still continues to challenge and attract great interest
from theorists and experimentalists due to the fundamental relevance of this system in the
biological and physical sciences [1]. A number of properties and anomalies of this molecule are
associated with the presence of hydrogen bonds (HBs), influencing the structure and network in
bulk ice and water, as well as its interaction with the surrounding environment. The quantum
dynamics of hydrogen participating in HB influences the HB structure network, due to the non-
commutativity of nuclear position and momentum operators, through nuclear quantum effects
(NQEs) [2, 3]. Deep Inelastic Neutron Scattering (DINS), also known as Neutron Compton
Scattering (NCS), is a unique and quantitative tool particularly well suited to probe the quantum
behaviour of atomic nuclei. DINS allows one to highlight NQEs associated with HB breaking
and distortion, through the measurement of single-particle dynamical quantities, i.e., nuclear
momentum distributions, n(p), and mean kinetic energies, 〈EK〉 [4–6]. Most recent DINS studies
have shown that the merits and strengths of the technique have expanded beyond measurements
of n(p) for light elements (hydrogen, deuterium, helium, lithium), as it is now possible to obtain
information on heavier nuclides such as carbon, oxygen, fluorine or sodium [4,7–14].
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In recent years, several ab initio Path Integral Molecular Dynamics (PIMD) simulations
[15–18] and DINS experiments supplemented by PIMD simulations [19–28] have been performed
to study the structure and dynamics of liquid water over a wide range of temperatures
and pressures to investigate how these are directly influenced by NQEs. Moreover, some
phenomenological models [29, 30] assuming harmonicity and decoupling amongst translational,
rotational and vibrational modes have been used to calculate values of the total mean kinetic
energy 〈EK〉, as well as individual contributions 〈EK〉α along the three principal axes of the
quantum kinetic energy tensor of the anisotropic n(p). These models have been applied to
describe the single-particle H dynamics in water [31–34] and in H2S [35] by recourse to inter- and
intra-molecular frequencies obtained from optical spectroscopy and Inelastic Neutron Scattering
(INS).

In the following, we introduce a harmonic model for a generic triatomic molecule and discuss
differences with other models in the literature. This model is used to predict kinetic energies
for the particular case of D and O atoms in heavy water. These predictions are discussed and
compared against data from a previous DINS experiment [8].

2. Harmonic model
Let us consider a molecule (D2O) with the N = 3 atoms in the y − z plane. For each of its
3N − 6 = 3 internal modes, one can define a symmetry-adapted coordinate system (S1, S2, S3)
as illustrated in Figure 1. To first order, each atom undergoes harmonic motions along the
normal coordinates Si (i = 1, 2, 3). Quantum mechanically, these motions necessarily lead to
the emergence of a zero point energy proportional to the vibrational frequency ωi. The potential
energy of the system is the result of three pair interactions with restoring forces proportional
to the displacement from the mean nuclear positions. The proportionality constant for the two
D-O pairs is given by

kOD =
mDλ3(1 + µ cos2 α)

(1 + µ sinα cosα)2
, (1)

where ω3 =
√
λ3 is the asymmetric stretch frequency, µ = 2mD/mO and mD and mO the nuclear

masses. Likewise, the proportionality constant for the D-D pair is given by

kDD =
mDλ2

[
kOD(1 + µ cos2 α)−mDλ2

]
2 [kOD(1 + µ) cos2 α−mDλ2]

, (2)

with ω2 =
√
λ2 being the bending frequency. Equations (1) and (2) are derived from the

secular equation |B − λA| = 0, with A and B being the kinetic- and potential-energy matrices
expressed in the symmetry coordinates {S1, S2, S3}, λi = ω2

i are the eigenvalues of the matrix
and | . . . | indicates the value of its determinant. The symmetry of the modes allows to express
the dynamical 3× 3 matrix as a (2× 2)S ⊗ (1× 1)A block matrix. Since only two observables,
ω2 =

√
λ2 and ω3 =

√
λ3, are needed in order to fix the free parameters of the model, kOD and

kDD, it is possible to evaluate the third eigenvalue of the secular equation, λ1, and consider the
difference with the measured value of ω2

1 as an estimate of the accuracy of the model. In the case
of heavy water, the symmetric stretching frequency evaluated within the present model is 20%
higher than the measured one [36]. If one makes use of more than two parameters in an attempt
to improve the accuracy of the model, then no prediction can be made on known observables
and control on the accuracy of the model is lost.

The asymmetric (1 × 1)A block matrix has an eigenvector sA = S3 that in Cartesian
coordinates corresponds to a displacement vector ξA = (yD, zD, yD′ , zD′ , yO, zO) =
(a, b, a,−b,−µa, 0), with a = sinα and b = cosα, with no dependence on the stretching
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Figure 1. Definition of the symmetry coordinates for an isolated water molecule as used in
the derivation of the coefficients fi. The molecule lies in the y − z plane and each axis may be
oriented according to the reference frames R1, R2 and R3 (see text).

frequency. The symmetric (2× 2)S block matrix has eigenvectors sS = S1 + v(λ)S2, with

v(λ) =

(
2kODµ(1 + µ cos2 α)− 4kDD −mOλµ

2
)

sin(2α)

8kDD cos2 α+ kODµ2 sin2(2α)− 2mOλµ(1 + µ sin2 α)
(3)

and with the limits v(λ) � 1 for λ → λ1 and v(λ) � 1 for λ → λ2. The corresponding
displacement vector ξS = (c, d,−c, d, 0,−µd) in Cartesian coordinates is defined by c =
sin(α)+v(λ) cos(α) and d = cosα−v(λ) sinα. Each i−th mode contributes to the kinetic energy
of atom j with a fraction fj,i = εj,i/

∑
j εj,i of the mode energy, with εj,i = mj(ẏ

2
j,i+ ż2j,i)/2. The

conditions imposed on the components of ξA and ξS reflect conservation of linear momentum
in the two directions y and z only when these axes are defined as shown by reference frame R1
in Figure 1. However, the quantities εj,i depend only on the modulus of the vector (yj , zj) and
then the energy fractions fj,i are invariant under axial rotation.

Following the previous discussion, one can numerically evaluate the parameters fj,i through
Eqs. (1), (2) and (3) and the definition of ξS and ξA. The calculation can be readily implemented
in a computer routine and applied to any triatomic molecule. The sequential character of
this procedure distinguishes the present model from others based on three independent force
constants, the latter leading to a hard-to-solve system of coupled nonlinear equations.

Assuming an average frequency ωτ corresponding to the translational modes, we can define
τj = mj/

∑
jmj . This parameter dictates the amount of energy that the j − th atom draws

from this particular vibration. Similar considerations apply to the rotational modes of frequency
ωρ, whose contribution to the kinetic energy is defined by the ratio of moments of inertia
ρj = Īj/

∑
j Īj . The quantity Ī corresponds to the spatial average of moments of inertia. With

these definitions, the total mean kinetic energy of one atom (D or O) can be written as

〈EK〉 = 3τ〈E〉τ + 3ρ〈E〉ρ +

3∑
i=1

fi〈E〉i, (4)

that is, as the sum of three translations, three rotations and three vibrations, each one with
energy 〈E〉s = ~ωs

4 coth ~ωs
2kBT

, where s = τ, ρ, 1, 2, 3. Let us now consider a reference frame
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τ ωτ ρ ωρ f1 ω1 f2 ω2 f3 ω3 2α
[meV] [meV] [meV] [meV] [meV] [degrees]

Ice D 0.1 17.7 0.456 52.7 0.479 278 0.405 151 0.460 294 108.4
O 0.8 0.088 0.042 0.190 0.079

Water D 0.1 15.1 0.457 46.9 0.499 296 0.410 150 0.458 310 106.0
O 0.8 0.086 0.001 0.180 0.084

Table 1. Optical frequencies and D̂OD angles taken from Refs. [36–40], along with calculated
values for τ, ρ, fi using our model.

x,y,z (with the x axis perpendicular to the molecular plane) centred at the average position
of each nucleus, representing the three principal axes of an anisotropic n(p). The following
interpretation of the DINS observables is based on the definition of a particular orientation of
(y, z) for each atom. In the case of the D (Fig 1, R2), the z axis is taken in the direction of
the stretching mode, i .e., the mode that mostly contributes to the kinetic energy, the y axis in
the direction of the bending mode and the rotation mode around the x axis. Rotations around
y and z will contribute to the kinetic energy in the x direction. By considering an additional
translational contribution along each direction, one can define for the D atom

〈EK〉x = τ〈E〉τ +2ρ〈E〉ρ; 〈EK〉y = τ〈E〉τ +ρ〈E〉ρ+f2〈E〉2; 〈EK〉z = τ〈E〉τ +f1〈E〉1+f3〈E〉3. (5)

In the case of O, the most relevant contribution to the kinetic energy arises along the direction
of the bending and the symmetric stretching modes (see Fig 1). Consequently, we take the z axis
along this direction, while the y axis remains orthogonal and along the asymmetric stretching
and the rotation around the x axis. For O one can then define

〈EK〉x = τ〈E〉τ + ρ〈E〉ρ; 〈EK〉y = τ〈E〉τ + f3〈E〉3; 〈EK〉z = τ〈E〉τ + f1〈E〉1 + f2〈E〉2. (6)

These contributions are calculated using frequencies from optical spectroscopy [36–40] as
shown in Table 1. The corresponding 〈EK〉 and 〈EK〉α are reported in Table 2. The values for
the energy fractions τ, ρ, fi have also been evaluated within the present model. These results
are in good agreement with those reported in the literature [32,33].

3. Results and Conclusion
We compare calculated values for 〈EK〉 and 〈EK〉α with the results of DINS measurements
on D2O at T = 274 K (ice) and T = 280 K (liquid) [8], performed using the VESUVIO
spectrometer at the ISIS Pulsed Neutron and Muon Source (Rutherford Appleton Laboratory,
UK) [41, 42]. DINS measurements are conducted at high momentum and energy transfers (~q
and ~ω, respectively) thus allowing the scattering process to be described within the framework
of the Impulse Approximation (IA) [43, 44]. The latter assumes that neutron scattering is
incoherent and occurring within time scales much shorter than the typical relaxation times of
collective excitations. Under these conditions, the struck particle recoils freely from the collision,
with negligible inter-particle interactions in its final state (i .e., the wave function of the particle
in its final state is a plane wave). The incoherent dynamic structure factor S(q, ω) is then
expressed in terms of the single-particle momentum distribution n(p)

SIA(q, ω) =

∫
n(p)δ

(
ω − ωr −

p · q̂
M

)
dp, (7)

with ~ωr = ~2q2/2M being the recoil energy and M the mass of the struck atom. One can then
model the n(p), whose variance is in turn related to the single-particle mean kinetic energy 〈EK〉,
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〈EK〉x 〈EK〉x 〈EK〉y 〈EK〉y 〈EK〉z 〈EK〉z 〈EK〉 〈EK〉
[meV] [meV] [meV] [meV] [meV] [meV] [meV] [meV]

D
Liquid 18.8±1.1 15.1 38.6±2.5 22.9 54.2±2.4 73.6 112±2 112
Solid 22.5±1.8 15.9 37.4±2 23.8 48.1±3.4 68.3 108±2 108

O
Liquid 16.0±2.3 10.4 21.0±0.6 16.1 24.1±2.1 16.4 61.1±3.1 43.4
Solid 16.2±2.3 11.0 20.1±1.6 15.4 24.2±1.4 19.7 60.4±4 46.1

Table 2. Comparison between experimental 〈EK〉 and 〈EK〉α from Ref. [8] and our model using
the parameters in Table 1.

through a spherical average of a multivariate Gaussian momentum distribution [8,17,35,45,46]

n(p) =
1√

8π3σxσyσz
exp

(
− p2x

2σx
−

p2y
2σy
− p2z

2σz

)
(8)

with x, y and z being the three molecular axes. This choice highlights the anisotropy of the local
atomic potential. In particular, σα (with α = x, y, z) represents the average nuclear momentum
along a given axis. These definitions can be then used to define directional contributions to
the kinetic energy 〈EK〉α = σ2α/2M and a total mean kinetic energy 〈EK〉 =

∑
α 〈EK〉α. The

resulting values for 〈EK〉 and 〈EK〉α are reported in Table 2.
As far as D is concerned, our results show good agreement between 〈EK〉 and 〈EK〉. In a

recent study of liquid and solid light water [31], a similar agreement was found between the DINS
value for 〈EK〉 and 〈EK〉 derived from vibrational INS frequencies. Our model also reproduces
quantitatively changes in directional kinetic energies associated with the liquid-to-solid phase
transition, as observed by DINS. In this case, the decrease of the z−component in this transition
is caused by an increase in HB strength in the solid phase – i.e., stronger HBs lead to a red-
shifted stretching frequency. Thus, both DINS experiment and our model agree on a small
decrease by 5-6 meV of the kinetic energy along the z direction

The situation is markedly different for the component 〈EK〉z and 〈EK〉z. In this case, we
find that the discrepancy between our model and DINS measurements is of approximately 20
meV (see Table 2). More generally, the observed differences between 〈EK〉α and 〈EK〉α may be
traced back to the assumption built into our model of decoupled motions when z is along the
direction of the covalent bond (stretching mode). Moreover, intermolecular forces (neglected in
our model) can lead to a redefinition of normal-mode coordinates. Interestingly, we note that
much closer agreement with DINS may be achieved via a tilt of the z axis so as to maximize
the contributions of the symmetric stretching and bending modes to 〈EK〉z, resulting in a value
for this energy of ca. 50 meV. Similar considerations would also apply to the y direction, with
an associated kinetic energy of 40 meV. In summary while calculated and DINS values of 〈EK〉
and 〈EK〉 yield information on the overall magnitude of NQEs, the directional components
〈EK〉α and 〈EK〉α highlight the role of intermolecular interactions on single-particle momentum
distributions.

From Table 2, one observes that for O atom the 〈EK〉 is underestimated of about 15 meV
relative to 〈EK〉 [8]. This finding may be ascribed to the long-range order of the HB network
and to its effect on translational motions. It is entirely plausible that the present model
underestimates these effects: for example, in Table 1 one can see that the contribution from
translational modes dominates 〈EK〉.

In conclusion, comparison between our model and DINS shows that 〈EK〉 for D in D2O may
be determined by combining translational, rotational and vibrational frequencies from optical
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spectroscopy and INS, in agreement with previous work on light water [31]. These results
suggest that a combined use of optical spectroscopy, INS and DINS measurements can give
simultaneous access to the magnitude of underlying NQEs in water, as well as both local and
intermediate-range-scale properties.

The implementation of the present model as part of the VESUVIO data analysis suite may
be also used as a predictive tool in experimental design. As such, it would pave the way for
detailed exploration of directional parameters σα using a multivariate Gaussian line shape for
n(p). Further, this method could in principle be generalized to more complex materials.

Acknowledgement. This work was partially supported within CNR-STFC Agreement No.
06/20018 concerning collaboration in scientific research at the ISIS Pulsed Neutron and Muon
Source (Rutherford Appleton Laboratory, UK).

References
[1] Kühne T D and Khaliullin R Z 2013 Nat. Commun. 4 1450
[2] Morrone J A and Car R 2008 Phys. Rev. Lett. 101 017801
[3] Li X Z, Walker B and Michaelides A 2011 Proc. Natl. Acad. Sci. U.S.A.
[4] Reiter G F, Senesi R and Mayers J 2010 Phys. Rev. Lett. 105 148101
[5] Senesi R, Pietropaolo A, Bocedi A, Pagnotta S E and Bruni F 2007 Phys. Rev. Lett. 98 138102
[6] Senesi R, Colognesi D, Pietropaolo A and Abdul-Redah T 2005 Phys. Rev. B 72 054119
[7] Flammini D, Pietropaolo A, Senesi R, Andreani C, McBride F, Hodgson A, Adams M A, Lin L and Car R

2012 J. Chem. Phys 136 024504
[8] Romanelli G, Ceriotti M, Manolopoulos D E, Pantalei C, Senesi R and Andreani C 0 J. Phys. Chem. Lett.

0 3251–3256
[9] Krzystyniak M and Fernandez-Alonso F 2011 Phys. Rev. B 83 134305

[10] Krzystyniak M and Abdul-Redah T 2010 Phys. Rev. B 82 064301
[11] Krzystyniak M 2010 J. Chem. Phys 133 144505
[12] Krzystyniak M, Adams M A, Lovell A, Skipper N T, Bennington S M, Mayers J and Fernandez-Alonso F

2011 Farad. Discuss. 151(0) 171–197
[13] Seel A G, Ceriotti M, Edwards P P and Mayers J 2012 J. Phys.: Condens. Matter 24 J5401
[14] Krzystyniak M, Richards S, Seel A and Fernandez-Alonso F 2013 Phys. Rev. B 88 184304
[15] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[16] Becke A D 1988 Phys. Rev. A 38 3098
[17] Goedecker S, Teter M and Hutter J 1996 Phys. Rev. B 54 1703–1710
[18] VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T and Hutter J 2005 Comp. Phys. Comm.

167 103–128
[19] Andreani C, Colognesi D, Mayers J, Reiter G F and Senesi R 2005 Adv. Phys. 54 377–469
[20] Morrone J A, Lin L and Car R 2009 jcp 130 204511
[21] Andreani C, Colognesi D, Degiorgi E and Ricci M A 2001 J. Chem. Phys 115 11243–11248
[22] Pietropaolo A, Senesi R, Andreani C, Botti A, Ricci M A and Bruni F 2008 Phys. Rev. Lett. 100 127802
[23] Pietropaolo A, Senesi R, Andreani C and Mayers J 2009 Braz. J. Phys. 39 318–321
[24] Andreani C, Colognesi D, Pietropaolo A and Senesi R 2011 Chem. Phys. Lett. 518 1 – 6 ISSN 0009-2614
[25] Colognesi D, Andreani C and Degiorgi E 2003 J. Neutron Res. 11 123–143
[26] Ceriotti M, Bussi G and Parrinello M 2009 Phys. Rev. Lett. 103 030603
[27] Lin L, Morrone J A, Car R and Parrinello M 2010 Phys. Rev. Lett. 105 110602
[28] Pantalei C, Pietropaolo A, Senesi R, Imberti S, Andreani C, Mayers J, Burnham C and Reiter G 2008 Phys.

Rev. Lett. 100 177801
[29] Moreh R, Shahal O and Volterra V 1976 Nucl. Phys. A 262 221–230
[30] Vos M, Weigold E and Moreh R 2013 J. Chem. Phys 138 044307
[31] Andreani C, Romanelli G and Senesi R 2013 J. Chem. Phys 427 106–110
[32] Moreh R and Nemirovsky D 2010 J. Chem. Phys 133 084506
[33] Finkelstein Y and Moreh R 2014 Chem. Phys. 431 58–63
[34] Senesi R, Flammini D, Kolesnikov A I, Murray É D, Galli G and Andreani C 2013 J. Chem. Phys 139
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