
PEARL: ProjEction of Annotations Rule Language, a Language for

Projecting (UIMA) Annotations over RDF Knowledge Bases

Maria Teresa Pazienza, Armando Stellato, Andrea Turbati

ART Research Group, University of Rome, Tor Vergata, Italy

{pazienza, stellato, turbati}@info.uniroma2.it

abstract

In this paper we present a language, PEARL, for projecting annotations based on the Unstructured Information Management
Architecture (UIMA) over RDF triples. The language offer is twofold: first, a query mechanism, built upon (and extending) the basic
FeaturePath notation of UIMA, allows for efficient access to the standard annotation format of UIMA based on feature structures.
PEARL then provides a syntax for projecting the retrieved information onto an RDF Dataset, by using a combination of a SPARQL-
like notation for matching pre-existing elements of the dataset and of meta-graph patterns, for storing new information into it. In this
paper we present the basics of this language and how a PEARL document is structured, discuss a simple use-case and introduce a
wider project about automatic acquisition of knowledge, in which PEARL plays a pivotal role.

Keywords: UIMA, Ontology Development, Knowledge Acquisition

1. Introduction

Nowadays, it is possible to easily access huge volumes of

information: however, this information does not appear as

an homogeneous stream of data, and instead comes from

very different sources and follows heterogeneous patterns

that are very difficult to manipulate, use and organize

without the help of dedicated tools. Modern Web

paradigms, such as the Semantic Web (Berners-Lee,

Hendler, & Lassila, 2001), and its associated initiatives

such as Linked Open Data (Bizer, Heath, & Berners-Lee,

2009) may support the organization, filtering and search

of information thanks to data modeling principles and

query facilities, however, much of the Web is still (and

will always be) composed of traditional unstructured

content, such as text, video, audio and multimedia

material in general.

To be able to cope with this huge volume of information,

Information Extraction (IE) engines allow for lifting of

relevant data from heterogeneous information sources and

for its projection towards predefined knowledge schemes,

thus enabling advanced access based on semantic rather

than textual indexing.

The success of semantic search engines such as Eqentia
1

or Evri
2
 and Information Extraction services such as

OpenCalais
3
 and Zemanta

4
 show that there is large

demand for these solutions, while software platforms such

as UIMA
5
 (Ferrucci & Lally, 2004), GATE

6

(Cunningham, 2002) or Ellogon
7
 (Petasis, Karkaletsis,

Paliouras, Androutsopoulos, & Spyropoulos, 2002)

provide the middleware for designing and implementing

the extraction process under a clearly defined practice.

1 http://www.eqentia.com/
2 http://www.evri.com
3 http://www.opencalais.com/
4 http://www.zemanta.com/
5 http://uima.apache.org/
6 http://gate.ac.uk/
7 http://www.ellogon.org/

However, the above engines are oriented towards

provisioning of APIs and services for producing

knowledge modeled according to open standards, but they

fail in allowing users to create the definition of new

content extractors and annotators, and sometimes the

users are not even able to access the code of the engines

implicitly available through the provided services. On the

other side, the cited middleware platforms for text

engineering support development of IE systems but do

not provide guidance/facilities on how to store this

information. It clearly appears that though research on

Natural Language Processing and Information Extraction

have found an industrial standardization, we lack of

clearly defined specifications and tools on how to use this

information to create data.

To meet this need, we have addressed two of the most

popular standards for information extraction and

knowledge representation publication now available:

respectively, UIMA and RDF, and defined a language,

based on these standards, for supporting and facilitating

the acquisition of knowledge starting from raw

unstructured information to obtain widely accessible

datasets.

The above language, PEARL, the ProjEction of

Annotations Rule Language, allows for the transformation

and projection of information modeled according to the

Unstructured Information Management Architecture

(UIMA), onto RDF Datasets.

UIMA data comes in the form of annotations taken over

unstructured content (of any format and nature) and

modeled as feature structures (Carpenter, 1992). In

PEARL, UIMA annotations are analyzed through pattern-

matching rules, their elements (feature structures) are then

processed, transformed, matched against the target

semantic repositories, and then finally transformed into

RDF triples according to the vocabulary of the adopted

ontology and modeling language.

The paper is organized as follows: section 2 introduces the

syntax of the language and the structure of a PEARL

projection document. In section 3 the main features of the

languages are presented and detailed. Section 4 discusses

an application case of PEARL. The following section

introduces the CODA architecture: a wider project about

knowledge acquisition of which PEARL is a central

aspect. Section 6 concludes the paper.

2. PEARL Document Organization

PEARL, ProjEction of Annotations Rule Language, is an

easy-to-learn, yet powerful, language for projecting

UIMA annotations over RDF triples. A simplified version

of the grammar behind it, expressed in Backus-Naur form,

can be seen in Fig. 1.

Each projection document (a document containing

PEARL rules) can be considered as divided into two main

and distinct parts: in the upper part there is the listing of

all the namespaces-prefixes that will be used in the

projection rules concerning ontology resources, and the

second part, which is normally longer, contains the

projections rule. Here follows the description of these

sections.

2.1. Prefix Declaration

The first part of a projection document contains all the

ontology prefixes being used in the projection rules.

Note that these prefixes may not be the same (though they

may overlap) of those which have been declared inside the

target ontology and are independent from that declaration.

They thus are local to the projection process and they are

used to expand prefixed names inside the document into

valid RDF URIs and no trace of them is left in the target

ontology. The use of these prefixes is highly encouraged

to have a more readable document.

2.2. Projection Rules

After the prefix declaration, the rest of a projection

document contains the list and description of each

projection rule. Each Projection Rule is divided into the

following parts (some of them are optional): a rule

declaration, followed by its definition, which is in turn

composed of the following sections:

 nodes

 graph

 where

 parameters.

A brief explanation is provided of every one of them.

2.2.1. Rule declaration

A rule starts with a declaration, expressed through the

keyword rule and is concluded with a curly bracket "{",

initiating its definition.

Each rule is associated to a UIMA type from the adopted

UIMA Type System, thus the type is the first element in

the declaration: any UIMA annotation taken after that

type (written following the UIMA standards regarding

types, i.e. a java-like dot-separated package name

followed by a Capital word referring to the associated

UIMA Type) will trigger the possible use of this rule.

After the type declaration, there is an optional rule

identifier that can be used to make references to a

resource (placeholder or variable) from other rules,

according to different relationship of dependency

(explained later on this paper).

A number in the range of 0..1 follows, representing a

confidence value which can be used to rank different rules

associated to the same UIMA type. This value can be

important to the application parsing these rules, as it may

give a first ranking for the rule to use given a specific

annotation type.

The declaration may end with a list of dependencies to

other rules. Each dependency must specify the type and

the kind of relationship which is established.

2.2.2. Alias

An alias is a compact way to use a value which is

presented inside a feature of the given annotation type. An

alias is denoted by a '$' followed by its name.

2.2.3. Nodes

The third part, which is optional only if the rule depends

on another rule (see section 3.3), provides a list of

placeholders for ontology nodes from UIMA annotations.

These placeholders are used to state which features of the

triggered UIMA type are important for the target

ontology, and to specify which kind of RDF nodes (URI,

typed literal, plain literal) will be used as recipients to host

the information that will be projected from them.

A set of operators are available for applying different

transformations to the features, projecting them onto valid

RDF nodes. Default conversions are applied when no

operator is specified, and they are inferred on the basis of

the target RDF node type (e.g. if the node type is an URI,

the feature value is first "sanitized", to remove characters

which are incompatible with the URI standard, and then

used as a local name and concatenated to the namespace

of the target ontology to create an URI). Specific

transformations can be invoked for producing URI

according to different formats (e.g. reified emails) which

prRules := prefixDeclaration* prRule+ ;
prefixDeclaration := prefix ’=’ namespace ’;’;

prRule := ’rule’ uimaTypePR (ID ’:’ idVal)? Conf?
 (’dependsOn’ (depend)+)? ’{’ alias? nodes?

 graph where? parameters? ’;’? ’}’;

depends := DependType ’(’ idVal ’)’;
alias := ’alias’ ’=’ ’{’ singleAlias+ ’}’ ;

singleAlias := idAlias uimaTypeAndFeats ;

nodes := ’nodes’ ’=’ ’{’ node+ ’}’ ;
node := idNode type (uimaTypeAndFeats | condIf);

condIf := ’if’ condValueAndUIMAType condElseIf*condElse?;

condValueAndUIMAType := ’(’ condBool ’)’ ’{’
 uimaTypeAndFeats | OntoRes’}’;

condElseIf := ’else if’ condValueAndUIMAType ;

condElse := ’else’ ’{’uimaTypeAndFeats | OntoRes’}’;
graph := ’graph’ ’=’ ’{’ triple+ ’}’ ;

triple := tripleSubj triplePred tripleObj

 | ’OPTIONAL’ ’{’ tripleSubj triplePred tripleObj ’}’;
where := tripleSubj triplePred tripleObj

 | ’OPTIONAL’ ’{’ tripleSubj triplePred tripleObj ’}’;

parameters := ’parameters’ ’=’ ’{’ (parameterNameValue
 (’,’ parameterNameValue)*)?’}’;

parameterNameValue := parameterName (’=’parameterValue)? ;

Fig. 1 BNF of (part of) the grammar used in the Projection Rule File

do not need to conform to the baseuri of the adopted

ontology.

In UIMA it is possible that the value of a particular

feature is a type itself, thus containing other features, and

so on recursively, as stated in the feature structure theory

(Carpenter, 1992): FeaturePath is a standard notation

introduced in UIMA to identify arbitrary values in a

complex path describing a specific traversal of a feature

structure. The standard feature path presents some

limitations, which PEARL tries to overcome (see

paragraph 3.2).

Sometimes it may be necessary to determine a different

assignment of one feature (e.g. projecting it onto an OWL

Class or onto a Property) depending on the value of

another feature. This can be specified by using the alias

mechanism and a simple if/else construct (see the

grammar, the rule for condBool in Fig. 1, and the example

in paragraph 3.4). So for example it is possible to assign

the OWL class Male or Female to the placeholder gender

by checking a value of a feature (e.g. if that feature has

the value 'mr.' Male is assigned; conversely Female is

assigned for the value 'mrs.').

2.2.4. Graph

The graph section contains the true projections over the

target ontology graph, by describing a graph pattern which

is dynamically populated with grounded placeholders and

variables (defined in the WHERE part).

The graph pattern consists of a set of triples, where the

first element is the subject, the second is the predicate and

the third the object of an RDF statement. Each single

element in the graph may be one of the following: a

placeholder, a variable, an RDF node or an abbreviation.

Inside a graph pattern, placeholders (defined in the nodes

section of the current rule or of other referenced

projection rules), are identified by the prefixed symbol

"$". RDF nodes can be references in graph patterns

through the usual notation for URIs ("< and >" delimit

standard URIs) or by prefixed local names as normal.

The abbreviations are represented by a finite list of words

that can be used in place of an explicit reference to RDF

resources. An example of such abbreviation is the

character a interpreted as rdf:type

Finally, it is possible to use variables (by prefixing their

names with a "?" symbol) when there is need to

dynamically reference an RDF node already existing in

the target ontology, which is not known in advance (i.e. it

is not statically added in the rule, but dynamically

retrieved from the ontology by means of unification, see

next section for more details).

2.2.5. Where

As for the graph section, the where section contains a

graph pattern: this pattern is matched over the target

ontology to retrieve nodes already existing in the target

ontology by means of variable unification, so that the

variables substitutions can be reused in the graph section.

The purpose of this graph is to be able to link newly

extracted data with information which is already present

in the target ontology. In this sense, it is close to the

purpose of the where statement in a SPARQL

CONSTRUCT query. The unification mechanism allows

to assign values to variables by constraining them on the

basis of information which is thought to be present in the

ontology: these substitutions are then applied to the graph

pattern of the graph section to project the data in the over

target ontology.

2.2.6. Parameters

The fifth and last part, optional, consists of a list of

parameters. A parameter can be in the form of a

"<name,value>" pair or just a name.

There is no pre-assigned semantics to any parameter, they

are just outputted by any rule when it is being applied, and

their meaning is properly interpreted by specific

application components (such as CODA component

implementations, see paragraph 5) which maybe

associated to a given projection document.

These parameters can thus be seen as flexible extension

points for the language, requiring no dedicated syntax,

and conveying specific information (parameter values can

contain placeholder/variable assignments) for the

appropriate listener.

3. Features of the Language

As the main structure of a PEARL document has been

described, we can now present the different features of

this language. In this section we describe them and we

show how they can be used. The features which are being

presented are:

 how to deal with missing values in the current

annotation

 how to retrieve all the values from a list in a UIMA

feature

 establishing a dependency among two rules

 how to assign a value to a placeholder depending on

another value in a different feature

 how to retrieve RDF resources from the target

ontology

3.1. Missing values in the annotation

An annotation in UIMA is a complex structure, normally

containing more than one feature and each feature can be

a complex structure itself (i.e. a feature structure). It may

happen that not all features have a value associated to

them. In this case the placeholder which receives the

missing value is not ground.

When this placeholder is being used to compose an RDF

triple, the application of such a rule should thus fail

because it is impossible to instantiate the RDF graph

pattern.

Sometimes the occurrence of a particular RDF triple is not

mandatory and if it there is any issue (e.g. a null value) in

grounding it, the other triples in the graph could still be

used to populate the target Dataset. In this case this non-

mandatory triple is surrounded in the projection rule by

the word OPTIONAL. This signals that the other RDF

triples are independent from this one and can still be

suggested even if this particular one has not been

instantiated.

The OPTIONAL modifier in the graph may recall the

OPTIONAL in SPARQL SELECT queries; however here

the semantics differ in that this refers to the success of the

projection operation: the graph does not need to be

matched against the target ontology, but instead to be

written into it; in this case, satisfying the graph is

considered as satisfying the set of all write operations on

each triple. A write operation succeeds if all the three

elements of its triple are bound (instantiated). The

OPTIONAL modifier here is similar to the one in the

WHERE: the whole writing of the graph pattern is not

compromised if the triples inside an OPTIONAL clause

fail to be written (they are not completely instantiated),

and these are simply left out from the global write of the

graph.

In the example in Fig. 2 the RDF triple adding a

description to a movie is tagged as OPTIONAL, because

not all movies have an associated description.

Another situation in which it can be useful to tag a triple

with the OPTIONAL is when one of the placeholder is not

empty just because the relative feature is empty itself, but

when a feature path in some situation (an instance of an

annotation) leads to a "dead end" (this annotation do not

have a complex value associated to a feature presented in

the path, instead it is null).

3.2. Accessing all the values of a list

Each value inside an annotation is identified by an

univocal path, called feature path. This path represents all

the features which must be navigated to access the desired

value. If one of the feature in the path is a list, the

standard used in the feature path states that the exact

element one is interested in, must be used. PEARL adds

the possibility to extract all the values in a list and

associate them to a single placeholder (in this case the

placeholder will have naturally more than one value).

The syntax for doing so is the same as the one used to

navigate a feature with a single value (simple or complex

one), it uses the name of the feature, which contains the

list and do not specify any particular index. This can be

used not just for the last feature in a feature path, but even

for one in the middle of the path. In this case the path will

generate "subpaths" which are navigated one by one and

all the value are stored in a single placeholder.

In the example presented in Fig. 3 the second placeholder,

actId, does not contain just a single value, but a list of

values. As the name of the feature may suggest, actorList

contains a list of values (and these values are not primitive

values, such as string or integer). It is also possible to use

a specific position inside the List/Array by using the

standard syntax actorList[i], where i stands for the

position where the value is stored (starting from 0 and not

from 1).

3.3. Establishing a dependency among two rules

Each projection rule is associated to a specific UIMA

type, so it can access all the information present in the

annotation which triggered its use. This in certain case can

be seen as a limitation as the elements of different types

my=http://art.uniroma2.it/imdb#;
www=http://www.movieontology.org/2009/11/09/;

dbp=http://dbpedia.org/ontology/;
movie=http://www.movieontology.org/2010/01/movieontology.owl#;

rule it.uniroma2.art.imdb id:film {
 nodes ={

 filmId uri _it.uniroma2.art.imdb:title

 filmTitle literal(xsd:string) _it.uniroma2.art.imdb:title
 year literal(xsd:integer) _it.uniroma2.art.imdb:year

 descr literal(xsd:string) _it.uniroma2.art.imdb:description

 }
 graph ={

 $filmId a www:Movie .

 $filmId movie:title $filmTitle .
 $filmId movie:releasedate $year .

 OPTIONAL{ $filmId my:description $descr} .

 }

}

Fig. 2 Use of the OPTIONAL tag

www=http://www.movieontology.org/2009/11/09/;

ontology=http://dbpedia.org/ontology/;

 nodes ={
 filmId uri _it.uniroma2.art.imdb:movieId

 actId uri _ it.uniroma2.art.imdb:actorsList/personId

 }
 graph = {

 $filmId a www:Movie .

 $actorId movie:title ontology:Actor .
 $actId movie:isActorIn $filmId .

 }

}

Fig. 3 Accessing all the values in a List

www=http://www.movieontology.org/2009/11/09/;

movie=http://www.movieontology.org/2010/01/movieontology.owl#;
rule it.uniroma2.art.imdb id:film {

 nodes = {

 filmId uri _it.uniroma2.art.imdb:movieId
 }

 graph = {

 $filmId a www:Movie .
 }

}

rule it.uniroma2.art.imdbCast dependsOn last(film){

 nodes = {
 actorId uri it.uniroma2.art.imdb:actorsList/personId

 }

 graph = {
 $actorId a ontology:Actor .

 $actorId movie:isActorIn $film:filmId .

 }

}

Fig. 4 Dependency among rules

may need to be composed together.

To overcome this limitation it is possible to state a

dependency between two or more projection rules. The

example in Fig. 4 shows how.

By first, the rule which the other one depends on must

have an id (the first one has film as id). The other one

states its dependency using the keyword dependsOn

followed by the type of dependency and the id of this rule.

There are two main families of dependency, introduced by

the keywords dependsOn and imports. The difference is

that the former states that the rule this one is depending on

should have produced some suggestions (no problems

were found in the no OPTIONAL triples), while the latter

does not require this check.

In this example last is used as the dependency type. This

means that when the CODA will use the second rule it

will look back to the other annotation until it finds when

and where the first rule was used for the last time.

At this point CODA will consider this other annotation as

the target of this particular instance of dependency, so the

application of the second rule for the given annotation

depends on the other annotation just found.

Once the "link" between these two rules has been

established the rules that stated the dependency is now

able to use the placeholder defined and initialized in the

other rules.

The syntax to use the other placeholder is quite similar to

using a local placeholder, the only different is that before

the placeholder name, but after the "$" symbol, one must

use the other rule's id followed by ":".

The second rule use the placeholder filmId from the first

rule by writing $film:filmId in its second suggested triple.

PEARL support different type of dependency, such as

lastOneOf, and we are implements others as well.

3.4. Dynamic assignment to a placeholder

Sometimes a value is assigned to a placeholder depending

on another information (value) contained in a different

feature. This can be accomplished in PEARL using the

if/else construct and the alias section.

In this example the value contained in the placeholder

animalClass depends on the value contained in the feature

it.uniroma2.art.uima.Animal:type.

The placeholder animalClass is going to contain a

different resource after the if/else is evaluated for every

single annotation that triggers the use of this rule. In this

case an already existing resource (class) is used but a

UIMA feature could have been easily used.

The if/else mechanism bring to CODA the possibility to

have a dynamic assignment to each placeholder.

3.5. Interacting with the ontology

PEARL gives the possibility to interact with the ontology

to retrieve already existing RDF resource. This interaction

is done using SPARQL (only a subset of SPARQL syntax

have been implemented).

In the where section of this example a variable, filmId, is

defined (it is a variable and not a placeholder because it

starts with"?" and not with "$").

The simple SPARQL query tries to find out the id of the

movie with a particular title. If it not able to find it then

CODA will use, if present, a placeholder with the same

name as the variable.

So if there is not a movie with that particular title in the

ontology then a new movie is created with a given title

and description (if present). Otherwise the already

existing one is used and the description is added.

In may seem strange that the first two triples are

suggested because the movie appears to already exist as

that information has just been used in the SPARQL query.

This is not an error because the triple store underneath the

external program should not have any problem in adding a

triple which is already present (or even the external

program should decide not o add the triple).

4. A real case Projection Rules files

In Fig. 7 we show an example of a typical use (the

projection rules file has been reduced to be used in this

paper) of the PEARL language to project information

extracted from the Internet Movie Database (IMDB) site
8
.

8 http://www.imdb.com/

my=http://art.uniroma2.it/imdb#;
xsd=http://www.w3.org/2001/XMLSchema#;

owl=http://www.w3.org/2002/07/owl#;

rule it.uniroma2.art.uima.imdb.Animal {

 alias = {
 animalType _it.uniroma2.art.uima.animal:type

 }

 nodes = {
 animalId uri _it.uniroma2.art.animal:animalId

 animalClass uri if(animalType == reptile){

 my:Reptile
 }else if(animalType == insect){

 my:Insect

 }elsef
 my:Animal

 }

 }
 graph =f

 $animalId a $animalClass .

 }

}

Fig. 5 Use of if/else in a rule

www=http://www.movieontology.org/2009/11/09/;

movie=http://www.movieontology.org/2010/01/movieontology.owl#;
xsd=http://www.w3.org/2001/XMLSchema#;

owl=http://www.w3.org/2002/07/owl#;

rule it.uniroma2.art.imdb id:film{

 nodes = {

 filmId uri _it.uniroma2.art.imdb:movieId
 filmTitle literal(xsd:string) _it.uniroma2.art.imdb:title

 }

 graph = {
 $filmId a www:Movie .

 filmId movie:title $filmTitle .

 }
 where = {

 ?filmId a $filmTitle .

 }

}

Fig. 6 Use of SPARQL in a rule

http://www.imdb.com/

A UIMA annotator has extracted information about

movies, tv series and actors performing inside them. In

this document, 4 PEARL rules have been defined to

project this information over RDF triples.

In the nodes section of each of the rule we can see how

the different elements from the extracted annotations are

processed and projected as RDF nodes of different nature

(URI or literal, plain or typed), which are used to fill

homonymous placeholders in the subsequent graph

sections. Note that even a simple declaration of the nature

of the node (e.g. being it an URI) implies some kind of

transformation of the element. For instance, when the type

is an URI, the feature value is – by default – “sanitized”

and used as the local name of a URI composed over the

chosen namespace for the target RDF. Further

transformations are possible, though operators provided

by the CODA framework (see paragraph 5); for instance,

if uri(mail) is specified in the nature of the node, the

transformer expects a compatible mail address to be found

in the value, and it further normalizes it as a mailto: URI.

Custom transformers can also be added to the framework

though OSGi
9
 extension points, while the language hosts

them and recognize them though use of qualified names

(e.g. namespace + id, or prefixed notation).

As we can see in Fig. 7, in the first rule the value

contained in the feature it.uniorma2.IMDBFilm:movieId is

transformed into an URI and assigned to the placeholder

movieId.

Each element of an RDF triple defined in the graph

section of a rule can be an explicitly referenced RDF node

(URI, literal or blank node), a placeholder or a variable

the value of which is obtained through a SPARQL query

defined in the same rule using PEARL itself: in the

example, the movieId placeholder is used as subject of

four different triples in the first rule.

In the first rule, five RDF triples are suggested, the first

four are "mandatory", this means that if at least one of

them cannot be instantiated with proper values, then this

rule for the particular annotation will not produce any

suggestion. The fifth triple is tagged with OPTIONAL,

and, as said before, if it has any problem, then the other

triples can still be used.

To navigate inside the features of a UIMA annotation, we

used the extended version of the UIMA FeaturePath
10

language. For instance, in the third rule we assign to the

placeholder starSite the value of the feature site contained

inside the feature it.uniorma2.imdb.IMDBStar:imdbSite.

These four rules can be divided into two categories:

 the first two are independent from the others

 the last two have two different type of

dependency: lastOneOf and last)

Using the dependency type last, the fourth rule is able to

use a placeholder defined in the last application of the

second rule (the one identified by the id series). It uses the

9 http://www.osgi.org/Main/HomePage
10 Standard FeaturePath does not support generic reference to

whole collections such as arrays, lists etc… but only to their

specific values (the domain of FeaturePath consists of the set of

final values in the addressed Feature Structure).

my=http://art.uniroma2.it/imdb#;
xsd=http://www.w3.org/2001/XMLSchema#;

www=http://www.movieontology.org/2009/11/09/;

rule it.uniroma2.IMDBFilm id:film {

 nodes = {

 movieId uri _it.uniroma2.IMDBFilm:movieId

 filmTitle literal(xsd:string) _it.uniroma2.IMDBFilm:title
 year literal(xsd:integer) _it.uniroma2.IMDBFilm:year

 rate literal(xsd:float) _it.uniroma2.IMDBFilm:score

 desc literal(xsd:string) _it.uniroma2.IMDBFilm:descr

 }

 graph = {

 $movieId a www:Movie .

 $movieId movie:title $filmTitle .
 $movieId movie:releasedate $year

 $movieId my:imdbsite $rate.

 OPTIONAL { $movieId my:movieDescription $desc } .

 }

rule it.uniroma2.IMDBTVSeries id:series{

 alias = {

 year _it.uniroma2.art.uima.imdb.IMDBFilm:endYear
 }

 nodes = {

 movieId uri _it.uniroma2.IMDBFilm:movieId

 seriesName literal(xsd:string) _it.uniroma2.IMDBFilm:title

 startYear literal(xsd:integer) _it.uniroma2.IMDBFilm:year

 endYear literal(xsd:integer) if($year ==0){

 _it.uniroma2.IMDBFilm:notExisting

 } else{
 _it.uniroma2.art.IMDBFilm:endYear}

 rate literal(xsd:float) _it.uniroma2.IMDBFilm:score

 desc literal(xsd:string) _it.uniroma2.IMDBFilm:desc

 }

 graph = {

 $movieId a my:TVSeries .

 $movieId movie:title $seriesName .
 $movieId movie:releasedate $startYear .

 OPTIONAL { $movieId my:endedIn $endYear }

 $movieId movie:imdbrating $rate .

 $movieId my:movieDescription $description .

 }

}

rule it.uniroma2.IMDBStar id:star dependsOn
 lastOneOf(movie, film, series) {

 nodes = {

 starId uri _it.uniroma2.IMDBStar:personId

 starName literal(xsd:string) _it.uniroma2.IMDBStar:name

 starSite literal(xsd:string)

 _it.uniroma2.IMDBStar:imdbSite/site

 }

 graph = {
 $starId a my:Star .

 $starId my:imdbsite $starSite .

 $starId my:personName $starName .

 $movie:movieId my:hasStar $starId .

 }

}

rule it.uniroma2.IMDBCreator id:creator dependsOn

 last(series){

 nodes = {

 creatorId uri _it.uniroma2.IMDBCreator:personId

 creatorName literal(xsd:string)

 _it.uniroma2.IMDBCreator:name

 creatorSite literal(xsd:string)

 _it.uniroma2.art.IMDBCreator:imdbSite/site
 }

 graph = {

 $creatorId a my:Creator .

 $series:movieId my:createdBy $creatorId .

 $creatorId my:imdbsite $creatorSite .

 $creatorId my:personName $creatorName .

 $creatorId my:isCreatorOf $series:movieId .
 }

}

Fig. 7 Example of a Projection Rule File

placeholder movied defined and instantiated in the other

rule (in its last application) by writing $series:movieId.

Using the dependency lastOneOf, the third rules is stating

that it is interested in the last application of the first or the

second rule (the one that is nearest to its own usage).

Inside its own graph section it then uses the placeholder

movieId, which both the dependency rules have, by using

the construct $movie:movieId (similar to what the forth

rule is doing).

The order among annotation is very important when there

is a dependency (for example last and lastOneOf) and

PEARL uses the order provided by UIMA regarding the

begin and end of each annotation.

Once we have presented the syntax of PEARL and the

associated grammar, its features, and described the

characteristic of each rules in the example, we can now

describe what each rule does, from a general point of

view, to understand how to write a projection rules file

given the annotation types provided by a UIMA Analysis

Engine (for a complete description of the UIMA

architecture please refer to the official site
11

).

The first rule is invoked when an annotation regarding a

movie is found. Each annotation has its own type, so it is

easy to spot what each annotation contains. Each movie in

the imdb site has an id, a title, a year when it was released,

a score (given by users) and a description. Not all movies

are provided with a description, so it is important to

remember to tag every RDF triples in the graph section of

the rule that deals with the placeholder containing the

movie's description. Then in its own graph section the

relative RDF triples are suggested (the RDF resource

which represents a movie identified by a particular id is an

instance of the class Movie, was released in a specific

year and it may have a description). The second rule deals

with TvSeries. The UIMA annotator used for this example

have a peculiarity: if the series does not have an end year

(it is still shown on the TV) then it give the value 0 to the

feature of the annotation which should store the end year.

To manage this aspect in PEARL we used the if/else

mechanism (and the alias section). If the value contained

11 http://uima.apache.org/

in the alias year is equal to 0, then we put in the

placeholder endYear a value from a feature that does not

exist and by using the OPTIONAL tag, we are able not to

add the wrong year to the ontology as the end year of this

Tv series. If we do not use this approach, then all the

series which are still airing on the TV would have zero as

the end year and this can generate some errors in the

ontology.

The fourth rule focus its attention on the annotations

regarding the creators of television series. These people

are defined only if they have created at least a series. The

UIMA annotator do not provide any information in the

annotation itself about which series the person has

created, so this rule needs to depend on the last TV series

annotated by the annotators (and the last dependency is

used). This approach can be used because the imdb pages

have a specific structure, in which first the title of the

television series or movies is presented and then the list of

creators, directors, actors, stars follows. Inside its own

graph section the fourth rule uses the placeholder defined

in the other rules.

The third rule is invoked when the stars (main actors) of a

movie or a tv series are found (annotated). The peculiarity

of this kind of annotation is that both movies and series

have stars, so this rules should behave a little different

according to which type of show the star played in. This is

achieved with the dependency lastOneOf, which provides

an easy way to use a placeholder taken from two different

rule and use it without the need to replicate the relative

suggested RDF triples (both rules must have a placeholder

with that name).

5. CODA

PEARL was developed inside the CODA architecture

(Computer-aided Ontology Development Architecture).

The motivation behind CODA lies in the gap between the

large availability of Information Analysis components for

different frameworks (such as UIMA
12

 (Ferrucci & Lally,

2004) and GATE
13

 (Cunningham, 2002)), and the non-

immediateness in exploiting their output – normally

structured annotations – to be fed to a knowledge base.

The CODA Architecture, Fig. 8, previously presented in

(Fiorelli, Pazienza, Petruzza, Stellato, & Turbati,

2010)foresees a series of components addressing all

typical issues related to knowledge acquisition and

providing all required facilities needed for this task:

access both to the target knowledge base and to external

semantic repositories, consuming Entity Naming Services

(for example (Bouquet, Stoermer, & Bazzanella, 2008)),

resolving identity among generated entities, access to

structured annotations from IE systems, separation of

finer refinement steps for knowledge acquisition (triple

generation, re-classification of entities, human validation,

feedback etc…) are all facilities provided by CODA

components. CODA architecture sits on top of the UIMA

12 http://uima.apache.org/
13 http://gate.ac.uk/

Fig. 8 CODA Architecture

standard for Unstructured Information Management (on

top on Fig. 8) and extends this architecture by exploiting

its output for creating new knowledge to be fed to

semantic repositories. From the UIMA point of view

CODA can be considered as a CAS Consumer, because it

takes as input the CAS produced by one or more Analysis

Engines (AE), uses the information contained in the

annotations to develop or enrich an ontology.

CODA is also a concrete framework
14

 (modeled after its

homonymous architecture) providing a software

infrastructure for coordinating CODA components and

implementations of some of them.

One of the core elements of CODA is exactly PEARL,

which is used for projecting UIMA Annotations over RDF

triples.

To parse a Projection Rules file by CODA, we used

ANTLR
15

 (Parr & Quong, 1994), a tool which given in

input a grammar written in EBNF (Extended Backus-Naur

Form), an extension to BNF (Backus-Naur Form),

generates the relative Java classes to parse a file written

using the defined grammar. CODA uses these classes to

parse the Projection Rules file to construct an internal

model to speed up the process of using the rules.

CODA as been used in several different domain (from the

movie domain to the agricultural one) with good results.

Because CODA in completely integrated in the UIMA

architecture, it allows, and it encourages, the reuse of

already existing and tested AEs whenever is possible. This

approach reduced the time in developing an application to

populate an ontology, using AEs which are able to deal

with the desired domain. The user/application needs, in

most of the cases, just to write the projection rules which

suggest to CODA how to navigate inside the UIMA

annotations, which information to extract and how to add

the new resources to the ontology.

In some cases it may be necessary to modify the standard

behavior of CODA on how to create a new resource, the

discovery of already existing ones, or how and which

RDF triples should be suggested. This personalization of

CODA can be achieved by implementing specific version

of the modules presented in the architecture: the

Projection Rule Decider, the Identity Resolver, the

Resources Smart Suggester and the Smart Triples

Suggester.

In this paper we do not provide a description and the goals

of each component, because we focus our attention at

PEARL, we just want to present the possibility of

personalizing CODA for the target domain (ontology and

AEs). This personalization is achieved by using Felix

Apache
16

, an implementation of the OSGi
17

 specifications

(release 4), which provides a mechanism to add at runtime

Java code (in CODA every component uses this

mechanism, so every component can be replaced with a

new version, without the need to change any line of code

of CODA).

14 http://art.uniroma2.it/coda
15 http://www.antlr.org/
16 http://felix.apache.org/site/index.html
17 http://www.osgi.org/About/HomePage

6. Conclusion

In conclusion this paper presents a language which is able

to navigate into complex UIMA annotations, to extract the

desired information and then to construct RDF triples

using what users have written in the projection rules file.

It is a simple to use language and, even if it was

developed inside the CODA architecture and framework,

it can be used in other applications. We are adding more

features to PEARL to extend its own capabilities and

possible uses.

7. References

Berners-Lee, T., Hendler, J. A., & Lassila, O. (2001). The
Semantic Web: A new form of Web content that is
meaningful to computers will unleash a revolution of
new possibilities. Scientific American , 279 (5), 34-43.

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked
Data - The Story So Far. (T. Heath, M. Hepp, & C.
Bizer, Eds.) International Journal on Semantic Web
and Information Systems (IJSWIS), Special Issue on
Linked Data , 5 (3), 1-22.

Bouquet, P., Stoermer, H., & Bazzanella, B. (2008). An
Entity Naming System for the Semantic Web. In
Proceedings of the 5th European Semantic Web
Conference (ESWC 2008). Springer Verlag.

Carpenter, B. (1992). The Logic of Typed Feature
Structures. Cambridge Tracts in Theoretical Computer
Science ((hardback) ed., Vol. 32). Cambridge
University Press.

Cunningham, H. (2002). GATE, a General Architecture
for Text Engineering. Computers and the Humanities ,
36, 223-254.

Ferrucci, D., & Lally, A. (2004). Uima: an architectural
approach to unstructured information processing in the
corporate research environment. Nat. Lang. Eng. , 10
(3-4), 327-348.

Fiorelli, M., Pazienza, M. T., Petruzza, S., Stellato, A., &
Turbati, A. (2010). Computer-aided Ontology
Development: an integrated environment. New
Challenges for NLP Frameworks 2010 (held jointly
with LREC2010). La Valletta, Malta.

Parr, T. J., & Quong, R. W. (1994). ANTLR: A
Predicated-LL(k) Parser Generator. Software Practice
and Experience , 25, 789-810.

Petasis, G., Karkaletsis, V., Paliouras, G.,
Androutsopoulos, I., & Spyropoulos, C. D. (2002).
Ellogon: A New Text Engineering Platform. In
Proceedings of the 3rd International Conference on
Language Resources and Evaluation (LREC-2002). Las
Palmas, Canary Islands.

http://art.uniroma2.it/coda

