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1 Introduction

Exploring the diverse objects in our Solar System is the 
heart of space agencies scientific objectives, from the early 
manned exploration of the moon in the 60s to the most 
recent robotic missions to asteroids, comets and planets 
[1–3].

Few examples can effectively illustrate the diverse 
challenges of exploration missions: JAXA Hayabusa mis-
sion [4, 5] attempted to take samples from the surface of 
the asteroid Itokawa and successfully returned it to Earth 
in 2010; ESAs cornerstone mission Rosetta [6] has been 
the first to rendezvous with a comet and to deploy a lander 
(Philae) on the comets nucleus in 2014. In the last decade, 
NASA has successfully landed on Mars multiple rovers [7] 
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(Curiosity landed in 2012), ESA is adding to this list the 
EXOMARS missions [8] with Russian partnership and also 
China and India are planning exploration missions to the 
Earth’s moon and the red planet before 2020. Moreover, the 
CleanSpace program [9] and other Earth low orbit debris 
removal missions such as e.Deorbit [10], currently in phase 
A, heavily rely on multibody simulations for both the com-
plex close proximity capture operation and for analysis of 
the elastic dynamics during the de-orbiting burn.

Building on the 50 years heritage of the European 
Space Agency’s Technology Center in providing effective 
spacecraft design and simulations technical solutions, this 
paper addresses the latest improvements implemented in 
the ESA multibody software DCAP, especially dedicated 
to ease simulating system dynamics during the landing of 
a spacecraft, in the frame of a feasibility study (CDF) and 
preliminary design verification activities. This paper builds 
on DCAP release 8.0, which includes extending the usa-
bility of the complementary features already discussed in 
recent papers by G. Baldesi et al. (e.g. launcher lift-off and 
multi-stage separation [11], integrated ascent and guidance 
approach [12]).

For the purpose of simulating a realistic descent and 
landing of a spacecraft, the complexity of three-dimen-
sional motion has to be supported by a robust orientation 
algorithm capable of always describing the attitude of the 
body. In Sect. 2 of this paper, the Euler angles implemented 
in DCAP release 8.0 have been substituted with quaterni-
ons, to avoid numerical singularities for particular space-
craft orientations.

Touchdown technologies aim at providing effective 
solutions to unpredictable and/or occasional fast dynamics 
discontinuous events. Fixed-time step 4th order Runge–
Kutta integrator, which is the one implemented in DCAP 
release 8.0, is intrinsically limited in accurately simulating 
these type of events; as for other tools based on fixed-step 
integrators, the provision of an elaborate time reset and 
step-back subroutines logic has been able to partially com-
pensate for the lack of automatic event detection and step 
adaptation in the DCAP package. Alternatively and more 
effectively, in the authors opinion, sudden discrete events 
can be comprehensively tackled by numerical integrators 
with variable time step and algorithm order, capable of 
effectively recognizing the discontinuity and automatically 
tune the solver parameters to match the overall required 
tolerance. Moreover, this family of integrators is known 
to exhibit outstanding computational speed. In the DCAP 
implementation proposed in Sect. 3, the additional advan-
tage is to eliminate the need for the complicated time-reset 
and step-back interconnected logic management by directly 
delegating its function to the integrator itself. This enables 
to further increase the overall computational speed and 
accuracy, to automatically detect discrete events and to 

simplify the tree of dependencies and management of the 
exceptions cases which, in return, also decreases the risk of 
incorrect outputs.

Adequate representation of the soil dynamic proper-
ties [13–15] as well as the lander structure [16] and shock 
absorbing characteristics [17] are key parameters for deter-
mining the equivalent friction between the lander and the 
soil. Also, a proper selection of a number of parameters 
[18] such as the vertical and lateral landing velocities and 
the spacecraft inclination angle of the landing target can 
determine the margin of risk to crash, bounce or tip over 
during landing. Considering the general objective of main-
taining a synthetic and versatile approach, after reviewing 
more enhanced three-dimensional contact representations 
[19, 20] and their implementation in state-of-the-art com-
mercial software packages, a trade-off between complex 
parameter management versus global effectiveness goes in 
favor of a simpler consolidated model. A straightforward 
contact formulation based on Hertz theory is therefore pre-
sented in Sect. 4.

An example of landing simulation is then presented in 
the Sect. 5. The adopted approach is typical of feasibility 
studies, such as those performed in the European Space 
Agency’s Concurrent Design Facility (CDF), where a num-
ber of versatile conceptual models are used in parallel to 
check for design feasibility and requirements consistency, 
as well as to rapidly simulate and compare the foresee-
able mission scenarios. Moreover, the comparison with the 
results obtained with an independent commercial software 
is also shown for completeness.

Finally, conclusions are drawn in the Sect. 6.

2  Quaternions

2.1  Background on quaternions

Euler angles are widely used in multibody software to 
describe the attitude of bodies by representing the orienta-
tion of a reference frame relative to another. Any orienta-
tion can be described by a sequence of three element rota-
tions. There are 12 different sequence conventions of Euler 
angles.

In multibody simulations, Euler angles are also used 
during the numerical integration. The dynamic routine of 
a multibody software produces the accelerations of the 
system and by integrating them the entire kinematics of 
the system is obtained. Unfortunately, by referring only to 
rotational degrees of freedom for simplicity, it is possible to 
integrate the angular accelerations into angular velocities, 
but it is erroneous to integrate angular velocities to obtain 
the attitude values, because the angular velocity is not an 
exact differential [21]. Therefore, the equations of motion 
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are generally formulated in terms of Euler angles and their 
derivatives, because it is allowed to double integrate the 
double dot Euler angles {θ̈} to obtain the Euler angles. The 
following relations convert Euler angles derivatives into 
angular velocities and accelerations:

where the vectors {ω} and {ω̇} contain the angular velocities 
and accelerations of a generic body, the vector {θ̇} and {θ̈} 
contain the first and second Euler angles derivatives and the 
matrix [L] and [L̇] are used for the conversion.

The main disadvantage of using the Euler angles is the 
numerical phenomenon of gimbal lock. In particular sys-
tem configurations, the matrix [L] becomes singular and the 
inverse relation can no more be extracted.

For example, assuming to use the Euler angles conven-
tion 1-2-3, the relation becomes:

where the matrix [L123] is defined as:

The inverse relation can been written as:

where the matrix [L123]
−1 is:

For this particular Euler angles convention, the condition of 
gimbal lock occurs at Euler angle θ2 = 90◦, as the compo-
nents of matrix [L123]

−1 tends to infinity.
Introducing quaternions as an alternative to Euler angles 

is recognized as a valuable option to avoid the gimbal lock 
phenomenon. In this case, the relation of the angular veloc-
ity turns out to be [21]:

(1){ω} = [L]{θ̇}

(2){ω̇} = [L]{θ̈} + [L̇]{θ̇}

(3){ω} = [L123]{θ̇}

(4)[L123] =





cos θ2 cos θ3 sin θ3 0

− cos θ2 sin θ3 cos θ3 0

sin θ2 0 1





(5){θ̇} = [L123]
−1{ω}

(6)[L123]
−1 =









�

cos θ3
cos θ2

�

−
�

sin θ3
cos θ2

�

0

sin θ3 cos θ3 0

−
�

cos θ3 sin θ3
cos θ2

� �

sin θ3 sin θ2
cos θ2

�

1









where the vector {ṗ} is the first time derivative of the rela-
tive quaternions and the matrix [Q] is defined as:

and pi are the four quaternions defined as:

where θ is the rotation about the screw axis û.

2.2  Quaternions implementation in DCAP

The Order(n) algorithm [11], used by DCAP release 8.0 to 
evaluate the dynamics of the system, produces equations of 
motion in terms of Euler angles derivatives. The algorithm 
treats separately all the hinges of the system, which are 
the connections between bodies. In this framework, only 
hinges with 3 rotational degrees of freedom could poten-
tially experience gimbal lock.

The quaternions implementation has been designed so 
that, although DCAP will rely on quaternions for comput-
ing the kinematics of the system, Euler angles will still 
always be produced as standard output angles, because 
of their direct physical interpretation. This architecture 
achieves the known benefits from a computational pro-
spective, see Table 1, while hiding the only main drawback 
which is the lack of intuitiveness from a user prospective.

The recoded internal symbolic generator has been ena-
bled to assemble the equations of motion using the angular 
velocities {ω} and accelerations {ω̇}, instead of {θ̇} and {θ̈}, 
as generalized coordinates.

Considering an open loop topology system, it is usual 
to refer to the body L(j) as the lower body of the body j, 
within the topology tree. Using Euler angles the following 
equations are used in DCAP:

where {L(j)ωj} is the relative angular velocities vector, 
{L(j)ω̇j} is the relative angular accelerations vector and 
{L(j) ◦

ωv
j} is the remainder terms vector between the body j 

and its lower body L(j).

(7){ω} = 2[Q]{ṗ}

(8)=





−p1 p0 p3 −p2

−p2 −p3 p0 p1

−p3 p2 −p1 p0





(9)
p0 = cos

θ

2
p1 = ux sin

θ

2
p2 = uy sin

θ

2

p3 = uz sin
θ

2

(10){L(j)ωj} =
[

Lj
]

{θ̇ j}

(11){L(j)ω̇j} = [Lj]{θ̈ j} +
{

L(j) ◦
ωv

j
}

Table 1  General pros and cons of Euler angles versus quaternions

Euler angles Quaternions

Easier to understand Less computational overhead

Gimbal lock singularity Difficult physical interpretation

Ambiguity in the angles sequence Conversion to matrix more 
efficient
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From this, it is possible to compute the equations of 
motion in the same way and using the same routine, but 
considering physical entities such as angular veloci-
ties {L(j)ωj} and angular accelerations {L(j)ω̇j}, instead of 
the Euler angles derivatives, by means of the following 
substitution:

where [I] is the identity matrix. In this way, the vectors 
{L(j)ωj} and {L(j)ω̇j} are equal to the vectors {θ̇ j} and {θ̈ j} and 
they can be used as generalized coordinates. This simple 
mathematical substitution allows the rest of the DCAP core 
algorithm to be unchanged and avoids the complete recon-
ditioning of the equations of motion generator algorithm.

Considering only rotational DOF for simplicity, since 
the EOM are derived using Kane’s method of generalized 
speeds [22], the partial velocity matrices can be written as:

where {Ṙj} is the linear velocity vector of the CoG of the 
body j and {ω̇j} is the angular velocity vector of the body j.

These partial velocity matrices will be automatically 
computed using the aforementioned substitutions (12) and 
(13) and no additional modifications to the EOM generator 
are necessary.

The state vector derivative between two bodies L(j) and 
j, in the original DCAP algorithm, is:

while, after the aforementioned substitution, it can be 
expressed as follows:

Before integrating, the state vector derivative is then trans-
formed into:

where:

–– the vector {L(j)ṗj} contains the derivatives of the quater-
nions: 

(12)[Lj] = [I]

(13)
{

L(j) ◦
ωv

j
}

= {0}

(14)[Vj] =
∂{Ṙj}

∂{L(j)ωj}

(15)[ωj] =
∂{ω̇j}

∂{L(j)ωj}

(16){L(j)Ẋj} =

{

{L(j)θ̈ j}

{L(j)θ̇ j}

}

(17){L(j)Ẋj} =

{

{L(j)ω̇j}

{L(j)ωj}

}

(18){L(j)Ẋj} =

{

{L(j)ω̇j}

0.5[L(j)Qj]T {L(j)ωj}

}

=

{

{L(j)ω̇j}

{L(j)ṗj}

}

{L(j)ṗj}T =
{

L(j)ṗ
j
0

L(j)ṗ
j
1

L(j)ṗ
j
2

L(j)ṗ
j
3

}

;

–– the matrix [L(j)Qj] is used to convert quaternions into 
angular velocity: 

After integrating, the state vector becomes:

Each quaternion must be normalized by evaluating the 
norm of the vector and dividing each component by the 
norm:

where L(j)p̂i
j is the normalized quaternion.

As the non-linear time simulation algorithm requires 
Euler angles to evaluate the transformation matrices 
between bodies, also the modified algorithm retrieves the 
Euler angles at each time step from the quaternions [23].

2.3  Example of gimbal lock and quaternions results

Figure 1 shows a simple system composed by one body 
linked with a spherical hinge (3 rotational DOF) to the 
ground. The body 1 is initially rotated of 85° around the 
second Euler angle axis and an initial velocity ω of 10°/s 
is imposed. The Euler angles sequence 1-2-3 is chosen for 
this example, which exhibits gimbal lock at 90°.

Two simulations are compared: one using the original 
DCAP with Euler angles and one using the modified DCAP 
with quaternions.

The results are reported in Fig. 2: as expected, when the 
body 1 reaches the gimbal lock configuration (θ2 = 90◦) 
the numerical integration based on Euler angles crashes, 
while the one based on quaternions seamlessly progresses 
through.

[L(j)
Q

j] =







−L(j)
p1

j L(j)
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j −L(j)
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.
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{

{L(j)ωj}
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}

(20)
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=
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Fig. 1  Topology of the system for the gimbal lock example
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3  PECE integrator

The ODE solver, selected for DCAP, was developed 
by Shampine and Gordon [24] in collaboration with 
Sandia Laboratories and the University of New Mex-
ico in 1974. It is based on a PECE Adams–Bashforth–
Moulton algorithm with variable-step size and varia-
ble-order algorithm, and the code is written in Fortran 
language.

3.1  Background on PECE algorithm

A PECE algorithm is a Prediction-Evaluation–Correc-
tion-Evaluation method and both explicit and implicit 
methods are used. The sequence of actions are here 
summarized:

–– Prediction an explicit Adams–Bashforth method of 
order k is used to predict the value yn+1;

–– Evaluation the function f
p
n+1 at tn+1 is evaluated by 

means of the value yn+1;
–– Correction an implicit Adams-Moulton method of order 

k + 1 is then used to correct the previous value and to 
obtain a more accurate estimation of the solution, yn+1;

–– Evaluation another evaluation of the function fn+1 is 
carried out.

Adams method approximates the derivative with a polyno-
mial interpolating the computed derivative values and then 
integrates the polynomial. The variable step size is able to 
follow the slow or fast modifications of the function during 
the integration.

The Adams–Bashforth method for variable step size is:

where pn+1 stands for the predictor of the PECE algorithm 
and k is the order of the method. Quantities in Eq. (21) are 
defined as [24]:

where hi is the time step and αi(n) and βi(n) are defined as:

and the coefficient gi,1 is identified by:

(21)
pn+1 = yn + hn+1

k
∑

i=1

gi,1φ
∗
i (n)

(22)φ∗
i (n) = βi(n + 1)φi(n)

(23)φ1(n) = f [xn]

(24)φi(n) = f [xn, xn−1, . . . , xn−i+1]

i
∏

j=2

�j−1(n) i > 1

(25)�i(n + 1) =

i
∑

j=1

hn+2−j

(26)αi(n + 1) =
hn+1

�i(n + 1)
i ≥ 1

(27)β1(n + 1) = 1

(28)βi(n + 1) =

∏i
j=2 �j−1(n + 1)
∏i

j=2 �j−1(n)
i > 1

(29)g1,q =
1

q

Fig. 2  The evolution of the sec-
ond Euler angle in both Euler 
angles case and quaternions 
case is reported on the left, the 
quaternions evolution is shown 
on the right, for the modified 
DCAP simulation
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where the parameter is an integer number q = 1, 2, 3 . . . .

The Adams–Moulton method with variable step size uses 
the same data of the predictor method, plus an additional one, 
accounting for the order k + 1 of the corrector, therefore:

The main advantage of this formula is the possibility to 
evaluate gk+1,1 during the prediction process. In this case, 
the last factor in (32) is defined as:

Since the algorithm of order k is not self-starting, it is 
always necessary to start from a first order method and than 
increase the order up to the desired one.

The ODE algorithm identifies the adequate step size able 
to minimize the local error, which translates into approxi-
mating the local solution uniformly well over the entire 
interval. The local error estimation procedure is accom-
plished by comparing the results of formulas (21) and (32) 
at different orders [25].

By considering a predictor of order k and a corrector of 
order k + 1

the local error estimator becomes:

where len+1(k) stands for the local error at the step n + 1 
with an order k algorithm.

In the same manner, the local error is then estimated by 
considering various orders: for a simpler and easier dis-
crimination of the optimal order, the step size is assumed to 
be constant during all the local error evaluations.

To limit the mesh distortion, the step size hn+1 is 

imposed to vary only between 
1

2
hn and 2hn, therefore a 

(30)g2,q =
1

q(q + 1)

(31)gi,q = gi−1,q − αi−1(n + 1)gi−1,q+1 i ≥ 3

(32)yn+1 = pn+1 + hn+1gk+1,1φ
p
k+1(n + 1)

(33)φ
p
i+1(n + 1) = φ

p
i (n + 1) − φ∗

i (n)

(34)yn+1(k) = pn+1 + hn+1gk,1φ
p
k+1(n + 1)

(35)yn+1(k + 1) = pn+1 + hn+1gk+1,1φ
p
k+1(n + 1)

(36)len+1(k) = hn+1(gk+1,1 − gk,1)φ
p
k+1(n + 1)

constant step size h is a reasonable choice to represent the 
interval. For the same reason, ODE algorithm is not suit-
able for managing differential equations where drastic step 
size reductions are necessary (stiff problem).

3.2  PECE implementation in DCAP

The ODE subroutines have been coded inside the DCAP 
source in a parallel stream, so that the user has the option 
to chose from two independent solvers: the traditional 
fixed-step Runge–Kutta 4th order integrator and the new 
ODE one. Table 2 reports the main pros and cons between 
a Runge–Kutta fixed step size and 4th order integrator and 
a PECE integrator.

As part of the ODE implementation in the DCAP core, 
bypassing the DCAP release 8.0 time reset and step-back 
features has proven mandatory throughout the code, to 
enable the ODE algorithm itself to directly detect sud-
den discontinuities and consequently adapt the step size 
and algorithm order. Conversely, the time reset and step-
back features remain fully interlinked to the Runge–Kutta 
stream.

3.3  Example of ODE results

The topology of a simple system composed by one body 
is displayed in Fig. 3. The body is linked to the ground by 
means of a 1 DOF rotational joint and a damped spring in 
the same direction. The possibility of elastic contact (topic 

Table 2  General pros and cons of PECE integrator compared to fixed Runge–Kutta integrator

Runge–Kutta 4th PECE

Deterministic simulations Faster

Easier implementation More stable and efficient

Easier to use in a control loop Greater order of the algorithm

Requires very little internal data storage per iteration Possibility of finding an estimate of the error at each time step

Detection of sudden discontinuities not known a priori

y

x

P

S

Fig. 3  System composed of a pendulum and a surface
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of next chapter) is foreseen between the P point of the 
body and the surface S. The body initially is aligned with 
respect to the y axis and an initial angular velocity of 50°/s 
is imposed.

Figure 4 reports the results of two simulations: one uses 
the Runge–Kutta 4th order solver with a fixed time step of 
10−4 s and the other relies on the ODE code with a toler-
ance of 10−6. As expected, the ODE solver detects the event 
of the contact and reduces the time step and the order of the 
PECE algorithm, as demonstrated also by Fig. 5.

A comparison of the computational time speed, execut-
ing DCAP on the same machine, shows that the PECE 
solver is 38 % faster than the Runge–Kutta one, in this spe-
cific simulation case.

4  Contact

In the aerospace field, offering a range of contact modelling 
is of crucial relevance for multibody software which aim at 
tackling the landing of spacecraft on unknown gravel surfaces. 
Unfortunately, DCAP release 8.0 was lacking this capabil-
ity, as it only incorporates a basic elastic contact algorithm 
between one point and an infinite plane, without soil damping 
properties and without any tangential friction implementation.

4.1  Contact implementation in DCAP

With the objective of better assisting preliminary assess-
ment activities, priority has been given to enhancing 

Fig. 4  Angle of a pendulum 
which hits a surface
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and developing the following three fundamental contact 
configurations:

–– “point to infinite plane” contact;
–– “point to finite plane” contact;
–– “point to sphere” contact.

All of them implement the same Hertzian contact formu-
lation, based on the following equations:

–– for the normal direction:

–– for the tangent directions:

where Fn and Ft are the normal and tangent forces, k is the 
stiffness, δ is the penetration depth, c is the damping and µ 
is the friction coefficient.

Figure 6 displays that the contact vector is always point-
ing from the reference node on the surface (called contact 
point) to the reference node of the body (called tip): for pla-
nar contact types, the vector is perpendicular to the plane, 
while the vector is normal to the surface of the sphere for 
the spherical contact.

Figure 5 displays how, in the case of ODE, the detection 
of the contact is automatic and the computational accuracy 
depends on the integrator tolerance: once the algorithm 

(37)Fn = k · δ3/2 + c ·
dδ

dt

(38)Ft = Fn · µ

recognizes the contact event, the integration time step and 
the order of the algorithm are adapted until the tolerance is 
matched.

5  Landing simulation

In this Section, the case study of a spacecraft landing on the 
surface of an asteroid is presented, where the DCAP model 
is built by taking advantage of all the additional capabilities 
presented in this paper.

To benchmark and validate the simulation results, an 
equivalent model has been also built into an independent 
commercial software (e.g., MSC Adams), where the system 
has the same properties, and a “point to plane” contact is 
adopted for the impact with the surface for simplicity.

The spacecraft, as shown in Fig. 7, is composed of a 
total of five rigid bodies connected with each other: a S/C 
main body, one sloshing pendulum and three legs. The 
main body of the spacecraft is linked to the legs by means 
of 1 DOF translational joints embedding crushable devices. 
On top of the spacecraft, four thrusters are mounted to push 
down the lander, after the impact with the surface, with a 
force of 5 N per thruster.

The total mass of the lander is 362 kg, and the inertia 
matrix, with respect to its inertial reference frame, is:

[I] =





645.8 6.2 −14.9

6.2 690.1 9.1

−14.9 9.1 628.6



kg m2

Fig. 6  Contact type “point to sphere”

Fig. 7  Lander configuration

Table 3  Pads positions with respect to the S/C CoG

– x (m) y (m) z (m)

Pad 1 0.8877 −1.2968 1.4935

Pad 2 0.8877 −1.2968 −1.4935

Pad 3 −1.7001 −1.2963 0.0000
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Table 3 gives the location of the pads with respect to the 
CoG of the S/C and Fig. 8 displays two images of the S/C 
with respect to two perpendicular planes; the overall foot-
print diameter is about 3.4 m.

Crushable devices are designed to reduce the shock 
transmitted to the upper part of the spacecraft by absorb-
ing the impact with the terrain [17, 26, 27] and they are 
modeled as a Coulomb damper, which globally represent 

its elasto-plastic deformation. The crushable positions and 
orientations with respect to the spacecraft CoG are reported 
in Table 4 and shown in Fig. 8, along the legs of the lander.

Figure 9 shows the characteristics of the crushable 
devices in terms of displacements and forces. Each device 
is designed to apply a constant force in the range of 400 N 
at the interface of the leg to the spacecraft, with a maxi-
mum displacement limited to about 20 cm.

Fig. 8  Pads positions with 
respect to the spacecraft CoG

Table 4  Crushable reference 
frames positions and 
orientations with respect to the 
S/C CoG

– x (m) y (m) z (m) θ1 (°) θ2 (°) θ3 (°)

Crushable 1 0.8668 −1.0000 1.4550 −7.4 0.0 4.0

Crushable 2 0.8668 −1.0000 −1.4550 7.4 0.0 4.0

Crushable 3 −1.6532 −1.0000 0.0000 0.0 0.0 −9.0
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Fig. 9  Crushable displacements and forces
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The sloshing effect implemented in this DCAP model 
aims at introducing an equivalent dynamic disturbance to 
the spacecraft motion at impact, and does not pretend to 
accurately encompass all the complex fluid-dynamics of 
sloshing phenomena. Therefore, following simple represen-
tations from literature [28], an equivalent pendulum mass 
is linked to the S/C CoG by means of a torsional springs. 
The remaining fuel, contributing to the sloshing effect, is 
estimated 10 kg. The position of the pendulum, as seen in 
Fig. 8, is at 26.8 mm on Y axis with respect to the S/C CoG 
with a pendulum length of 150 mm; stiffness and damping 
values are 10 and 1 N/m.

A contact model “point to sphere” between the pad of 
each leg and the surface of the asteroid represents a real-
istic model of the touchdown. Therefore, the pad has been 
modeled as a simple point and the CAD pad representation 
is only for visual effect. Although a fine characterisation of 
the soil is crucial to obtain more realistic simulations, the 
lack of data in early design phases lead to use generic val-
ues from internal knowhow.

Moreover, the DCAP gravity gradient feature [11] has 
also been used to include the weak gravitational field of the 
asteroid body.

At touchdown, the spacecraft is initially rotated of about 
10° with respect to the surface and the S/C CoG is at about 
2.4 m from it. The leg number 3, as shown in Fig. 7, is the 
first one to get in contact with the surface.

Figure 10 shows the linear and angular accelerations of 
the spacecraft during the landing phase. The maximum lin-
ear acceleration peak is less than 2.5 m/s2, which is found 
in line with requirements in similar cases [29].

Figure 11 compares the linear and angular velocities of 
the spacecraft evaluated using DCAP and MSC Adams. 
Both simulations are found in good agreement: at touch-
down, the peak values reach about 0.96 m/s for the linear 
velocity, and 0.43 m/s for the angular velocity, which is 
found acceptable.

The resulting forces acting on each leg of the S/C are 
compared in Fig. 12 for both DCAP and MSC Adams mod-
els. The overall dynamics of the system during touchdown 
is well reproduced. The minor differences are due to the 
contact type assumed for the two multibody models, as the 
evolution of the local relative impact angle of each pad is 
slightly different in case of spherical or planar surface. The 
sloshing mass, which keeps moving for few seconds after 
the landing is completed, is the main responsible for the 
oscillations visible in each graph.

6  Conclusion

In conclusion, this paper initially summarizes the most crit-
ical features essential for touchdown and landing simula-
tions, and focuses on their particular implementation and 
validation experience inside the European Space Agency’s 
DCAP software.

Although quaternions avoid the risk of gimbal lock and 
prove computationally more efficient than Euler angles, the 
latter ones are still conveniently displayed to users as the 
standard output in DCAP, thanks to their direct link to physics.

With respect to fixed-step integrators, ODE solv-
ers based on PECE algorithm provide users with faster 
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Fig. 10  Predicted linear and angular acceleration of the spacecraft
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solutions and improved accuracy and allow the software 
developer to harmonize the internal processes by simplify 
the management of sudden events.

Also, the paper shows that simple contact algorithms 
combined into a consistent space multibody simulator can 
adequately provide technical support to the preliminary 
design activities, such as feasibility studies in a concurrent 
environment.

As further evidence, the performance of a DCAP-based 
simulator, including the features introduced in this paper, is 
compared to MSC Adams in a realistic landing simulation: 
the outcome confirms that the multibody simulator based 
on the DCAP tool is computationally advantageous and 
technically adequate for this type of activities.

Finally, this paper intends to keep raising awareness in 
the space community towards the advantages of introducing 
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Fig. 11  Linear and angular velocities of the spacecraft in DCAP and MSC Adams
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Fig. 12  Contact forces during the touchdown of the spacecraft for both DCAP and Adams models
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the multibody approach as a fundamental tool for planetary 
exploration, whenever complex dynamics is involved.
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