
  

  

Abstract - The paper presents the first results of a research 
aiming to develop a transit trip planner to support the user with 
personalized pre-trip information. The first part describes the 
user needs and the architecture of the system. The second part 
deals with the modeling framework implemented to provide the 
best path alternatives from the traveler’s utility point of view 
according to real-time data and personal user preferences. 
Finally, considerations on operative aspects based on some 
experimental evidences are presented. 

I. INTRODUCTION 

Traditional Traveller Information Systems (TIS) for 
transit networks can be classified as: pre-trip information 
systems, which support user choices before departure with 
one or more possible alternative paths; en-route information 
systems, which assist user during the trip and to which user 
can access via mobile devices; at-stop information systems, 
which mainly concerns the arrival times of approaching 
vehicles provided via VMS (Variable Message Signs) panels 
at stops.  

Advanced Traveler Information Systems (ATIS) include 
Trip Planners able to identify the best travel alternatives on 
multiservice transit networks (including rail, metro, tram, bus 
and pedestrian) by using real-time data and by providing 
information for each travel alternative about: travel time, 
monetary cost, arrival times and other service characteristics, 
pollution, disruptions and so on.  Using an advanced trip 
planner, the user can easily access useful and organized 
information to compare the different alternatives for a 
rational choice of the transport mode [4].  

Advanced transit trip planners, providing accurate pre-
trip information, reduce the uncertainty about routes and 
timetable that is one of the main reasons for rejecting transit 
as travel mode. The added value of ITS to improve transit 
ridership is demonstrated in many studies [1, 10, 21, 23].  

The use of real-time data to improve the accuracy of trip 
planner information is crucial (e.g. in case of interchanges or 
when the user is constrained to the arrival time at destination) 
and it is another of the key features of advanced trip planners. 
In fact, the availability of real-time information allows a 
continuous en-route check of path alternatives, warning users 
about particular problems (e.g. delays, disruptions, 
congestion) on the path originally (pre-trip) recommended, 
and including the calculation of new path alternatives from 
the current position to the destination.                                      Results of providing 
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real-time arrival information can be found in [7, 8], while 
[22] investigated the impact of mobile real-time information.                                   

Moreover, trip planners have to consider the different 
path alternatives on the basis of the different weights of path 
attributes (e.g. walking time, waiting time, on board time, 
transfer time) defined in relation to personal user preferences, 
which differ among users. For this reason, advanced transit 
trip planners have to provide personalized (individual) real-
time information by using learning process mechanisms able 
to track profiled travelers and to give them information 
according to their personal travel habits [2, 19]. 

 The paper presents the first results of an in-progress 
research aiming at developing an advanced trip planner, 
designed for mobile applications, that gives pre-trip and en-
route dynamic real-time information to support the user in the 
choice of the best path from his/her personal (dis)utility point 
of view on a multiservice transit network.   

In the following, section II illustrates the logical 
architecture of the trip planner according to the user needs.                                                                                                                             
Even if the proposed trip planner includes pre-trip and en-
route components, the current state of the research concerns 
the pre-trip component and this paper focuses on the features 
of the trip planner to support the user with personalized pre-
trip information. Section III presents the modeling 
framework to provide personalized pre-trip information, 
focusing on the current state of the research and presenting 
the proposed advances in this field. Section IV describes 
some experimental evidences of the proposed pre-trip choice 
modeling framework carried out in the metropolitan area of 
Rome. Finally, section V reports some conclusions and the 
future developments of this research. 

II. USER NEEDS AND LOGICAL ARCHITECTURE  
The logical architecture of the system has to be developed 

considering the user needs that the trip planner has to satisfy.    
User needs can be classified according to the required pre-
trip and/or en-route support. 

The pre-trip support concerns transit path alternatives 
according to the desired arrival time and some path attributes 
(departure time, walking times and distances, waiting time at 
stops, on-board travel time, crowding, transfer number and 
times, and so on) in relation to real-time transit operations. 

On the other hand, the main user needs to support the en-
route choice are path attributes updating on real-time data 
from the user current position to the destination and new 
paths from the current position to the destination, if the 
chosen path becomes not available due to unexpected events 
(e.g. disruptions) or if there are relevant changes in the 
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chosen path due to changes in transit operations (e.g. heavy 
delays). 

According to the above user needs, Fig. 1 illustrates the 
logical architecture of the pre-trip module of the trip planner, 
which has been implemented to support transit users with 
personalized information.  

Referring to Fig.1, the pre-trip personalized advice 
module is enabled by a query of the registered user i, who is 
logged into the system. At time τ in which user i asks for a 
support to travel from origin O to destination D with a 
desired arrival time τAi, the system identifies and ranks the 
path choice set of user i based on his/her preferences and the 
current information on the multiservice transit network (i.e. 
scheduled timetable and real-time data) by using the path 
choice set identification and ranking procedures described in 
section III. 

The ranking of alternative paths to provide to the user i is 
carried out by using the Random Utility Theory [3], through 
which personal utility parameters βi of user i are used to 
calculate utilities for all paths of the choice set of user i (see 
section III.C).  

The path chosen by user i is added to the database of 
revealed preferences of user i, which is used to update the 
personal (individual) parameters βi by using the procedure 
described in section III.D. 

Considering the overall logical architecture, some 
operative aspects have to be considered to capture personal 
user preferences for a new user, a registered user already 

profiled for the same trip purpose and a registered user 
already profiled for a different trip purpose. 

Each new user is asked to fill the registration form, which 
includes data on usual trip: purpose, origin, destination and 
desired arrival time at destination. Then, the user is asked to 
answer to a Stated Preference (SP) survey aiming at 
capturing his/her preferences/habits in path choice in order to 
initialize the main parameters required to apply the path 
choice modeling framework of section III. Experimental 
evidences for the initialization of a new user are deepened on 
section IV. The same procedure is activated for a registered 
user asking to plan a trip for a different trip purpose, as 
different parameters can be considered for the same attribute 
for different trip purposes (e.g. the different weight the user 
can consider for the late arrival time related to business trips 
with respect to leisure ones).  

In the case of registered users asking to plan a trip for a 
previous profiled trip purpose, the trip planner uses the 
previously estimated individual parameters for this user and 
activates the learning process procedure, which uses the 
revealed path choices to the user parameters.  

The chosen path of user i enables the en-route path 
information module, which should be able to assist user i 
during the trip (Fig.1). The en-route trip planner development 
is one of the future perspectives of this research. 
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Figure 1.  System architecture: pre-trip personalized information 

 

III. TRANSIT PATH CHOICE MODELLING  
Transit networks are characterized by different boarding 

stops and available runs for the same Origin-Destination 
(O/D) pair and target time (e.g. desired arrival time). So, 
transit trip planners have to identify travel alternatives (paths) 
both in space (among stops) and in time (in relation to the 

user desired arrival time and/or the departure time of transit 
vehicles at stops).  

A transit path k represents the space-time sequence of 
transport infrastructures and services used by users travelling 
from an origin o at a given origin departure time τDi to a 
destination d with the relative arrival time at destination τd. A 
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path also includes access stop with relative arrival time, run 
departure time (or sequence of lines and runs including the 
relative stop interchanges) and egress stop.  

For this reason, advanced transit trip planners have to use 
a path choice modeling approach that explicitly takes into 
account the above space-time features of path alternatives, 
especially in the case of low-frequency services when the 
explicit arrival/departure time coordination of runs at 
interchanges makes path alternatives possible or otherwise. 

A. State-of-the-art of path choice modeling 
The literature review on transit path choice modeling 

reports two main approaches: the frequency-based and the 
schedule-based. The frequency-based approach [15, 20] 
considers services in terms of sets of runs (lines). In this case, 
run (vehicle) scheduled times are not considered explicitly, 
but we refer to the line headways or to their inverse (the 
service frequencies), from which the name of the approach 
derives. Therefore the frequency-based approach is not able 
to calculate explicitly space-time attributes that users 
consider in relation to single runs, but it can refer only to 
average values relative to lines and it is suitable to be used 
for strategic planning. 

On the other hand, the schedule-based approach [18] 
refers to services in terms of runs using the real vehicle 
arrival/departure time, and hence all the values of level of 
service attributes, evaluated at time in which users make their 
choices, can be explicitly taken into account. This approach 
allows us to take into account the evolution in time of both 
supply and demand, as well as run loads and level of service 
attributes. For this reason, the schedule-based approach is the 
unique way to model transit path choice on multimodal 
networks in presence of ATIS and it is used for the scope of 
this study. The schedule-based approach requires an explicit 
treatment for [18]: the user desired departure or arrival times; 
the supply modeling, which has to take into account each 
single run of transit services with its departure/arrival times 
at stops; the path choice models, which have to consider 
attribute time-dependencies. For a concise state-of-the-art on 
schedule-based approach, the reader can refer to [16]. 
Schedule-based path choice models for public transport, 
which consider a different user behavior according to 
different degrees of information provided to urban transit 
users by ATIS are presented in [6]. The extension to consider 
congestion through explicit capacity constraints is presented 
in [17]. 

B. The pre-trip path choice set generation 
The pre-trip path choice set can be defined through a set 

of rules (selective approach) that allows us to generate 
feasible paths according to traveler characteristics, transport 
system performance (e.g. travel times and costs) and traveler 
behavioral assumptions. It implies that only some of the 
topologically feasible paths are considered. The set of rules 
to reduce the potentially high number of path alternatives can 
be heuristically calibrated by matching them with a sample of 
observed choices (maximum coverage factor method).  

C. The individual path utility model 
Path choice models allow us to estimate the utility 

associated to each path k belonging to a set of possible 

alternative paths defined according to traveller 
characteristics, transport system performance (e.g., travel 
times and costs) and traveler behavioral assumptions.  

Given an O/D pair od and a target time τTTi, an example 
of utility [ ]

TTiOD,V kτ
τ  at time τ associated by user i to the path 

k identified by departure time τDi, access stop s and run r (or 
sequence of runs in the case of interchanges) can be written 
as: 

[ ]
TTiOD, ED k AE k

  
TW ,m m,k OB,m m,k

m
   

CFW ,m m,k MP,m m,k NT ,m m,k

V k ED AE

               [ TW OB

               CFW MP NT ]

= ⋅ + ⋅ +

+ ⋅ + ⋅ +

+ ⋅ + ⋅ + ⋅

∑

τ
τ β β

β β

β β β

(1) 

where: EDk is the Early or Late arrival time (i.e. the 
difference between the desired and the actual arrival time at 
destination) using path k; AEk is the sum of access and egress 
times on path k; TWm,k is the waiting time spent for boarding 
runs of the transit service m (e.g. train, metro, bus) belonging 
to path k; OBm,k is the on-board time spent on the transit 
service m belonging to path k; CFWm,k is the average on-
board crowding degree on runs of transit service m belonging 
to path k; MPm,k is a preference attribute for transit service m 
on path k (e.g. expressed as a function of the travel distance 
on transit service m w.r.t. the total distance on path k); NTm is 
the number of transfers on transit service m belonging to path 
k; βi are the model parameters. They are estimated on time-
dependent attribute values provided by ATIS at time τ. 

Given path utilities, the trip planner ranks the alternative 
paths based on such utilities and suggests such paths to the 
user. 

The estimation of personal model parameters βi of (1) can 
be carried out as follows 

D. The individual pre-trip path utility parameters 
Calibrating user personal path choice parameters implies 

that the model functional form could be the same, as the 
same could be the values of attributes considered in path 
choice, but different set of parameters (different for each 
registered user) have to be considered and calibrated 
according to his/her personal travel preferences. 

The estimation of individual coefficients βi can be 
obtained by a sample of observations of a single user i. The 
best set of βi parameters is the one that allows us to provide 
the best perceived paths and their ranking. 

It is rare to see discrete choice models estimated for 
single individuals [5, 9]. In fact, demand models usually 
simulate the average number of trips of given characteristics 
undertaken by homogeneous user groups. Large choice 
samples of single decision-maker are difficult to be obtained 
and it is easier to have choice samples from many decision-
makers. Therefore, instead of disaggregate or individual 
behavioral models, user groups (homogeneous with respect 
to their attributes, parameters and the functional form of the 
models) have been used and aggregate behavioral models 
have been developed. But, as here detailed, the performances 
of aggregate models appear limited to give personal travel 
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advices, because of the dispersion among users and/or the 
variations in taste/preferences among users. 

The estimation of discrete choice model parameters with 
repeated observations for each respondent gives a correlation 
of disturbances, or heterogeneity (e.g. the parameters can also 
vary for the same user according to travel purpose), which 
refers to variations in unobserved contributing factors across 
behavioral units. If behavioral differences are largely due to 
unobserved factors, and if unobserved factors are correlated 
with the measured explanatory variables, then estimates of 
model coefficients will be biased if heterogeneity and 
correlation are not properly treated. Besides, the collected 
data consist of multiple observations of the same user, the 
assumption of independence between choices for the same 
user may not be appropriate. For this reason, there has been 
growing interest in more advanced logit specifications, such 
as error component or nested logit (i.e. able to consider that 
the paths could be not completely independent due to 
possible overlaps) or mixed logit (i.e. to deal the unexplained 
heterogeneity in choice data, [12])  

A two-step procedure was implemented to obtain the 
individual pre-trip path utility parameters that point out the 
individual preferences. The first step initializes the path 
utility function parameters of a new user, on the basis of 
Stated Preference (SP) surveys. The second step updates the 
initial model parameters by using the individual revealed 
choices acquired by Traveller Tool in past travel experiences.  

As regards the initialization of the path utility function of 
new users, [14] proposed a method in which the updating 
starts from initial average parameters obtained through multi-
user SP interviews. This paper explores a possible alternative 
approach, which requires some data of the new user, i.e. 
origin and destination of a typical and well-known transit 
trip, as well as the desired arrival time. Then, the system 
generates and suggests to user some path alternatives 
according to the system past-recorded data. The data from 
this SP survey are hence used for estimating the preliminary 
parameters of the individual path utility function. 

In the second step, model parameters are updated using a 
user preference learning procedure based on the choice 
revealed when the traveler uses the system. The parameter 
updating procedure can use two different approaches based 
on: Bayesian and batch methods. The Bayesian method is 
characterised by the probabilities of parameter estimators, 
which are usually represented by a normal distribution and 
whose mean values represent the current best estimate of the 
user’s value of the parameters. At each time in which an user  
choice is observed, the system updates the model parameters 
by updating the distribution of each parameter, i.e. by 
updating means and standard deviations using Bayes method. 
The current Bayesian methods of learning continuous 
parameters are not feasible for incremental learning due to 
the long computation times needed for a learning step. For 
this reason, [2] proposed an advanced Bayesian method that 
reduces computation time by assuming a sequential 
processing of parameters and a systematic sampling of the 
parameter space. The batch method delivers a new estimation 
of model parameters when a given number of user choices 
are observed. Such estimation is carried out by a Maximum 

Likelihood approach [3, 13] on the basis of all the available 
observations. 

IV. EXPERIMENTAL EVIDENCES 
In order to investigate some issues of the individual path 

utility model, a prototype version of the pre-trip planner was 
applied to the transport system of the metropolitan area of 
Rome, served by a multiservice transit network operated by 
different companies, where urban bus, tram and metro 
regional railway lines and regional bus lines with an 
integrated fare policy are available. The real-time 
information provided by each agency were integrated within 
an unique trip planner to test effects of pre-trip personalized 
information based on real-time data. In particular, some tests 
were performed to focus on the individuation of the best 
specification of the random utility model and to the 
optimization of parameter initialization and updating 
procedures in order to reduce the time spent by user during 
registration phase. 

The tests were performed considering a working-day 
journey from Frascati (a town near Rome) to the center of 
Rome (Piazza Sempione) with the desired arrival time at 9.30 
am. The distance on the od pair by car is about 25 km (Fig. 
2). Four different paths with an average total travel time of 
about 2 hours were available to travel on this od pair. They 
differ in terms of travel time, waiting and transfer times, 
modes to be used (train, metro or bus) and the early/late 
arrival time respect to desired one. 

 
Figure 2.  Test case: path choice set representation 

A. The individual path choice model 
Different model specifications were tested starting from 

the simplest multinomial logit model (MNL) to the mixed-
logit (MXL) and nested-logit (NSL) ones. Path choice 
models were estimated carrying out a SP survey with 150 
sets of four alternatives on a test user (a university student) 
that was asked to choose the preferred one. The set of 150 
scenarios with 4-alternatives was defined by path alternatives 
randomly extracted from the previous experimented status of 
the transportation system. Even if further analyses are in 
progress, the development of nested and error components 
logit models did not provide satisfactory results. Hence, in 
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the following only the results obtained by MNL (Multinomial 
Logit) and MXL (Mixed Logit with normal distribution of 
parameters) estimations are presented. According to [11], the 
random parameters were selected starting from the 
assumption that all parameters included in logit models could 
be random. Then, only the early/late arrival time was selected 
as random parameter, while the other parameter estimates 
remain quite constant between the two specifications. 
Calibration test using all attributes of Equation (1) were 
performed, but only those reported in Table I were 
statistically significant.  

TABLE I.  MODEL ESTIMATION USING 4-ALTERNATIVE SETS  

 
The estimated parameters corresponding to different 

components of travel time (e.g. waiting, on board and delay 
time) have increasing absolute values for less appreciated 
components. For example, the time spent on the bus is lower 
than on the metro and is about twice lower than the 
early/late arrival time. The lowest value of travel time refers 
to time spent on the regional train. Deepening on results of 
Table I, we can see that the 4-alternative model predicts at 
least the 84% of the chosen paths (see %-of-right), but if we 
also consider the second paths, the %-of-right grows up to 
the 99%. Continuing the analysis of values of Table I, it 
possible to see similar performances of both MXL and MNL 
models. For this reason, for its well-known easy-to-apply 
advantages, we applications below only refer to the MNL 
model. 

B. The initialization parameter estimation 
The main effort in the definition of the procedure for the 

initialization of individual model parameters for new users is 
to minimize the time needed for the estimation of user-
tailored model parameters able to provide path suggestions 
that reasonably are those expected.  

Hence a particular attention should be given to the 
initialization phase, which should not be too long and 
complex to avoid the user becomes bored during this 
operation. The investigation of this problem regards the 
minimum number of scenarios to be proposed to the new 
user and the minimum number of attributes that can be used 
in the initial path utility functions, by considering that the 
number of quite correct estimated parameters could also 
depend on the number of available observations. Therefore, 
the possibility to limit the time the user has to spend for the 
initialization phase was investigated by reducing the number 
of alternatives to be suggested during this operation. The 
analysis was carried out through a further SP survey 
consisting of 150 scenarios with only 2-alternative paths, 

which were randomly selected among the same 4 path 
alternatives described in section IV.  

As previously estimated, different behavioral models 
were taken into account (see Table II) and only MNL and 
MXL (with on-board time on the bus as random parameter) 
models allowed us to obtain satisfactory results. In fact, as 
expected, the %-of-right increased w.r.t. values of Table I 
(e.g. from the 84% to the 93% for the MNL model), but the 
real comparison in model performances have to be carried 
out by considering the 4-alternative scenarios. Therefore we 
calculated the %-of-right in reproducing 4-alternatives and 
in this case (see table II) the MNL models predicted the 
alternatives chosen by user with an 81% rate. Hence, with a 
reasonable reduction of the %-of-right (about 3%), the 
model based on the SP scenarios with 2-alternatives instead 
of that with 4-alternatives can be used and acceptably 
applied to save time in the initialization phase. 

TABLE II.  MODEL ESTIMATION USING 2-ALTERNATIVE SETS. 

 
C. The model parameter updating 

Starting from the above results, the learning process was 
also simulated adding 150 SP survey data with 4-alternative 
sets to the previous 10 observations. The parameters of the 
utility function were estimated varying the number of 
attributes and the number of observations. The parameter 
updating was performed including 10 new observations at a 
time (batch updating). The first results reported in Table III 
shows that the improving of the learning process is quite 
slow because too many observations are necessary to obtain 
a statistically good model. Parameter updating and model 
performances. 

TABLE III.  PARAMETER UPDATING AND MODEL PERFORMANCES. 
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In fact, 60 observations are needed if we consider a 
model with only three parameters and the 80%-of-right, 
while 80 observations are required if we use four 
parameters, and even 120 if five parameters are taken into 
account. It implies that further analyses have to be carried 
out in order to verify if other estimation procedures (e.g. the 
Bayesian method) are more performing in terms of swiftness 
of convergence. 

V. CONCLUSIONS 
This paper presented some first results of a research 

aiming to develop a trip planner able to give pre-trip 
personalized information to the user about travel alternatives 
on a transit network by real-time data.                                                     It is based on a path 
choice modeling framework able to provide transit path 
alternatives on the basis of                    user personal travel preferences 
defined according to a learning procedure.                                                                      

At first, the problem of the definition of the best model 
specification to provide the best paths perceived by each user 
was investigated. Then, the initialization and the updating of 
the model parameters were analysed by pointing out the 
choices made by some students travelling for leisure. 
Experimental evidences show that the model parameter 
initialization phase (performed by SP interviews) can use 2-
alternative scenarios with a minimum number of 10 
observations, through which the estimated parameters of the 
path utility function allow us to suggest the individual 
preferred paths with a good reliability. As regards the 
updating process of individual model parameters, we 
experienced that the process can be quite slow and too many 
observations are needed to reach statistically significant 
results. This conclusion gives the way for the exploration of 
different approaches, including those based on Bayesian 
methods. Further developments of this research are in 
progress. They concern the additional investigation of the 
path choice modelling and the extension of the trip planner to 
provide en-route personalized information. In particular, 
advances in path choice modelling regard the exploration of 
other od pairs, user preferences and model forms and the 
design of ad-hoc SP surveys will be studied for the 
initialization phase aiming at deepening on behavioural 
aspects related to specific user preferences. 
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