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Small droplets in turbulent flows can undergo highly variable deformations and orien-
tational dynamics. For neutrally buoyant droplets smaller than the Kolmogorov scale,
the dominant effects from the surrounding turbulent flow arise through Lagrangian time
histories of the velocity gradient tensor. Here we study the evolution of representative
droplets using a model that includes rotation and stretching effects from the surrounding
fluid, and restoration effects from surface tension including a constant droplet volume
constraint, while assuming that the droplets maintain an ellipsoidal shape. The model is
combined with Lagrangian time histories of the velocity gradient tensor extracted from
Direct Numerical Simulations of turbulence to obtain simulated droplet evolutions. These
are used to characterize the size, shape and orientation statistics of small droplets in tur-
bulence. A critical capillary number is identified associated with unbounded growth of
one or two of the droplet’s semi-axes. Exploiting analogies with dynamics of polymers in
turbulence, the critical capillary number can be predicted based on the large deviation
theory for the largest Finite Time Lyapunov exponent quantifying the chaotic separation
of particle trajectories. Also, for sub-critical capillary numbers near the critical value, the
theory enables predictions of the slope of the power-law tails of droplet size distributions
in turbulence. For cases when the viscosities of droplet and outer fluid differ in a way
that enables vorticity to decorrelate the shape from the straining directions, the large
deviation formalism based on the stretching properties of the velocity gradient tensor
loses validity and its predictions fail. Even considering the limitations of the assumed
ellipsoidal droplet shape, the results highlight the complex coupling between droplet de-
formation, orientation and the local fluid velocity gradient tensor to be expected when
small viscous drops interact with turbulent flows. The results also underscore the useful-
ness of large deviation theory to model these highly complex couplings and fluctuations
in turbulence that result from time integrated effects of fluid deformations.

1. Introduction

Improving understanding and characterization of drop deformations and possible breakup
in turbulent flows is relevant to a wide range of applications, including engineering pro-
cesses such as emulsification, homogenization, mixing, blending and multiphase chemical
reactions (Davies 1985; Lefebvre 1989; Sundaresan 2000). Transport and mixing pro-
cesses occurring during oil spills and design of remediation strategies also depend crit-
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ically upon knowledge of oil droplet dynamics and breakup processes occurring in the
ocean (Li & Garrett 1998; Yang et al. 2014).
Models for the breakup process are dependent upon characterization of the droplet

deformations that precede and facilitate breakup. Much work has focused on breakup
and deformations in turbulence when drops are larger than the Kolmogorov dissipation
length. The phenomenological model proposed by Kolmogorov (1949) and Hinze (1955)
focuses on distorting turbulent stresses as function of scale in the inertial range and
compares these with the restoring forces owing to surface tension. This phenomenological
model forms the basis of most of the current models for predicting drop breakup in
turbulent flows. Numerical simulations based on fully resolved fluid-fluid interface have
also been recently performed to study such complex situation (Perlekar et al. 2012). The
paper by Lasheras et al. (2002) reviews the salient aspects of large droplets subjected
to inertial forces. Even without breakup, the understanding of droplet deformation is
important in various applications such as predicting effective rheological properties of
suspensions or understanding the behaviour of red blood cells interacting with flows
including localized large shearing regions. In the latter context several studies have been
carried out, relying on an analogy between red blood cells and drops, in order to quantify
the hemolysis phenomenon (Arora et al. 2006; de Tullio et al. 2012).
Deformation of droplets may also be due to purely viscous shear forces rather than

inertial ones. This is of particular importance for droplet-laden turbulent flows when
droplets are smaller than the Kolmogorov scale. At such scales deformations arise due to
viscous drag associated with the shear in the surrounding flow being resisted by surface
tension effects. First analyses of droplets in simple viscous shear flow were performed in
Taylor (1932). For particular laminar shearing flow, droplets achieve elongated equilib-
rium shapes. If the shear is strong enough, a droplet may continue to deform and the
resistance to deformation due to surface tension is insufficient, leading to unbounded
growth of one or two of the droplet’s semi-axes. This then provides a possible condition
for breakup of droplets when subjected to a simple laminar shear flow. The dimen-
sionless number comparing viscous and surface tension forces is the capillary number
Ca = µoRG/Λ (µo is the surrounding fluid viscosity, R a droplet characteristic scale,
G is the shear rate, an inverse time scale, and Λ the surface tension parameter). The
capillary number can be used to characterize the critical conditions (a critical capil-
lary number, Cac), under which stable stationary droplets are no longer possible and
hydrodynamic instabilities develop followed by eventual droplet breakup.
In laminar flow, the external fluid shear can be characterized by one or a few parame-

ters associated with the velocity gradient tensor. Conversely, in a turbulent flow, droplets
are subjected to a wide distribution of shear/strain rates. In particular due to inner in-
termittency, as the Reynolds number grows so does the range of values of the local strain
and/or shearing rates. Locally, these can achieve values that exceed the mean value by
a several orders of magnitude. Therefore, one expects that locally some fraction of the
droplets will encounter shear rates such that instability and unbounded elongation re-
sults. Clearly one would wish to characterize the resulting droplet dynamics statistically.
For example, one is interested in probability distribution functions (PDF) of the charac-
teristic scales (e.g. semi axes in the case of ellipsoidal droplets), or orientation dynamics
of the droplets with respect of the turbulent flows. If some fraction of the droplets is
subjected to unbounded elongation, can statistical descriptions still be formulated? How
to characterize statistical distributions of small deforming droplets in turbulence remains
an interesting challenge that has not received sufficient attention.
Cristini et al. (2003) considered the case of droplets that are smaller than the Kol-

mogorov scale. Detailed calculations that combined simulations of turbulent flows at
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Figure 1. Typical ellipsoidal shape of one droplet along the turbulent trajectory. The droplet
centre of mass X(t) is supposed to follow the evolution of a fluid particle and the droplet
deformation is governed by the statistics of the fluid velocity gradients along the trajectory,
∂iuj(X(t), t). We denote by µo the viscosity of the carrying fluid and by µi that inside the
droplet. The droplet is always assumed of ellipsoidal shape with the three semi–axes ordered as
d1 ≥ d2 ≥ d3.

moderate Reynolds numbers with Reλ ∼ 50 − 60 (λ being the turbulence Taylor mi-
croscale) were coupled to a refined boundary integral simulation of local drop dynamics.
Such modeling of the droplets was capable of reproducing highly complex shapes such as
necks, their instabilities and precursors of satellite droplet formation. Further work along
these directions include Terashima & Tryggvason (2009) and Can & Prosperetti (2012).
However, the turbulent Reynolds numbers that can be considered for such highly detailed
simulations are relatively limited. It becomes of interest to seek appropriate simplifica-
tions that enable to explore a broad range of turbulent fluctuations of the shear rates to
which small droplets can be expected to be subjected in a turbulent flow at more elevated
Reynolds numbers. Assuming that the initial shape of the droplets is spherical, the ini-
tial deformations lead to ellipsoidal shapes. Being characterized by three major axes and
their orientations, an ellipsoidal drop shape is much easier to describe and parameterize.
The fate of deforming ellipsoids in turbulence raises a number of interesting questions
such as: Denoting the ‘size’ of droplets as the scale of its largest semi-axis d1 (see figure
1), we may ask what is the resulting PDF of d1 in turbulence as function of Capillary
and Reynolds numbers? Under what conditions can equilibrium distribution functions
be found? What are characteristics aspect ratios among largest and smallest semi-axes?
Do ellipsoidal droplets tend to be axisymmetric or triaxial? What are the orientation
statistics of deforming droplets? Do their major axes tend to align with the vorticity (as
happens with rigid elongated particles (Parsa et al. 2012; Chevillard & Meneveau 2013)),
do they align with the most extensive strain-rate direction, or with some other direction?
How do such orientation trends depend on capillary and Reynolds numbers? How are
these alignments related to the deformation rates? These are some of the questions we
will address in this paper.
Many models are available for the droplet evolution in turbulent flows. As a first step,
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it is important to clarify if one is interested in small or large droplets (with respect to
the Kolmogorov scale), if they are passive tracers or have a feedback on the flow, if the
collision/aggregation of different droplets can be neglected (large dilution limit), if they
have inertia (i.e. their centre of mass follows or diverges from a fluid particle trajectory).
Finally one also needs to specify the flow properties of the carrier fluid. In this study
we apply several simplifying assumptions in order to be able to exploit state–of–the–
art numerical simulations of turbulent flows and to track many droplets simultaneously.
We focus on the simple (but still interesting) case of sub–Kolmogorov–scale inertialess
droplets, in the highly diluted case, therefore neglecting the feedback on the flow and the
interactions between different droplets. Moreover, we assume that the droplet shape can
be parameterized by an ellipsoid. Even considering this basic case, different models can be
adopted. Among them, a popular one has been proposed by Maffettone & Minale (1998)
(hereafter referred to as the ‘M&M model’). This model is based on the idea that the
droplet deformation is the result of the balance between the local stretching terms of the
velocity gradient and the restoring surface tension force. An extra non–linear constraint
is added in order to enforce the preservation of the droplet volume during its evolution.
The above dynamics can be parameterized by introducing two functions which depend
only on the viscosity ratio between the droplet and the surrounding fluid.
In the present work we examine the fate of small ellipsoidal droplets being transported

and distorted by homogeneous isotropic turbulence following the M&M model. We study
different statistical properties of the droplets’ shape and its correlation with the under-
lying turbulent fluctuations when changing the viscosity ratio. It is worthwhile noticing
that, when the surrounding fluid and the droplet inner fluid have the same viscosity, the
M&M model is very similar to studying the advection/stretching of a small fluid volume
together with a relaxation towards a spherical shape. This is also the set–up describing
the evolution of the second–order conformation tensor of simple passive polymers in the
Oldroyd–B model. In both cases, the deformation rate can be predicted in terms of the
statistics of the Lyapunov exponents governing the chaotic properties of particle trajec-
tories; we will exploit this similarity in order to predict the critical Capillary number Cac
where all droplets will break with probability one for such viscous ratio.
However, when the viscosity ratio of the fluids is strongly differs from unity, the above

analogy does not hold and the prediction of the critical capillary number fails. While
many typical applications have viscosity ratios different from unity (e.g. oil droplets in
water), the present analysis for unity viscosity ratio is still of interest since there are
examples of real liquids with viscosity ratios equal to or close to one that are relevant
in technology or Nature. One of them is the pair polydimethylsiloxane/polyisobutylene
that are both Newtonian fluids, widely used as lubricant and in a large variety of other
applications. Their dynamic viscosities at 23 oC are, respectively, 103 Pa s and 101 Pa s
and their interfacial tension is 2.4 mN/m (Guido et al. 2000a). Another relevant context
is the red blood cells in the plasma matrix: in this case the viscosity ratio between
the hemoglobin inside the cells and the plasma is less well defined since it depends on
the link with O2 or CO2 of the hemoglobin molecules and on the inner cell cytoskeleton
consisting of proteins. Nevertheless a viscosity ratio in the range 3–5 is commonly adopted
as a reasonable parameter for a healthy human being (Pozrikidis 2003). In this case the
role of the surface tension is played by the cell cytoplasmatic membrane.
The paper structure is as follows: In the next section the M&M model is described

and briefly derived so that the actions on the droplet of its different terms can be under-
stood. As stated before, the shape dynamics depends upon the Lagrangian time history
of the strain and rotation rates of the surrounding turbulent fluid. Full direct numerical
simulations (DNS) of turbulence can provide such information (Benzi et al. 2010) under
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the assumption of one-way coupling. The latter has been used extensively to study par-
ticle relative dispersion (Bec et al. 2010), Lagrangian statistics properties of turbulence
(Meneveau 2011) and the fate of non-isotropic particles in turbulence (Parsa et al. 2012;
Chevillard & Meneveau 2013). In §3 we simulate an ensemble of droplets, each drop obey-
ing the M&M model following the Lagrangian trajectories of fluid particles in DNS, at
two Reynolds numbers. Statistical characterizations of resulting droplet sizes are provided
based on the PDF of the largest diameter (the ellipsoid’s largest principal axis). Partic-
ular attention is placed on the tails of the distributions, to explore the fate of the most
deformed droplets and how often these phenomena occur. Viscous drops deform because
of hydrodynamical stresses and tend to maintain their shape owing to surface tension.
Polymers, described by purely elastic springs, share similar characteristics and analogies
with the case of polymers will thus prove useful. Polymers in turbulent flows in fact may
undergo the so called coil–stretch transition if the local straining exceeds the restoring
spring force of the polymer for a time long enough during the particle evolution. Such
transition can be described by the tendency toward an unbounded growth of the polymer
conformation tensor for continuum models as, e.g.,the Oldroyd-B (Balkovsky et al. 2000;
Boffetta et al. 2003).
In §4 the PDFs of droplet sizes are related to the large deviation theory of the largest

Finite Time Lyapunov Exponent for the case of unity viscous ratio. The formalism can
be used to make quantitative predictions of the critical capillary number above which
moments of the droplet size distribution diverge. The results from DNS are compared
with these theoretical predictions.
Besides the droplet size distribution, one is also interested in statistical characteriza-

tions of droplet shapes and orientations with respect to the local flow. Such properties
are evaluated based on DNS and the M&M model, and are presented in §5. Variations
of the ratio of droplet to carrier fluid viscosities are examined in §6. Conclusions are
presented in §7.

2. Lagrangian model for viscous, tri-axial ellipsoidal droplets in

viscous shear flow

The model proposed by Maffettone & Minale (1998) considers a drop of a viscous
Newtonian fluid immersed in another viscous Newtonian liquid of the same density,
subjected to flow such that an ellipsoidal drop shape of constant volume is maintained
at all times. Of course, at significant deformations and especially close to the break-up
the ellipsoidal shape is lost. However, some results (Guido & Villone 1998) support the
idea that deformations away from ellipsoidal shapes develop only close to the critical
shape. Under the assumption of ellipsoidal shape, the drop morphology and orientation
can be entirely described by a positive–definite second–order tensor Mij . The tensor M
is symmetric and its three eigenvalues correspond to the square of the semi–axes length
while the eigenvectors give the orientations of the ellipsoid’s axes. It can be understood
as the inertia tensor of a droplet with constant density ρd:

Mij(X(t), t) = ρd

∫

V

(ri −Xi(t))(rj −Xj(t))dV, (2.1)

where the integral is extended over the whole volume of the droplet around the instan-
taneous position of its center of mass, X(t).
In the M&M model the drop deformation and orientation dynamics are modeled using

the rotation and strain rate of the underlying flow field (whose velocity components are
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ui), Ωkj = 0.5(∂juk − ∂kuj) and Skj = 0.5(∂juk + ∂kuj) as:

dMij

dt
= ΩikMkj −MikΩkj + f2(µ)(SikMkj +MikSkj)−

f1(µ)

τ
(Mij − g(IIM , IIIM )δij),

(2.2)
where f1 and f2 are two functions that depend upon µ = µi/µo (the ratio of viscosities
of the inner, µi, and outer, µo, fluids), τ = µoR/Λ is the drop/bubble shape relaxation
time-scale and R the initial radius of the droplet (which is assumed spherical, initially).
In equation (2.2) the first two terms on the right hand side stem from the local rotation
rate while the terms multiplied by f2 define the stretching due to viscous forces. The last
term, proportional to f1, models the tendency to restore the spherical shape induced by
surface tension effects. Also,

g(IIM , IIIM ) = 3
IIIM
IIM

(2.3)

enforces exact conservation of the droplet volume at all times as demonstrated by Maffettone & Minale
(1998). The factor g(IIM , IIIM ) depends upon the invariants of M:

IM = Mkk, IIM = −1

2

(

MijMij − I2M
)

, IIIM =
1

3

(

MikMkjMji − I3M + 3IMIIM
)

.

(2.4)
Possible expressions for the rotation and stretching prefactors f1, f2 which match the
known exact asymptotic limits for small Ca, for infinite viscous ratio 1/µ → 0 and for
µ = 1 are given by Maffettone & Minale (1998) as:

f1(µ) =
40(µ+ 1)

(2µ+ 3)(19µ+ 16)
; f2(µ) =

5

2µ+ 3
. (2.5)

A number of other droplet models exist and Minale (2010) provides a review of the many
other approaches available to predict droplet dynamics and deformations in viscous flows.
Here we use the above M&Mmodel because of its relative simplicity and successful testing
under various smooth flow conditions (Guido et al. 2000b; Minale 2004, 2008, 2010). For
neutrally buoyant small droplets placed in a turbulent flow, the Lagrangian evolution
of equation (2.2) must be solved together with the droplet position advected as a fluid
particle.
For future reference and convenience, we also provide a dimensionless version of the

M&M model that uses the velocity gradients (i.e. the small-scale turbulence inverse time-
scale) to normalize time, and the initial droplet size to normalize length-scales (although
since the dynamics are homogeneous with M, its non-dimensionalization is not relevant).
The reference inverse turbulent time-scale we use is defined as

Gt =

〈

(

∂u1

∂x1

)2
〉1/2

. (2.6)

Also, we define a capillary number according to

Ca =
µoRGt

Λ
= τ Gt. (2.7)

Defining S′

ij = Sij/Gt, Ω
′

ij = Ωij/Gt, and t′ = tGt, the equations are written in dimen-
sionless form as follows:

dMij

dt′
=

[

f2(S
′

ikMkj +MikS
′

kj) + Ω′

ikMkj −MikΩ
′

kj

]

− f1
Ca

(

Mij − 3
IIIM
IIM

δij

)

.

(2.8)
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N Reλ η δx ε ν τη tdump δt TL Gt

Run I 512 185 0.01 0.012 0.9 0.002 0.047 0.004 0.0004 2.2 5.48
Run II 2048 400 0.0026 0.003 0.88 0.00035 0.02 0.00115 0.000115 2.2 11.4

Table 1. Eulerian parameters for the two set of data from the DNS of homogeneous and
isotropic turbulence. N is the number of grid points in each spatial direction; Reλ is the Tay-
lor-scale Reynolds number; η is the Kolmogorov dissipative scale; δx = L/N is the grid spacing,

with L = 2π denoting the physical size of the numerical domain; τη = (ν/ε)1/2 is the Kolmogorov
dissipative time scale; ε is the average rate of energy injection; ν = µ0/ρ is the kinematic viscos-
ity; tdump is the time interval between two successive data recordings along particle trajectories;
δt is the time step of the model integration; TL = L/U0 is the eddy turnover time at the integral
scale L = π, U0 is the typical large-scale root-mean-square velocity and Gt is the reference
inverse turbulent time scale. Averages are performed over two large eddy turnover times.

Another characteristic time–scale exists, the Lagrangian correlation time of the velocity
gradient tensor elements. This correlation determines the temporal persistence of the
applied straining and rotation rates. It is known that the correlation time scales of the
strain–rate and vorticity differ (Guala et al. 2007; Yeung et al. 2007; Yu & Meneveau
2010a,b) but both are known to scale with the Kolmogorov time–scale. Hence, they are
of the order of 1/Gt, but possibly with a large prefactor in the case of vorticity.
Among others, we are interested in determining whether there is a steady state solution

for the “size” of the droplets defined in terms of the three semi–axes of its ellipsoidal
shape. Let us denote the eigenvalues of M as d21, d

2
2 and d23, ordered according to d1 >

d2 > d3 and where d1, d2 and d3 are the ellipsoid’s semi–axes. We recall that the volume
constraint implies that d1d2d3 (strictly speaking the determinant det(M) = d21d

2
2d

2
3)

remains constant in time. For large deformations, i.e. d1 >> d3, the trace of M (IM =
d21 + d22 + d23) provides information essentially on the largest semi–axis.

3. Results from Direct Numerical Simulations

In this section, numerical solutions of equation (2.2) are presented. As mentioned in
the previous section, we consider the case of droplets with a size much smaller than the
viscous scale and with a negligible mismatch in density with the surrounding fluid. Under
these conditions, the droplet center of mass evolves as a passive tracer in the fluid and we
can extract the time history of the velocity gradients along the Lagrangian trajectories
of point–like particles following the equation:

Ẋ = u(X(t), t), (3.1)

where the Eulerian flow evolves according to the three dimensional Navier-Stokes equa-
tions:

∂tu+ u · ∇u = −∇p+ ν∇2
u+ F , ∇ · u = 0 . (3.2)

The Lagrangian signals for the velocity gradient time histories, ∂jui(X(t), t), are obtained
from DNS of homogeneous isotropic turbulence at two Reynolds numbers. The details
about the DNS are given in table (I) (more details about the statistical properties of the
Eulerian and Lagrangian fields can be found in Bec et al. (2010); Cencini et al. (2006)):
The statistically homogeneous and isotropic external forcing F injects energy in the
first low wave number shells, by keeping constant their spectral content (Chen et al.

1993). The kinematic viscosity ν = µ0/ρ is chosen such that the Kolmogorov length
scale η ≈ δx, where δx is the grid spacing: This choice ensures a good resolution of
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the small–scale velocity dynamics. The numerical domain is cubic and 2π–periodic in
the three directions of space. We use a fully dealiased pseudospectral algorithm with
2nd order Adam–Bashforth time–stepping (for details see (Bec et al. 2006; Cencini et al.
2006)). We analyze data from two series of DNS: Run I with numerical resolution of
5123 grid points, and the Reynolds number at the Taylor microscale Reλ ≈ 185; Run II
with 20483 resolution and Reλ ≈ 400. Particle trajectories are recorded at a frequency of
tdump ∼ τη/10 and followed for a total time of the order of 2TL, with TL the large eddy
turnover time of the turbulent flow. We analyze a total of 15×103 and 7×103 trajectories
for Run II and Run I, respectively. The integration of equation (2.2) is further refined by
making a linear time interpolation by a factor 10 between two successive recorded data
points along the Lagrangian trajectory.

The evolution of the morphology tensor is stopped when the maximum deformation,
defined as the ratio between d1/d3 exceeds a factor 10

3. While this is an arbitrary criterion
to define a threshold associated with possible subsequent droplet breakup, it has been
verified by various numerical tests (see below) that the dominant features of droplet
dynamics and statistics show little sensitivity to the threshold value. More advanced
criteria taking into account droplet shape instabilities could be used, but especially under
the limiting assumption that the shape remains ellipsoidal, this simple type of criterion
is deemed appropriate for the focused objectives of this study.

The initial drop size is assumed to be sufficiently smaller to the Kolmogorov scale η so
that even after severe deformations the largest scale still falls within the viscous range.
The cut-off ratio d1/d3 = 103 means, due to the volume conservation, that d1 is at most
a factor 100 times the original scale. In practice the viscous range extends to scales of
the order of 10η so that effectively, we are assuming that the initial scale is smaller or
equal to η/10. Note that due to the homogeneity of Eq. 2.2, we can rescale Mij using the
initial radius as characteristic length-scale without modifying the equation. Therefore the
initial physical length-scale of the droplet does not explicitly enter into the dynamics,
except through the relaxation time-scale τ .

We begin by showing some typical time evolutions of droplets for different values of
the Capillary number. In figure 2 we show the time evolution of the square–root di(t) =

(λ
(i)
m )1/2 of the three morphology tensor eigenvalues for different relaxation times τ , and

for µ = 1, along a sample droplet trajectory. As one can see, at increasing relaxation
time, i.e. increasing Capillary number for a given turbulence intensity, the droplet tends
to deform more and more. For instance, the time history here represented shows a peak in
the deformation at a time t ∼ 100τη during the droplet evolution where only the droplet
with Ca = 0.16 survives since it did not exceed the d1/d3 = 103 threshold.

In figure 3 we show an enlargement of this event, where one can better see the transition
from an oblate to a strongly prolate shape during the droplet evolution. Only later the
surviving droplet recovers a spherical–like shape with d1 ∼ d2 ∼ d3 ∼ 1. In the same
figure, on the right panel we show the time history of the three diagonal components of the
velocity gradient tensor, in order to highlight the noticeable correlation between events
where the droplet is strongly deformed and the underlying turbulent fluctuations of the
fluid velocity field rate of deformation. As one can see, the event around t ∼ 100τη, where
droplets with large Capillary number break, is preceded by strong intense oscillations in
the turbulent stretching rates.

As a next step, we focus on the distribution of droplet sizes. Figure 4 shows the

PDFs of the largest M eigenvalue, λ
(1)
m = d21, for various values of Ca for both runs at

the two Reynolds numbers. As can be seen for increasing Capillary number, when the
surface tension is decreased (for a fixed mean turbulent straining time-scale), longer tails
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Figure 2. Time signals of the square–root of the eigenvalues, d1(t)(= [λ
(1)
m ]

1/2
), d2(t) and d3(t)

in logarithmic units obtained from solving the Maffettone & Minale droplet model coupled
to Lagrangian time history of turbulent velocity gradients from DNS at Reλ = 185. We also
superpose the time history of |A11(t)|, the absolute value of one component of the velocity
gradient tensor (solid line).
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Figure 3. Left: Enlargement of the previous panel for Ca = 0.16 around the peak of the
deformation of the droplet. Right: the corresponding evolution for the three diagonal entries of
the velocity gradient tensor, A11(t), A22(t), A33(t).

develop and very large droplet deformation can occur. The tails approach a power–law
form P (x) ∼ x−q with q decreasing (i.e. the tails becoming less steep) at increasing
capillary number. Similar behaviour can be observed at larger Reynolds numbers as
shown in the right panel of the same figure.
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Figure 4. Probability density functions of largest eigenvalue λ
(1)
m of the morphology tensor

M, obtained from solving the Maffettone & Minale droplet model coupled to Lagrangian time
history of turbulent velocity gradients from DNS at Reλ = 185 (left) and Reλ = 400 (right).
Different curves correspond to different values of the capillary number, both below and above
the critical value, Cac ∼ 0.42. The solid line represents the power law behaviour ∝ x−1. Curves
are shifted vertically for the sake of presentation.

At capillary numbers above a threshold value, it is apparent that the PDF develops a
−1 power–law tail, q → 1.

For such tails, while for finite size systems we may operationally measure the PDFs due
to the finite threshold imposed (we cannot exceed a maximum ratio between the highest
and the lowest eigenvalue), if one were to imagine a system without such cutoffs, the PDF
could not be normalized because its integral diverges at large values. The transition to
this behaviour appears to occur near Cac ≈ 0.4 for both Reλ = 185 and Reλ = 400.
We interpret such transition as follows: for Ca > Cac if one waits long enough, with
probability equal to unity all droplets would break eventually. For smaller Ca, breaking is
still possible for some droplets (as, e.g. shown in figure 2), but large deformations become
exponentially less probable. In the next section an attempt will be made to predict this
critical value of Ca based on knowledge about turbulence small–scale statistics.

In figure 5 we show the dependence of the PDFs on the d1/d3 threshold chosen as
a criterion for droplet breakup, i.e. as a rule to stop the droplet trajectory. As is quite
apparent, increasing the threshold leads to longer and longer tails of the PDF without
changing its main features. Using high threshold values enables us to exhibit the power–
law scaling of the PDF that develops for large scale disparities d1/d3.

4. Cramer function formalism and finite–time Lyapunov exponents

In this section we aim at establishing a semi analytical tool to predict the PDF shape
of the maximal elongation of the droplet in the case when the viscosity ratio is unity,
µ = 1. In such a case, the stretching and the rotation terms of the M&M model coincide
with the ones describing the stretching and rotation of an infinitesimal volume of the fluid
and therefore can be connected to the statistics of the Lyapunov exponent of the particle
trajectories inside the turbulent flow (Bec et al. 2006). It is useful in this case to return
to the dimensional description, equation (2.2), in order to have a clearer understanding
of the physical origin of all terms. When f2 = 1 (viscosity ratio unity) the rotation rate
and deformation rate tensors sum up to give the following evolution for the morphology
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Figure 5. Probability density functions of largest eigenvalue λ
(1)
m of the morphology tensor

M, obtained from solving the Maffettone & Minale droplet model coupled to Lagrangian time
history of turbulent velocity gradients from DNS at Reλ = 185. Different symbols denote dif-
ferent imposed cutoff values for the maximum deformation value d1/d3 = 10, 102, 103. Results
are shown for two Capillary numbers Ca = 0.16 below (left) and above (right) Cac. We also
superpose the power law behaviour ∝ x−1 predicted for the saturation slope when Ca > Cac.

tensor of the droplet:

dMij

dt
= (AikMkj +MikAkj) − f1

τ
(Mij − g(IIIM , IIM )δij) , (4.1)

where everything is expressed in terms of the velocity gradients, Aik = ∂ui/∂xk. It is
useful here to point out that the evolution given by (4.1) is very close to the one of
polymer stretching by a turbulent flow as for the case of the approximation given by the
Oldroyd-B model. In the latter the role played by the morphology tensor M is played
by the polymer conformation tensor Cij(X(t), t) = RiRj (where R is the “ends—to—
ends polymer vector” and the average is intended over the thermal noise applied to each
molecule inside an infinitesimal volume advected by the flow, see Balkovsky et al. (2000);
Chertkov (2000) for a rigorous discussion). For the polymer case, the linear damping is
given by a relaxation time–scale toward the equilibrium isotropic extension. The only
difference between the two cases is that for polymer there is no need to enforce the
volume conservation and therefore the term g is typically set to unity in an equation
like Eq. 4.1. For the tails of the probability distribution of the largest eigenvalue of
M, these differences are expected to have negligible effects since along the tail we have
Tr(M) >> 1 and in that limit Mij − gδij ≈ Mij (g tends to zero since IIM grows while
IIIM remains unity). The long time evolution of the droplet morphology tensor, given
by (4.1), will depend critically upon the balance between two different mechanisms: The
first is given by the accumulation of the stretching effects induced by the underlying flow,
as expressed by the terms (AikMkj +MikAkj) on the right hand side of equation (4.1).
The second mechanism is given by the relaxation toward an isotropic configuration as
expressed by the term (f1/τ)(Mij − gδij). If the former is strong enough to dominate
the long term behaviour, the droplet will be in a stretched configuration (and it keeps
stretching with one or two of its length-scales growing in an unbounded fashion if not
resisted by additional nonlinear stiffness mechanisms.) In the opposite case it will be, on
average, in a coiled configuration, where we have used this term to stress the analogy with
the polymer dynamics. In order to predict the critical capillary number where stretching
will overwhelm the surface tension effects it is possible to apply the same balance already
successfully used for the polymer case by Balkovsky et al. (2000); Boffetta et al. (2003).
The idea is to control the asymptotic behaviour of the trace of the morphology tensor,
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Tr(M(t)) observing that thanks to (2.1) it is equivalent to the tensorial product of
two infinitesimal vectors defining the position of a generic particle inside the droplet,
Ri = xi −Xi(t). We therefore can restrict ourself to study the evolution of a fluid line
element in the fluid:

dRi

dt
= AikRk (4.2)

and then taking the square of it in a suitable sense. To characterize the long-time evolution
of (4.2) it is useful to introduce the so-called finite–time Lyapunov exponents (FTLE):

γ(t) =
1

t
log

( |R(t)|
|R(0)|

)

, (4.3)

which for large t tends with probability one to the largest Lyapunov exponent governing
the chaotic properties of particles trajectories in the turbulent flow, λL = limt→∞ γ(t).
However, if we do not perform the limit t → ∞, the FTLE exhibits deviations from the
mean. These fluctuations are described by the probability distribution function of γ at
various times via the large deviation theorem (Frisch 1995):

P (γ, t) ∼ exp(−tS(γ)), t → ∞. (4.4)

The function S(γ) is the so–called Cramer function (see Frisch (1995) for a text book
introduction and also Paladin & Vulpiani (1987); Eckmann & Procaccia (1986)) which
must be convex, semi–positive definite and vanishing at γ = λL, because for t → ∞
we must have with probability one that the FTLE converge to the largest Lyapunov
exponent, λL. Combining equations (4.3) and (4.4) one may write for the qth-order
moments of the vector growth:

〈( |R(t)|
|R(0)|

)q〉

=

∫

exp[t (qγ − S(γ))] dγ ∼ exp(t L(q)), (4.5)

where the last passage is obtained in the saddle point limit of large t subject to the
condition:

L(q) = max(qγ − S(γ)). (4.6)

Moreover, one can show that the Lyapunov exponent λL = L′(0) = dL(q)
dq |q=0. We must

now just notice that the stretching part of the evolution (4.1) is twice the right hand
side of equation (4.2), i.e. Mij ∼ RiRj . As a result, we have that the large deviation
properties of the largest eigenvalue of the morphology tensor are controlled by L(2q)
instead of L(q). Considering also the linear relaxation induced by the surface tension
terms and neglecting the O(1) terms in fronts to the δij , which must not be important
when Tr(M) ≫ 1, we end up with the prediction that for large times:

〈[Tr(M(t))]q〉 ∼ exp

[

t

(

L(2q)− q
f1
τ

)]

. (4.7)

It is possible now to derive a criterion for the existence of a stationary probability distri-
bution for the morphology tensor. A stationary PDF must be normalizable at all times,
i.e. the exponent L(2q)−qf1/τ must be zero when q = 0, such that limq→0

∫

xqP (x)dx =
∫

P (x)dx = 1. The latter condition implies that there exists a critical relaxation time τc

such that:

lim
q→0

[L(2q)− qf1/τ
c] = 0, or τc = lim

q→0
(f1/L(2q)) = f1/(2L

′(0)) = f1/(2λL). (4.8)

For τ > τc the tensor does not reach a stationary distribution and it is indefinitely
stretched. In that limit we will have that all moments diverge (which corresponds to
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Figure 6. Cramer function (from Bec et al. (2006)). We show also the parabolic fit that uses
λL = 0.14/τη = 2.97 and σ = 0.19/τη = 4.04 with τη = 0.047.

the Weissenberg criterion for the coil–stretched transition in the case of polymers). For
τ < τc, when the PDF of the trace, x = Tr(M), is normalizable, the tail will scale like

P (x) ∼ x−(1+q̃(τ)). (4.9)

The critical exponent of the tail is given by the largest order of the moment that does
not diverge, i.e. q̃(τ) is such that

L(2q̃(τ)) =
f1q̃(τ)

τ
. (4.10)

For many practical purposes, the Cramer function S(γ) can be expanded in Taylor series
around its minimum up to second order,

S(γ) = (γ − λL)
2/(2σ), (4.11)

where σ is a parameter characterizing the degree of intermittency and variability of the
FTLE. The Cramer function of Navier–Stokes turbulence in three dimensions has been
measured in prior work, based on Lagrangian tracking and integration of fluid velocity
gradients from DNS at 5123 and Reλ = 185 (Bec et al. 2006). In figure 6 this measured
Cramer function is shown and the measured (fitted) λL and σ are given in the caption.
Let us first notice that the Cramer function cannot be exactly parabolic for all values of
γ; this is due to the fact that the incompressibility constraint forces γ > 0. Nevertheless,
it is possible to find a good parabolic fit for the right branch of the parabola, the only
one that will be of interest for us because the condition (4.10) gives values of q̃(τ) that
correspond to γ(q̃) > λL (see below).

4.1. Comparison with DNS

In the DNS used to obtain the results shown in figure 4, the parameters f1 = 0.457
and f2 = 1 (unity viscous ratio) were used. Also, for the DNS flow, the main Lyapunov
exponent is λL ∼ 2.97 (Bec et al. 2006). Therefore we predict as a critical relaxation
time scale the value

τc = f1/(2λL) ∼ 0.077, (4.12)
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τ = 0.03 τ = 0.05 τ = 0.06 τ = 0.077
Ca = 0.16 Ca = 0.27 Ca = 0.33 Ca = 0.42

q̃(τ ) 1.15 0.39 0.21 0

Table 2. Values of the asymptotic power-law slopes for the PDF of the trace of the
morphology tensor for Reλ = 185 simulation, for these parameters we have τ c ∼ 0.077

(Cac ∼ 0.42)

which in terms of the critical Capillary number means Cac = τc〈(∂u1/∂x1)
2〉0.5 = 0.42.

This value of critical Capillary number or τc is very well confirmed by the results shown
in figure 4, where the PDFs were shown to saturate to a −1 tail for τ ∼ 0.077 (Cac =
0.42) for the Reλ = 185 DNS case. Because the dependency on the Reynolds number
enters only via the Lyapunov exponent λL, which is known to follow the relation λL ∼
0.14/τη (Bec et al. 2006), it is also possible to predict the critical relaxation time for the
Reλ = 400 case. In particular, replacing the values for τη given in table (I) we must
have τc ∼ 0.033 for Reλ = 400, which would correspond to Cac ∼ 0.37 again in good
agreement with the observed accumulation of the PDF’s tail shown in the left panel
of the same figure. Notice that the critical Capillary number should at first sight not
depend on Reynolds number because the two quantities λL and 〈(∂u1/∂x1)

2〉0.5 have
the same Reynolds dependency on dimensional grounds. The numerical results shown
in Bec et al. (2006) suggest the presence of a small intermittency correction to the rule
λL ∝ 1/τη. Moreover, in order to understand the Reynolds dependency of eq. (2.7)
one would need also to consider the intermittent corrections to the statistics of velocity
gradients (Benzi et al. 1991). It is difficult to say if the observed small dependency of Cac
on Reynolds is due to these two combined intermittent corrections or it is just induced
by small statistical fluctuations on the measured quantities. Data from a larger variation
in Reynolds are needed in order to answer this important question.
Next, we explore whether relation (4.10) can be used to estimate the PDF slopes for

τ < τc, i.e. before criticality. Again, we use the published Cramer function (Bec et al.

2006) (see figure 6). Using a parabolic fit (4.11), the Legendre transform can be worked
out analytically and the maximum is reached for

γ̃(q) = λL + 2σq. (4.13)

Moreover,

L(2q) = 2qλL + 2σq2, (4.14)

which gives the prediction for the slope (from 4.10):

q̃(τ) =
f1/τ − 2λL

2σ
. (4.15)

The first thing to be noticed is that from equation (4.13), already for q = 0.5 we have
γ̃(1) = λL + σ ∼ 7, i.e. already for q̃ ∼ 0.5 we are probing the far tails of the Cramer
function (6). Hence, to remain within good statistical confidence, we can apply the pre-
diction (4.15) only if it is satisfied for q̃ ≪ 1, i.e. for Capillary numbers and relaxation
times relatively close to the critical ones. In tables (II) and (III) we report for both RUN
I and RUN II the values for the slopes of the PDF tails using the expressions σ = 0.19/τη
and λL = 0.14/τη which we showed in figure 6 to be a good fit for the right branch of
the Cramer function.
In figure 7 we superpose the PDFs of the largest eigenvalue of the morphology tensor
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τ = 0.005 τ = 0.015 τ = 0.025 τ = 0.033
Ca = 0.06 Ca = 0.2 Ca = 0.32 Ca = 0.37

q̃(τ ) 4.1 0.87 0.23 0

Table 3. Asymptotic power-law slopes for the PDF of the trace of the morphology tensor for
Reλ = 400 simulation. For these parameters we have τ c ∼ 0.033, (Cac ∼ 0.37)
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Figure 7. PDFs of the largest eigenvalue of the morphology tensor for Ca = 0.06 (squares),
Ca = 0.16 (circles) and Ca = 0.33 (triangles) as computed from the simulation. The corre-
sponding theoretical power law predictions are shown as solid lines with the predicted slopes
(exponents) noted.

M at different Capillary numbers for some typical values given in tables (II) and (III).
One can notice that by increasing the Capillary number, the theoretical prediction based
on the large deviation theory for the FTLE becomes increasingly better. The deviations
for Ca ≪ Cac could be due to the following reasons: First, as said, for small Ca the
saddle point estimate is dominated by very large values of the FTLE, leading to a bigger
statistical uncertainty. Second, if the Capillary number is small, the stretching terms are
less important, the morphology tensor is closer to its isotropic shape, stretching does
not persist for long times and probably the asymptotic estimate of the large deviation
Cramer function is not suitable for such intermediate situations.

5. Further characterization of droplet orientations and morphology

In this section, we provide results from the analysis of droplets in DNS not only focusing
on the largest eigenvalue as done in the preceding sections, but also characterizing the
droplet morphology and orientation dynamics. In order to characterize the shape of the
particle, we use the deformation parameter also used in Guido et al. (2000b):

P (D), where D =
d1 − d3
d1 + d3

. (5.1)
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Figure 8. PDFs of D = (d1 − d3)/(d1 + d3), for different Ca.

This parameter does not distinguish between disk–like and cigar–like shapes, but for
a sphere one has D = 0 and for the most deformed possible states (either disk– or
spaghetti–like), one has D = 1. In addition, to distinguish also between disk–like and
cigar–like shapes, the s∗ parameter introduced by Lund & Rogers (1994) to characterize
the rate of strain eigenvalues (that add to zero) can be used if properly modified. For
this purpose, the eigenvalues must first be re–defined in terms of logarithmic variables.
We define

ri = ln(di/di(0)), (5.2)

then
∑3

i=1 ri = 0. We then define the Lund & Rogers (1994) parameter

s∗ = − 3
√
6

r1r2r3
(r21 + r22 + r23)

3/2
(5.3)

which is such that s∗ = +1 indicates disk–like shapes while s∗ = −1 indicates long fiber–
like shapes. However, s∗ = 0 is somewhat indeterminate: it can mean either a sphere
or an ellipsoid in which the intermediate axes remains undeformed with d2(t) = d2(0)
leading to r2 = 0 and s∗ = 0. Still, peaks of the PDF of s∗, P (s∗), near either s∗ = ±1
can be interpreted quite clearly.
We present PDFs of the parameters D and s∗ in figures 8 and 9, respectively, for

various of the Ca considered from the Reλ = 185 simulation. From the results for D the
trends are clear: for increasing capillary number, the droplets become more and more
anisotropic, with an increasing ratio between largest and smallest principal axes. The
trends shown in figure 9 for s∗ are less monotonic. There is a tendency toward rod–like
shape for capillary numbers approaching the critical value, and a small recovery towards
more disk–like shapes for very large Capillary numbers.
Prior work has studied orientation dynamics and tumbling rates of non–deforming

rigid ellipsoidal particles. In particular, e.g. works of Shin & Koch (2005); Parsa et al.

(2012); Chevillard & Meneveau (2013) show that particles with one elongated direction
and two small ones (fiber or rods—like, s∗ → −1) tend to align with the vorticity,
which implies rotation around the major axis thus effectively reducing the tumbling rate
of that major axis. As the anisotropy of the particle is increased, its tumbling rate is
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Figure 9. PDFs of s∗, for different Ca.

reduced. Conversely, Parsa et al. (2012) have found that the tumbling rates of disk–like
particles (two large and one very small major axis, s∗ → 1) is significantly increased. This
trend is due to the fact that disk–like particles tend to align with the most contracting
eigendirection of the strain–rate tensor which, in turbulence, happens to be preferentially
orthogonal to the vorticity vector (Chevillard & Meneveau 2013). The vorticity then
spins the disk strongly, not unlike setting a coin spinning on a tabletop. However, if the
particle is allowed to deform, these trends can be expected to be modified significantly.
Hence, the alignment properties of droplets with the strain–rate and vorticity are of
considerable interest.

In order to characterize the orientation statistics of droplets relative to the flow field, we

are interested in the PDFs of cosine of angles between, e
(1)
m , the eigenvector corresponding

to the largest semi-axis of the morphology tensor and a few characteristic directions of the
underlying flows (we will consider only absolute values of the cosines to avoid problems
with direction ambiguities):

P (|e(1)m · ω̂|), P (|e(1)m · e(1)s |), P (|e(1)m · e(2)s |), P (|e(1)m · e(3)s |), (5.4)

where ω̂ is the unit vector in the vorticity direction, and e
(k)
s (k = 1, 2, 3) are the

three orthogonal strain–rate eigendirection unit vectors. In terms of the alignment of the
ellipsoids relative to features of the turbulent flow, in figures 10, we show PDFs of the
cosine of the angle with each of the four directions characterizing the local turbulent flow:
the three strain–rate eigendirections and the vorticity for two different Capillary numbers.
From these results it is apparent that the droplet largest eigendirection tends to align
with the most extensive strain–rate eigendirection, as well as with the vorticity. It also
often aligns with the second intermediate strain–rate eigendirection (which itself is well
aligned with the vorticity). Conversely, it tends to be orthogonal to the most contracting
eigendirection. At increasing Capillary number, the alignment is less pronounced, since
the droplet has less time to synchronize with the underlying flow topology before it
deforms and reaches the threshold deformation levels leading to eventual breakup.
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vorticity and the three eigenvectors of S, for two Ca (left and right).
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very small. As a result the deformation of the droplet is much smaller if the Capillary number
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6. Effects of the viscosity ratio

When changing the viscosity ratio µ = µi/µo, we change the relative importance of
stretching with respect to rotation in equation (2.2). In figure 11 we show their functional
dependency as a function of µ, as given by the phenomenological dependency of f2 and
f1 proposed by Maffettone & Minale (1998). We can see that while the ratio f1/f2 is
always close to 0.45, for large viscosity ratios the values of f2 and f1 can change up to a
factor 4− 5.
Next, it is of interest to attempt to apply our earlier Cramer–function predictions

to the case of different viscosity ratios. For instance, for the case at µ = 10, loosely
applying an ‘order–of–magnitude’ estimate one would have predicted that the transition
to a ‘non–stationary’ regime (unbounded growth of the major axis or axes) would happen
when:

f2(10)λL ∼ f1(10)/τc. (6.1)

This is because now the stretching part is proportional to f2 and we are supposing that
the symmetric stress tensor, Sij = (Aij +Aji)/2, leads to the same Lyapunov exponent



Deformation statistics of small drops in turbulence 19

10-6

10-4

10-2

100

102

104

106

100 101 102 103 104

P
D

F

λ(1)
m

Reλ=185, µ=10

x-1.5 Ca=0.32
Ca=0.66
Ca=1.35
Ca=2.47
Ca=3.47

10-8

10-6

10-4

10-2

100

102

104

100 101 102 103 104

P
D

F

λ(1)
m

Reλ=185, µ=0.01

x-1

Ca=0.16
Ca=0.32
Ca=0.42

Figure 12. Left panel: PDF of the largest eigenvalue of the morphology tensor for various
Capillary numbers, for viscosity ratio µ = 10. Note that the straight line has a slope −1.5 and
that the saturation of the tails happens at a higher Ca value compared to the critical Capillary
estimated by (6.1). Right panel: the same for µ = 0.01. Now the transition is very similar to the
case µ = 1, and the tail has the -1 power law slope.

λL as that of the original one, Aij . If this were true, we should expect for the transition to
occur at Cac ∼ 0.81 (because from Eq. 6.1 we have τc = f1(10)/f2(10)λ

−1
L = 0.148, and

with Gt = 5.48 we obtain Cac = τcGt = 0.81). This, however, is not what is observed
in the numerical results shown in figure 12. As one can see on the left panel of figure 12,
the saturation seems to be present, but now at around Cac ∼ 2.5, i.e. it is delayed. This
might be understood heuristically by noting that the rotation is decorrelating the droplet
orientation from the stretching rate thus making strong deformations less likely. Moreover
the slope of the PDF is not close to −1, meaning that the physics of the deformations
and relaxations, and its relationships to the flow, differ significantly from the µ = 1 case.
Similarly, on the right panel of the same figure the results for µ = 0.01 are shown.

At small µ values, one expects the effects of rotation to be negligible compared to the
stretching and relaxation. As can be seen, the transition happens almost at a similar
value of the case µ = 1 and the PDF has a characteristic −1 slope in this case.
In order to better highlight the dependency upon µ, in figure 13 the results are super-

posed for a fixed Ca value for three viscosity ratios µ = 0.01, 1, 10. As one can see, the
case at µ = 0.01 stretches slightly better than µ = 1 (f2 is larger for µ = 0.01). On the
other hand, as we knew already, the µ = 10 is very contracted, rotation here dominates.
In figure 14 the alignment between the maximum elongation and the vorticity and the
strongest stretching rate is shown for different viscous ratios at Ca = 0.33. Notice that
only for µ = 1 we have a very similar weight of rotation and stretching. For µ = 10
stretching is fully uncorrelated with the highest deformation, as expected. On the other
hand for µ = 0.01 the elongation is more oriented with the strain rate. In figure 15 we
show scatter plots of d1/d2 vs d2/d3 at changing τ and the viscous ratio µ. Notice how
the region corresponding to disks d1/d2 ∼ O(1) and d1/d3 ≫ 1 is strongly depleted for
the case when µ = 10, i.e. when the stretching rate is not efficient. Evidently, in this case
the droplets tend to be aligned with vorticity and become rod–like.

7. Conclusions

The statistical distribution of semi–axes scales and orientations of small ellipsoidal
droplets (with a size smaller than the Kolmogorov scale) in fully developed homogeneous
and isotropic turbulent flows has been studied. Droplets are supposed to be fully passive
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Figure 14. PDFs of cosine of angles. Comparison between alignment with vorticity and
strain-rate eigendirections for three different viscosity ratios, at Ca = 0.33.

and diluted (no droplet–droplet interactions). In the limit of very small size, droplets can
be considered inertialess with their centre of mass following the trajectories of a fluid
tracer. Deformation induced by turbulent strain-rate and rotation is studied by means
of a simplified model proposed by Maffettone & Minale (1998) that considers droplets
to remain of ellipsoidal shape and including a restoration force due to surface tension
effects that conserves droplet volume. A critical capillary number is identified at which
one obtains unbounded droplet growth along one or two directions (which eventually
should lead to droplet breakup). At unity droplet–to–fluid viscous ratio, one can exploit
analogies with polymers to obtain analytical predictions of the critical Capillary number
as a function of the largest Lyapunov exponent of the trajectories of fluid particles and
the relaxation time–scale. Large deviation theory for the largest Finite Time Lyapunov
exponent allows to predict also the power law tail of the PDF of the largest droplet
dimension. Another interesting question is connected with the temporal properties of
the droplets dynamics. In order to determine a break-up frequency one needs to study
numerically the probability of survival of different droplets and compare it with some
estimate connected to the exit-time along the droplet trajectory (Babler et al. 2012), i.e.
the average time it takes for a droplet to experience a total stress strong enough to break
it. This is connected to the Lagrangian time-decorrelation, persistency and efficiency of
stress along the trajectory. A study in this direction is left for future work. For cases when
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Figure 15. Scatter plot of ratio between ellipsoidal semi-axes sizes.

the viscosities of droplet and outer fluid differ, such that vorticity is able to decorrelate
the droplet from the straining directions, the large deviation theory prediction fails. The
results highlight the complex dynamics of droplet deformation and orientation and opens
the way to estimate/model the feedback on the flow due to the presence of deformable
droplets.

The case of droplets/bubbles with a large density mismatch with respect to the density
of the underlying fluid can be treated with the same approach of M&M to study the
deformation along point-like particles but following inertial trajectories (Bec et al. 2010)
instead of fluid tracers as done here. For situations in which there is a slip velocity
between the droplets and fluid, it is necessary to add the stress induced by the Stokes
drag in order to evaluate the deformation of the droplet.
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