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Controllability results for a class of one-dimensional degenerate
parabolic problems in nondivergence form

Piermarco Cannarsa, Genni Fragnelli, and Dario Rocchetti

Abstract. We give null controllability results for some degenerate parabolic equations in non divergence form on
a bounded interval. In particular, the coefficient of the second order term degenerates at the extreme points of the
domain. For this reason, we obtain an observability inequality for the adjoint problem. Then we prove Carleman
estimates for such a problem. Finally, in a standard way, we deduce null controllability also for semilinear
equations.

1. Introduction

During the last forty years controllability problems for parabolic equations has been
widely investigated (see, e.g., [2],[15] and [28]). In particular, the case of uniformly
parabolic equations is well-understood: for all T > 0 there exists a control f ∈ L2((0, T)×
(0, 1)) such that the solution of


ut − a(x)uxx = f(t, x)χω(x), (t, x) ∈ (0, T)× (0, 1),

u(t, 0) = u(t, 1) = 0, t ∈ (0, T),
u(0, x) = u0(x), x ∈ (0, 1),

(1.1)

satisfies u(T, x) = 0 for all x ∈ [0, 1]. Here, a is a positive continuous function on [0, 1]
and χω is the characteristic function of a given non-empty interval ω = (α, β) ⊂⊂ [0, 1].
The reader is referred to [14] for a seminal paper in this research direction, and to [20] and
[30] for the approach based on Carleman estimates. Several results have also been obtained
for semilinear nondegenerate equations, see, in particular, [14], [19], [20], [22].

However, many problems that are relevant for applications are described by degenerate
equations, with degeneracy occurring at the boundary of the space domain. For instance,
degenerate parabolic equations can be obtained by suitable transformations from the Prandtl
equations, see [25]. In a different context, degenerate operators have been extensively stud-
ied since Feller’s investigations in [17], [18], where the main motivation was the rilevance
of the previous problem in transition probabilities.
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Recently, null controllability for degenerate parabolic equations in divergence form has
been the subject of several papers. In [5] and [6] the regional null controllability of


ut − (a(x)ux)x = f(t, x)χω(x), (t, x) ∈ (0, T)× (0, 1),

u(t, 0) = u(t, 1) = 0, t ∈ (0, T),
u(0, x) = u0(x), x ∈ (0, 1),

(1.2)

has been studied directly, using a technique based on cut off functions. In [1], [7], [8], [9]
and [24] observability results for the adjoint problem of (1.2) are obtained using Carleman
estimates. Then, the null controllability of (1.2) on the full interval [0, 1] is derived by
standard arguments. Several results have also been obtained for a semilinear version of
(1.2), see, for example, [1], [4] or [5].

One of the main goals of this paper is to provide a full analysis of the null controllability
problem for (1.1) when a degenerates at x = 0 and x = 1, satisfying suitable assumptions
near these points (see Hypothesis 3.1). For example, an interesting model problem of (1.1)
is the one with

a(x) = xK1 (1 − x)K2 , K1,K2 ∈ (0, 2). (1.3)

Indeed, for K1 = K2 = 1 and f = 0, (1.1) is related to the Feller semigroup associated to
the Wright-Fischer diffusion process in [0, 1] (see, e.g., [21], [23] and [29]). We observe
that the restrictionK1,K2 ∈ (0, 2) is natural if we want to obtain global null controllability:
if K1 or K2 ≥ 2, then the model fails to be null controllable (see Remark 4.6).

Let us now explain the main difference as far as controllability is concerned, between
degenerate parabolic equations in divergence form such as (1.2) and our problem (1.1).
Clearly, equation (1.1) can be recast in divergence form as follows

ut − (a(x)ux)x + ax(x)ux = f(t, x)χω(x) (1.4)

at the price of adding the drift term axux. Such an addition has major consequences. Indeed,
as described in [3], degenerate equations of the form (1.4), are well-posed inL2(0, 1) under
the structural assumption

|ax(x)| ≤ C
√
a(x) (1.5)

where C is a positive constant. Observe that we need well-posedness in L2(0, 1) since
the results of [24] for (1.2) are obtained in such a space. Now, imposing (1.5) on ax for
a(x) = xK givesK ≥ 2. So, in view of the above considerations, the conditions that ensure
that (1.4) is well-posed prevent (1.4) from being null-controllable. Another difference
between (1.2) and (1.1) is the fact that the natural space to study (1.2) is L2(0, 1) whereas
(1.1) is more conveniently set in the weighted space
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L2
1
a

(0, 1) :=

u ∈ L2(0, 1) |

1∫
0

u2 1

a
dx < ∞


 .

In such a space, (1.1) is well-posed and operator auxx turns out to be self-adjoint, see [3],
[16] and section 2 of this article for details.

The main technical part of the paper is, as in [24], the analysis of the adjoint problem
of (1.1). In order to decouple the difficulties related to degeneracy at 0 and 1, fixed h ∈
L2

(
(0, T);L2

1
a

(0, 1)
)
, we consider two parabolic problems in two different domains, namely

(Pi)i=1,2



vt + a(x)vxx = h(t, x), (t, x) ∈ Qi := (0, T)× Ji,

v(t, ∂Ji) = 0, t ∈ (0, T),
where J1 := (0, j1) and J2 := (j2, 1) are proper subintervals of (0, 1). Notice that, for
both (P1) and (P2) a degenerates only at one point. We then derive, for any (sufficiently
smooth) solution v of (Pi)i=1,2, the Carleman estimates∫

Q1

(
sθv2

x + s3θ3
(x
a

)2
v2

)
e2sϕ1 dxdt ≤ C

∫
Q1

h2 e
2sϕ1

a
dxdt

+ 2s C

T∫
0

θ(t)
[
xv2
xe

2sϕ1

]
(t, j1)dt

(1.6)

and∫
Q2

(
sθv2

x + s3θ3
(x− 1

a

)2
v2

)
e2sϕ2 dxdt ≤ C

∫
Q2

h2 e
2sϕ2

a
dxdt

+ 2sC

T∫
0

θ(t)
[
(1 − x)v2

xe
2sϕ2

]
(t, j2)dt,

(1.7)

for all s ≥ s0 (s0 being a suitable constant), where θ(t), ϕ1(t, x) and ϕ2(t, x) are suitable
weight functions.

Thanks to (1.6) and (1.7), we derive the observability inequality

1∫
0

v2(0, x)
1

a
dx ≤ C

T∫
0

∫
ω

v2 1

a
dxdt (1.8)

for any solution of the adjoint problem of (1.1). Then the null controllability of (1.1) follows
in a standard way.
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Observe that an essential tool of this approach is Hardy’s inequality

1∫
0

v2 dx

x2
≤ C

1∫
0

v2
xdx ∀ v ∈ H1

0 (0, 1), (1.9)

where C is a positive constant (see, e.g., [10]).
Finally, we derive analogous results for equations with a bounded potential term


ut − a(x)uxx + b(t, x)u = f(t, x)χω(x),

u(t, 0) = u(t, 1) = 0,

u(0, x) = u0(x).

(1.10)

Such a generalization allows to obtain, arguing as in [19], [1], the null controllability for
the semilinear problem


ut − a(x)uxx + h(t, x, u) = f(t, x)χω(x), (t, x) ∈ (0, T)× (0, 1),

u(t, 0) = u(t, 1) = 0, t ∈ (0, T),
u(0, x) = u0(x), x ∈ (0, 1).

(1.11)

The paper is organized as follows:

- in Section 2., we prove the well-posedness of the linear problem (1.1);
- in Section 3, we state Carleman estimates for the adjoint problems (Pi);
- in Section 4, we prove the observability inequality for the adjoint problem (1.1) and,

as a consequence, we give a null controllability result for (1.1);
- in Section 5., we extend the previous results to the generalized linear problem (1.10)

and to the semilinear problem (1.11).

2. Well-posedness

Let T > 0,Q := (0, T)×(0, 1),ω := (α, β) ⊂⊂ (0, 1) be a non-empty assigned interval
and the data (f, u0) ∈ L2(Q)× L2

1
a

(0, 1), where

L2
1
a

(0, 1) :=
{
u ∈ L2(0, 1) | ‖u‖ 1

a
< ∞

}
, ‖u‖2

1
a

:=
1∫

0

u2 1

a
dx,

we consider the degenerate parabolic problem

ut − a(x)uxx = f(t, x)χω(x), (t, x) ∈ Q,
u(t, 0) = u(t, 1) = 0, t ∈ (0, T),
u(0, x) = u0(x), x ∈ (0, 1).

(2.1)

Here a ∈ C0[0, 1] is such that a(0) = a(1) = 0 and a > 0 on (0, 1).
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In order to study the well-posedness of (2.1), we introduce the following Hilbert spaces:

H1
1
a

(0, 1) := L2
1
a

(0, 1) ∩H1
0 (0, 1)

and

H2
1
a

(0, 1) :=
{
u ∈ H1

1
a

(0, 1)
∣∣ auxx ∈ L2

1
a

(0, 1)
}
,

with the following norms

‖u‖2
1, 1
a

:=
1∫

0

u2 1

a
dx+

1∫
0

u2
xdx and ‖u‖2

2, 1
a

:= ‖u‖2
1, 1
a

+
1∫

0

au2
xxdx.

Moreover, we establish the following Green’s formula:

LEMMA 2.1. For all (u, v) ∈ H2
1
a

(0, 1)×H1
1
a

(0, 1) one has

1∫
0

uxxvdx = −
1∫

0

uxvxdx. (2.2)

Proof. First, we claim that the space H1
c (0, 1) := {

v ∈ H1(0, 1) | supp{v} ⊂ (0, 1)
}

is
dense in H1

1
a

(0, 1). Indeed, if we consider the sequence (vn)n≥4, where vn := ξnv for a

fixed function v ∈ H1
1
a

(0, 1) and

ξn(x) :=




0, x ∈ [
0, 1/n

]⋃ [
1 − 1/n, 1

]
,

1, x ∈ [
2/n, 1 − 2/n

]
,

nx− 1, x ∈ (1/n, 2/n) ,
n(1 − x)− 1, x ∈ (1 − 2/n, 1 − 1/n) ,

it is easy to see that vn → v in L2
1
a

(0, 1). Moreover, one has that

1∫
0

(vn − v)2xdx ≤ 2

1∫
0

(1 − ξn)
2v2
xdx+ 2

1∫
0

(ξn)
2
xv

2dx

= 2

1∫
0

(1 − ξn)
2v2
xdx+ 2n2




2
n∫

1
n

v2dx+
1− 1

n∫
1− 2

n

v2dx


 .

(2.3)
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Obviously, the first term in the last member of (2.3) converges to zero. Furthermore, since
v ∈ H1

0 (0, 1), by Hölder’s inequality one has that

v2(x) ≤ x

x∫
0

v2
x(y)dy ∀ x ∈ [0, 1] .

Therefore,

n2

2
n∫

1
n

v2dx ≤ n2

2
n∫

0

v2
xdx

2
n∫

1
n

x dx → 0, as n → ∞.

Since the remaining term in (2.3) can be similarly estimated, our claim is proved.
Now, set Φ(v) := ∫ 1

0 (uxv)xdx, with u ∈ H2
1
a

(0, 1). Then, Φ is a bounded linear

functional on H1
1
a

(0, 1) such that Φ = 0 on H1
c (0, 1). Thus, Φ = 0 on H1

1
a

(0, 1), that is,

(2.2) holds. �

An immediate consequence of the previous Green’s formula is the next corollary:

COROLLARY 2.2. The space D(0, 1) is dense in H1
1
a

(0, 1).

Proof. It is sufficient to prove that if u ∈ H1
1
a

(0, 1) is orthogonal to D(0, 1) then u = 0.

For all ϕ ∈ D(0, 1) we have

1∫
0

uϕ
dx

a
= −

1∫
0

uxϕxdx.

Consequently, one has that uxx = u/a in the distributional sense and thus u ∈ H2
1
a

(0, 1).

By (2.2) one has that

< u, v >1, 1
a
=

1∫
0

u

a
v+ uxvxdx =

1∫
0

uxxv+ uxvxdx = 0 ∀ v ∈ H1
1
a

(0, 1).

�

Using standard techniques (see, e.g., [16]), as a consequence of (2.2) one can prove the
following theorem that refines Theorems 1.1. and 1.2 by Barbu-Favini-Romanelli [3] for
the case of n = 1.
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THEOREM 2.3. The operator (A,D(A)) given by

Au := auxx, D(A) := H2
1
a

(0, 1)

is m-dissipative and self adjoint in L2
1
a

(0, 1).

As usual, one can prove the following well-posedness theorem.

THEOREM 2.4. For all f ∈ L2(Q) and u0 ∈ L2
1
a

(0, 1), there exists a unique weak

solution u ∈ U := C0
(

[0, T ];L2
1
a

(0, 1)

)
∩ L2

(
0, T ;H1

1
a

(0, 1)

)
of (2.1). Moreover, one

has

sup
t∈[0,T ]

‖u(t)‖2
L2

1
a

(0,1)
+

T∫
0

‖u‖2
H1

1
a

(0,1)
dt ≤ C


‖u0‖2

L2
1
a

(0,1)
+

T∫
0

‖f‖2
L2

1
a

(ω)
dt


 ,

for a positive constant C.

Therefore, with additional assumptions on the degenerate function a(x) one can prove a
characterization for the space H1

1
a

(0, 1). Assume the following:

HYPOTHESES 2.5. The function a ∈ C0[0, 1] is such that a(0) = a(1) = 0, a > 0 on
(0, 1) and there exist K1,K2 ∈ (0, 2) such that

1) the function x 
−→ a(x)

xK1
is nonincreasing near zero;

2) the function x 
−→ a(x)

(1 − x)K2
is nondecreasing near one.

Thanks to the previous hypothesis one has that the spacesH1
0 (0, 1) andH1

1
a

(0, 1) coincide.

To this aim, the following Hardy-Poincaré inequality is helpful.

PROPOSITION 2.6. (Hardy-Poincaré Inequality) Assume that Hypothesis 2.5 is satis-
fied. Then, there exists C > 0 such that

1∫
0

v2 1

a
dx ≤ C

1∫
0

v2
xdx ∀ v ∈ H1

0 (0, 1). (2.4)

Proof. Observe that since
a

xK1
is nonincreasing near 0, then there exists a positive

constant C such that a(x) ≥ CxK1 near 0. Analogously, there exists C > 0 such that
a(x) ≥ C(1 − x)K2 near 1. Then, for a suitable ε > 0 and using Hardy’s inequality
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1∫
0

v2 1

a
dx =

ε∫
0

v2 1

a
dx+

1−ε∫
ε

v2 1

a
dx+

1∫
1−ε

v2 1

a
dx

≤ C

1∫
0

v2 1

xK1
dx+

1−ε∫
ε

v2 1

a
dx+ C

1∫
0

v2 1

(1 − x)K2
dx

≤ C

1∫
0

v2 1

x2
dx+

1−ε∫
ε

v2 1

a
dx+ C

1∫
0

v2 1

(1 − x)2
dx

≤ C

1∫
0

v2
xdx+

1−ε∫
ε

v2 1

a
dx ≤ C


 1∫

0

v2
xdx+

1−ε∫
ε

v2dx




≤ C


 1∫

0

v2
xdx+

1∫
0

v2dx


 .

By Poincaré’s inequality, it results

1∫
0

v2 1

a
dx ≤ C

1∫
0

v2
xdx.

�

As an immediate consequence of Propositions 2.6, one has that ‖u‖1, 1
a

is equivalent to

(
∫ 1

0 u
2
xdx)

1
2 . In particular, it results:

COROLLARY 2.7. The Banach spaces H1
1
a

(0, 1) and H1
0 (0, 1) coincide.

REMARK 2.8. The previous result also follows from point (ii) of the Lemma in [11,
p. 380]. Moreover, under Hypothesis 2.5, the density result of Corollary 2.2 is also a
consequence of point (i) of the same Lemma.

Observe that if the degenerate function a is also differentiable in (0, 1) then Hypothesis 2.5
is equivalent to the following one:

HYPOTHESES 2.9. The function a ∈ C0[0, 1] is such that a(0) = a(1) = 0, a > 0 on
(0, 1) and there exist K1,K2 ∈ (0, 2) such that

1)
xax

a
≤ K1 near zero;
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2)
(x− 1)ax

a
≤ K2 near one.

In fact, one has that

(
xK1

a

)
x

= xK1−1

a

(
K1 − xax

a

)
≥ 0 ⇐⇒ xax

a
≤ K1;(

(1 − x)K2

a

)
x

= − (1 − x)K2−1

a

(
K2 − (x− 1)ax

a

)
≤ 0 ⇐⇒

(x− 1)ax
a

≤ K2.

3. Carleman Estimates for Degenerate Parabolic Problems

In this section we prove crucial estimates of Carleman’s type, that will be useful to prove
the observability inequality for the adjoint problem of (2.1).

3.1. Statement of the main results

Given T > 0, J1 := (0, j1) and J2 := (j2 , 1) proper subintervals of (0, 1) and h ∈
L2

(
0, T ;L2

1
a

(0, 1)
)
, we consider, for i = 1, 2 , the parabolic problems



vt + a(x)vxx = h(t, x), (t, x) ∈ Qi := (0, T)× Ji,

v(t, ∂Ji) = 0, t ∈ (0, T) .
(3.1)

Here a : [0, 1] → R satisfies the following assumption.

HYPOTHESES 3.1. The function a ∈ C0[0, 1]
⋂
C3(0, 1) is such that a(0) = a(1) =

0, a > 0 on (0, 1) and there exists ε ∈ (0, 1) such that

1) the function
xax

a
∈ L∞(0, ε) and there exist K1 ∈ (0, 2) and C1 > 0 such that

xax(x)

a(x)
≤ K1 and

∣∣∣ (xax(x)
a(x)

)
xx

∣∣∣ ≤ C1
1

a(x)
∀ x ∈ (0, ε);

2) the function
(x− 1)ax

a
∈ L∞(1 − ε, 1) and there exist K2 ∈ (0, 2) and C2 > 0 such

that
(x− 1)ax(x)

a(x)
≤ K2 and

∣∣∣ ( (x− 1)ax(x)

a(x)

)
xx

∣∣∣ ≤ C2
1

a(x)
∀ x ∈ (1 − ε, 1).
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Now, let us introduce the weight functions


ϕi(t, x) := θ(t)(pi(x)− 2‖pi‖L∞(Ji)), i = 1, 2,

p1(x) :=
x∫

0

y

a(y)
eRy

2
dy, p2(x) :=

x∫
j2

y − 1

a(y)
eR(y−1)2dy, R > 0,

θ(t) := 1

[t(T − t)]4
.

(3.2)

Observe that ϕi(t, x) < 0 ∀ (t, x) ∈ Qi, ϕi(t, x) → +∞ as t → 0+, T− and, by the
assumptions on a, one has that pi ∈ C4(0, 1) (for i = 1, 2). Therefore, the functions pi are
more regular as we can see from the next lemma.

LEMMA 3.2. Assume that Hypothesis 2.5 is satisfied. Then p1 ∈ W1,1(J1) and p2 ∈
W1,1(J2).

Proof. By hypothesis, there exist two constants C > 0 and ε ∈ J1 such that
x

a(x)
eRx

2 ≤
Cx1−KeR for all x ∈ (0, ε). Thus (p1)x ∈ L1(J1). Similarly one proves that (p2)x ∈
L1(J2). �

Our main results are the following.

THEOREM 3.3. Assume that Hypothesis 3.1.1 is satisfied for some ε ∈ (0, 1) such that
ε < j1 . Then, there exist two positive constants C and s0 such that every solution v of
(3.1) in

V1 := L2(0, T ;H2
1
a

(J1)
) ∩H1(0, T ;H1

1
a

(J1)
)

satisfies, for all s ≥ s0,∫
Q1

(
sθv2

x + s3θ3
(x
a

)2
v2

)
e2sϕ1 dxdt ≤ C

∫
Q1

h2 e
2sϕ1

a
dxdt

+ 2s C

T∫
0

θ(t)
[
xv2
xe

2sϕ1

]
(t, j1)dt.

THEOREM 3.4. Assume that Hypothesis 3.1.2 is satisfied for some ε ∈ (0, 1) such that
1 − ε > j2 . Then, there exist two positive constants C and s0 such that every solution v of
(3.1) in

V2 := L2(0, T ;H2
1
a

(J2)
) ∩H1(0, T ;H1

1
a

(J2)
)

(3.3)

macbook
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satisfies, for all s ≥ s0,∫
Q2

(
sθv2

x + s3θ3
(x− 1

a

)2
v2

)
e2sϕ2 dxdt ≤ C

∫
Q2

h2 e
2sϕ2

a
dxdt

+ 2sC

T∫
0

θ(t)
[
(1 − x)v2

xe
2sϕ2

]
(t, j2)dt.

We will prove only Theorem 3.3 since the proof of Theorem 3.4 is analogous.

3.2. Preliminary technical results

In order to prove Theorem 3.3 the following results are necessary:

LEMMA 3.5. Assume that Hypothesis 2.5.1 is satisfied. Then

lim
x→0+

x2

a(x)
= 0.

Proof. Since
a

xK1
is nonincreasing near zero, there exists ε ∈ J1 such that

a(x) ≥ a(ε)
(x
ε

)
K1 ∀ x ∈ (0, ε).

Then, the following inequality holds

x2

a(x)
≤ ε K1

a(ε)
x 2−K1 ∀ x ∈ (0, ε).

Passing to the limit, the conclusion follows. �

LEMMA 3.6. Assume that Hypothesis 2.5.1 is satisfied. If w ∈ H2
1
a

(J1), then

lim
x→0+ xw

2
x(x) = 0.

Proof. Let w ∈ H2
1
a

(J1). Then, xw2
x ∈ W1,1(J1). In fact

j1∫
0

|(xw2
x)x|dx =

j1∫
0

|w2
x + 2xwxwxx|dx ≤

j1∫
0

w2
xdx+ 2

j1∫
0

x|wx||wxx|dx

≤
j1∫

0

w2
xdx+

j1∫
0

x2

a
w2
xdx+

j1∫
0

aw2
xxdx < +∞.

It follows that xw2
x → L ≥ 0 as x → 0. But, ifL > 0, thenwx /∈ L2(0, 1). ThusL = 0. �
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PROPOSITION 3.7. Assume that Hypothesis 3.1.1 is satisfied. Then

lim
x→0+ x

(xax
a

)
x
(x) = 0.

Proof. Set ρ(x) := xax(x)
a(x)

, we have that

ρx(x) = ρx(x+ h)−
x+h∫
x

ρxx(y)dy

and, by assumption,

x |ρx(x)| ≤ x |ρx(x+ h)| + C1


x

x+h∫
x

dy

a(y)


 (3.4)

for all x ∈ (0, ε) and h > 0 such that x+ h ∈ (0, ε).
Since

a

xK1
is nonincreasing then

1

a(x)
≤ C

1

xK1
≤ C

1

xK1+δ for some positive constant

δ such that K1 + δ ∈ (0, 2) \ {1}. Thus

x

x+h∫
x

dy

a(y)
≤ Cx

x+h∫
x

dy

yK1+δ = Cx

[
y1−(K1+δ)

1 − (K1 + δ)

]x+h
x

→ 0,

as x → 0+ and, by (3.4), we obtain the conclusion. �

3.3. Proof of Theorem 3.3

In order to prove Theorem 3.3 we define, for s > 0, the function

w(t, x) := esϕ1 (t,x)v(t, x)

where v is the solution of (3.1) in V1; observe that, since v ∈ V1, w ∈ V1. Setting, for
simplicity, ϕ := ϕ1 and p := p1, one has that w satisfies


(e−sϕw)t + a(x)(e−sϕw)xx = h(t, x), (t, x) ∈ Q1 ,

w(0, x) = w(T, x) = 0, x ∈ J1 ,

w(t, 0) = w(t, ji) = 0, t ∈ (0, T).
(3.5)

Defining Lv := vt + avxx and Lsw := esϕL(e−sϕw), the equation of (3.5) can be recast as
follows
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Lsw = L+
s w+ L−

s w = esϕh,

where 

L+
s w := awxx − sϕtw+ s2aϕ2

xw,

L−
s w := wt − 2saϕxwx − saϕxxw.

Moreover, set < u, v >L2
1
a

(Q1 )
:=

∫
Q1

uv
1

a
dxdt , one has

‖L+
s w‖2

L2
1
a

(Q1 )
+ ‖L−

s w‖2
L2

1
a

(Q1 )
+ 2 < L+

s w,L
−
s w >L2

1
a

(Q1 )
= ‖hesϕ‖2

L2
1
a

(Q1 )
. (3.6)

LEMMA 3.8. The following identity holds

< L+
s w,L

−
s w >L2

1
a

(Q1 )
= s

∫
Q1

(aϕxx + (aϕx)x)w
2
xdxdt

+ s3
∫
Q1

ϕ2
x(aϕxx + (aϕx)x)w

2dxdt

− 2s2
∫
Q1

ϕxϕxtw
2dxdt + s

2

∫
Q1

ϕtt

a
w2dxdt

− s

2

∫
Q1

(aϕxx)xxw
2dxdt




{D.T.} (3.7)

{B.T.}




−1

2

j1∫
0

[
w2
x

]T
0
dx+

T∫
0

[
wxwt

]j1

0
dt

+ s
2

T∫
0

[
(aϕxx)xw

2
]j1

0
dt − s

T∫
0

[
aϕxw

2
x

]j1

0
dt

−s
T∫

0

[
aϕxxwwx

]j1

0
dt + 1

2

j1∫
0

[
(s2ϕ2

x − s
ϕt

a
)w2

]T
0
dx

−s
T∫

0

[
(s2aϕ3

x − sϕxϕt)w
2
]j1

0
dt.

macbook
Cross-Out

macbook
Replacement Text
setting



14 P. Cannarsa, G. Fragnelli, and D. Rocchetti J.evol.equ.

Proof. It results, integrating by parts,∫
Q1

awxx

a
L−
s wdxdt =

∫
Q1

wxxwtdxdt − 2s
∫
Q1

aϕxwxwxxdxdt

− s

∫
Q1

aϕxxwwxxdxdt

= −
∫
Q1

wxtwxdxdt +
T∫

0

[
wxwt

]j1
0 dt

+ s

∫
Q1

(w(aϕxx))xwxdxdt − s

T∫
0

[
aϕxxwwx

]j1
0 dt

+ s

∫
Q1

(aϕx)xw
2
xdxdt − s

T∫
0

[
aϕxw

2
x

]j1
0 dt

= −1

2

j1∫
0

[
w2
x

]T
0 dx+

T∫
0

[
wxwt

]j1
0 dt

+ 1

2
s

T∫
0

[
(aϕxx)xw

2]j1
0 dt −

1

2
s

∫
Q1

(aϕxx)xxw
2dxdt

+ s

∫
Q1

(aϕxx)w
2
xdxdt − s

T∫
0

[
aϕxxwwx

]j1
0 dt

+ s

∫
Q1

(aϕx)xw
2
xdxdt − s

T∫
0

[
aϕxw

2
x

]j1
0 dt.

(3.8)

Therefore, integrating again by parts,∫
Q1

1

a

( − sϕtw+ s2a(x)ϕ2
xw

)
L−
s wdxdt

=
∫
Q1

(
s2ϕ2

x − s
ϕt

a

)
wwtdxdt − s

∫
Q1

aϕxx
(
s2ϕ2

x − s
ϕt

a

)
w2dxdt

macbook
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− 2s
∫
Q1

aϕx
(
s2ϕ2

x − s
ϕt

a

)
wwxdxdt

= 1

2

∫
Q1

( − s2ϕ2
x + s

ϕt

a

)
t
w2dxdt − s3

∫
Q1

ϕ2
x

(
aϕxx

)
w2dxdt

+ s2
∫
Q1

(aϕxx)
ϕt

a
w2dxdt + s

∫
Q1

(
s2aϕ3

x − sϕxϕt
)
x
w2dxdt

+ 1

2

j1∫
0

[(
s2ϕ2

x − s
ϕt

a

)
w2]T

0 dx− s

T∫
0

[(
s2aϕ3

x − sϕxϕt
)
w2]j1

0 dt (3.9)

= s

2

∫
Q1

ϕtt

a
w2dxdt + s2

∫
Q1

(
ϕtϕxx − (ϕxϕt)x − ϕxϕxt

)
w2dxdt

+ s3
∫
Q1

(
(aϕ3

x)x − ϕ2
xaϕxx

)
w2dxdt + 1

2

j1∫
0

[(
s2ϕ2

x − s
ϕt

a

)
w2]T

0 dx

− s

T∫
0

[(
s2aϕ3

x − sϕxϕt
)
w2]j1

0 dt

= s

2

∫
Q1

ϕtt

a
w2dxdt − 2s2

∫
Q1

ϕxϕxtw
2dxdt + s3

∫
Q1

(
axϕ

3
x + 2aϕ2

xϕxx
)
w2dxdt

+ 1

2

j1∫
0

[(
s2ϕ2

x − s
ϕt

a

)
w2]T

0 dx− s

T∫
0

[(
s2aϕ3

x − sϕxϕt
)
w2]j1

0 dt.

Adding (3.8)-(3.9), (3.7) follows immediately. �

The next lemma holds.

LEMMA 3.9. The boundary terms in (3.7) become

{B.T.} = −seRj2
1

T∫
0

θ(t)j1w
2
x(t, j1)dt. (3.10)

Proof. Using the definition of ϕ and the fact that w(t, j1) = 0, the boundary terms of
< L+

s w,L
−
s w >L2

1
a

(Q1 )
become
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{
B.T.

} = −1

2

j1∫
0

[
w2
x

]T
0
dx+

T∫
0

[
wxwt

]j1

0
dt

+ 1

2

j1∫
0

[(
s2θ2

(x
a

)2
e2Rx2 − s

a
θ̇
(
p(x)− 2‖p ‖L∞(J1)

))
w2

]T
0
dx

− s

T∫
0

θ(t)
[
eRx

2
xw2

x

]j1

0
dt + s

2

T∫
0

θ(t)
[(xax

a

)
x
w2

]
(t, 0)dt

− s

T∫
0

θ(t)
[(

1 − xax

a

)
wwx

]
(t, 0)dt + s3

T∫
0

θ3(t)
[x3

a2
w2

]
(t, 0)dt

+ 2s2‖p‖L∞(J1)

T∫
0

θ(t)θ̇(t)
[x
a
w2

]
(t, 0)dt.

Sincew ∈ V1, where V1 is as in (3.3),w ∈ C0
(
[0, T ];H1

1
a

(J1)
)
. Thuswx(x, 0),wx(x, T)

and
∫ j1

0

[
w2
x

]T
0 dx are well defined and, using the boundary conditions of w, it results that

j1∫
0

[
w2
x

]T
0
dx = 0.

Moreover, since w ∈ H1
(
0, T ;H1

1
a

(J1)
)
, wt(t, 0) and wt(t, j1) are well defined. Now, by

Lemma 3.6, we have that limx→0
√
xwx(t, x) = 0. Since wtx(t, x) ∈ L2(J1), then, by

Hölder’s inequality,

|wt(t, x)| ≤
x∫

0

|wtx(t, y)|dy ≤ √
x


 x∫

0

|wtx(t, y)|2dy



1/2

.

Thus, if w ∈ V1 then
∫ T

0 [wxwt]
j1
0 dt is well defined and it is 0. Now, we consider the

term

1

2

j1∫
0

[(
s2θ2

(x
a

)2
e2Rx2 − s

a
θ̇
(
p(x)− 2‖p‖L∞(J1)

))
w2

]T
0
dx.
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Since w ∈ V1, then w ∈ C0([0, T ];L2
1
a

(J1)). Thus w(0, x) and w(T, x) are well defined

and w(0, x) = w(T, x) = 0. This implies that

1

2

j1∫
0

[(
s2θ2

(x
a

)2
e2Rx2 − s

a
θ̇
(
p(x)− 2‖p ‖L∞(J1)

))
w2

]T
0
dx = 0.

By Lemma 3.6

−s
T∫

0

θ(t)
[
eRx

2
xw2

x

]j1

0
dt = −s

T∫
0

θ(t)
[
eRx

2
xw2

x

]
(t, j1)dt.

Thus, the boundary terms become

{B.T.} = −seRj2
1

T∫
0

θ(t)j1w
2
x(t, j1)dt +

s

2

T∫
0

θ(t)

[(xax
a

)
x
w2

]
(t, 0)dt

− s

T∫
0

θ(t)
[(

1 − xax

a

)
wwx

]
(t, 0)dt + s3

T∫
0

θ3(t)

[
x3

a2
w2

]
(t, 0)dt

+ 2s2‖p ‖L∞(J1)

T∫
0

θ(t)θ̇(t)
[x
a
w2

]
(t, 0)dt.

By Proposition 3.7,

∣∣∣∣θ(t)
[(xax

a

)
x
w2

]
(t, ε)

∣∣∣∣ ≤ θ(t)

∣∣∣∣ε (xaxa
)
x
(ε)

∣∣∣∣
ε∫

0

w2
x(t, y)dy → 0

as ε → 0+. Thus

s

2

T∫
0

θ(t)

[(xax
a

)
x
w2

]
(t, 0)dt = lim

ε→0

s

2

T∫
0

θ(t)

[(xax
a

)
x
w2

]
(t, ε)dt = 0.

Moreover, by assumption, it results∣∣∣θ(t) [(1 − xax

a

)
wwx

]
(t, ε)

∣∣∣

≤ θ(t)

(
1 +

∥∥∥xax
a

∥∥∥
L∞(J1)

)
|wx(ε, t)|


ε

ε∫
0

|wx(t, x)|2dx



1
2

→ 0
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as ε → 0+, thus

−s
T∫

0

θ(t)
[(

1 − xax

a

)
wwx

]
(t, 0)dt = − lim

ε→0
s

T∫
0

θ(t)
[(

1 − xax

a

)
wwx

]
(t, ε)dt = 0.

Now, by Lemma 3.5,

∣∣∣θ(t)θ̇(t) [ x
a
w2

]
(t, ε)

∣∣∣ ≤ θ(t)|θ̇(t)| ε
2

a(ε)

ε∫
0

w2
x(t, y)dy → 0,

as ε → 0+, thus

2s2‖p ‖L∞(J1)

T∫
0

θ(t)θ̇(t)
[ x
a
w2

]
(t, 0)dt = lim

ε→0
2s2‖p ‖L∞(J1)

T∫
0

θ(t)θ̇(t)
[ x
a
w2

]
(t, ε)dt

= 0.

Finally,

s3

T∫
0

θ3(t)

[
x3

a2
w2

]
(t, 0)dt = lim

ε→0
s3

T∫
0

θ3(t)

[
x3

a2
w2

]
(t, ε)dt = 0.

In fact, by Hölder’s inequality, it results w2(t, x) ≤ x

x∫
0

w2
x(t, y)dy . Thus

T∫
0

θ3(t)

[
x3

a2
w2

]
(t, ε)dt ≤

T∫
0

θ3(t)


 x4

a2

x∫
0

w2
xdy


 (t, ε)dt

and again, by Lemma 3.5,

T∫
0

θ3(t)

[
x4

a2

∫ x

0
w2
xdy

]
(t, ε)dt → 0, as ε → 0.

�

The crucial step is to prove now the following estimate.
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LEMMA 3.10. The distributed terms of (3.7) satisfy the following estimate

s(2 −K1)

∫
Q1

θw2
xdxdt + s3(2 −K1)

∫
Q1

θ3
(x
a

)2
w2dxdt

− 2s2C
∫
Q1

θ3
(x
a

)2
w2dxdt − sC

∫
Q1

θ
3
2

a
w2dxdt

≤ s

∫
Q1

(aϕxx + (aϕx)x)w
2
xdxdt + s3

∫
Q1

ϕ2
x(aϕxx + (aϕx)x)w

2dxdt

− 2s2
∫
Q1

ϕxϕxtw
2dxdt + s

2

∫
Q1

ϕtt

a
w2dxdt − s

2

∫
Q1

(aϕxx)xxw
2dxdt,

for some positive constant C.

Proof. The distributed terms of < L+
s w,L

−
s w >L2

1
a

(Q1 )
, using the definition of ϕ, take

the form{
D.T.

} = s

∫
Q1

θ
(

2 − xax

a
+ 4Rx2

)
eRx

2
w2
xdxdt

+ s3
∫
Q1

θ3
(x
a

)2(
2 − xax

a
+ 4Rx2

)
e3Rx2

w2dxdt

− 2s2
∫
Q1

θθ̇
(x
a

)2
e2Rx2

w2dxdt + s

2

∫
Q1

θ̈

a

(
p− 2‖p‖L∞(J1)

)
w2dxdt

+ s

2

∫
Q1

θ
(xax
a

)
xx
eRx

2
w2dxdt + 2s

∫
Q1

θRx
(xax
a

)
x
eRx

2
w2dxdt

+ s

∫
Q1

θR
(
(1 + 2Rx2)

(xax
a

)
− (3 + 12Rx2 + 4R2x4)

)
eRx

2
w2dxdt.

(3.11)

Because of Hypothesis 3.1.1

2 − xax

a
≥ 2 −K1 > 0 ∀ x ∈ (0, ε);

thus there exists R > 0 such that

2 − xax

a
+ 4Rx2 ≥ 2 −K1 ∀ x ∈ J1 .
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Moreover, using again Hypothesis 3.1.1 and Proposition 3.7, for all x ∈ J1 one has

R

∣∣∣(2x
(xax
a

)
x
+ (1 + 2Rx2)

(xax
a

)
− (3 + 12Rx2 + 4R2x4)

)∣∣∣
≤ R

(
2
∥∥∥x(xax

a

)
x

∥∥∥
L∞(J1)

+ (1 + 2R)
∥∥∥(xax

a

)∥∥∥
L∞(J1)

+ (3 + 12R+ 4R2)

)
=: CR.

Then, set C′
1 := C1∨ max

[ε,j1 ]

∣∣∣(xax
a

)
xx

∣∣∣ , where C1 is the constant of Hypothesis 3.1, one has

{
D.T.

} ≥ s(2 −K1)

∫
Q1

θw2
xdxdt + s3(2 −K1)

∫
Q1

θ3
(x
a

)2
w2dxdt

− 2s2e2R
∫
Q1

θ|θ̇|
(x
a

)2
w2dxdt − s‖p‖L∞(J1)

∫
Q1

|θ̈|
a
w2dxdt

− seR(C′
1 + CR)

(
1 ∨ ‖a‖L∞(0,1)

) ∫
Q1

θ

a
w2dxdt.

(3.12)

Observing that there exists CT > 0 such that θ|θ̇| ≤ CT θ
3, |θ̈| ≤ CT θ

3
2 and θ ≤ CT θ

3
2 , one

can deduce the next estimate:

{
D.T.

} ≥ s(2 −K1)

∫
Q1

θw2
xdxdt + s3(2 −K1)

∫
Q1

θ3
(x
a

)2
w2dxdt

− 2s2e2RCT

∫
Q1

θ3
(x
a

)2
w2dxdt

− seRCT

(
(C′

1 + CR)
(
1 ∨ ‖a‖L∞(0,1)

) + ‖p ‖L∞(J1)

) ∫
Q1

θ
3
2

a
w2dxdt.

�

PROPOSITION 3.11. There exist two positive constants C and s0 such that, for all
s ≥ s0, all solutions w of (3.5) in V1 satisfy

∫
Q1

sθw2
x + s3θ3

(x
a

)2
w2dxdt ≤ C


∫
Q1

h2 e
2sϕ

a
dxdt + 2s

T∫
0

θ(t)j1w
2
x(t, j1)dt


 .
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Proof. By (3.6) and by Lemmas 3.9 and 3.10 it is sufficient to estimate only the term

−sC
∫
Q1

θ
3
2

a
w2dxdt . For λ > 0 it results

∫
Q1

θ
3
2

a
w2dxdt =

∫
Q1

(
1

λ
θ2

(x
a

)2
w2

) 1
2
(
λ
θ

x2
w2

) 1
2

dxdt

≤ 1

λ

∫
Q1

θ2
(x
a

)2
w2dxdt + λ

∫
Q1

θ

x2
w2dxdt.

By Hardy’s inequality one has

∫
Q1

θ
3
2

a
w2dxdt ≤ 1

λ

∫
Q1

θ2
(x
a

)2
w2dxdt + λCH

∫
Q1

θw2
xdxdt,

for some positive constant CH. Thus, for s0 large enough and λ small enough,

Cλ


s ∫

Q1

θw2
xdxdt + s3

∫
Q1

θ3
(x
a

)2
w2dxdt


 − 2seRj

2
1

T∫
0

θ(t)j1w
2
x(t, j1)dt

≤
∫
Q1

h2 e
2sϕ

a
dxdt,

for some positive constant Cλ and for all s ≥ s0. �

Recalling the definition of w, we have v = e−sϕw and vx = (wx − sϕxw)e
−sϕ. Thus,

Theorem 3.3 follows immediately by Proposition 3.11.

4. Observability and controllability of linear equations

In this section we will prove, as a consequence of the Carleman estimates established in
Section 3, an observability inequality for the adjoint problem



vt + a(x)vxx = 0, (t, x) ∈ Q,
v(t, 0) = v(t, 1) = 0, t ∈ (0, T),
v(T, x) = vT (x) ∈ L2

1
a

(0, 1)

(4.1)

of (2.1). In particular, the following result holds.
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PROPOSITION 4.1. Assume that Hypothesis 3.1 is satisfied. Then there exists a positive
constant CT such that every solution v ∈ U of (4.1) satisfies

1∫
0

v2(0, x)
1

a
dx ≤ CT

T∫
0

∫
ω

v2 1

a
dxdt. (4.2)

Here U := C0
(
[0, T ];L2

1
a

(0, 1)
) ∩ L2

(
0, T ;H1

1
a

(0, 1)
)
.

Before proving this proposition we will give some results that will be very helpful to this
aim. As a first step we introduce the following class of functions

W :=
{
v solution of (4.1)

∣∣ vT ∈ D(A2)
}
,

where

D(A2) =
{
u ∈ H1

1
a

(0, 1)
∣∣ auxx ∈ H2

1
a

(0, 1)
}
.

Obviously,

W ⊂ C1( [0, T ] ; H2
1
a

(0, 1)
)

⊂ V := L2(0, T ;H2
1
a

(0, 1)
) ∩H1(0, T ;H1

1
a

(0, 1)
) ⊂ U .

PROPOSITION 4.2. (Caccioppoli’s inequality) Let ω′ and ω two open subintervals of
(0, 1) such that ω′ ⊂⊂ ω ⊂⊂ (0, 1). Let s > 0 and ψ(t, x) := θ(t)�(x), where θ is defined
in (3.2) and � ∈ C1(0, 1) is a strictly negative function. Then, there exists a positive
constant C such that

T∫
0

∫
ω′
v2
xe

2sψdxdt ≤ C

T∫
0

∫
ω

v2dxdt, (4.3)

for every solution v of the adjoint problem (4.1).

Proof. Let us consider a smooth function ξ : [0, 1] → R such that




0 ≤ ξ(x) ≤ 1, for all x ∈ [0, 1],

ξ(x) = 1, x ∈ ω′,
ξ(x) = 0, x ∈ (0, 1) \ ω.
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Then,

0 =
T∫

0

d

dt


 1∫

0

(ξesψ)2v2dx


 dt =

∫
Q

2sψt(ξe
sψ)2v2 + 2(ξesψ)2v(−avxx) dxdt

= 2s
∫
Q

ψt(ξe
sψ)2v2dxdt + 2

∫
Q

(
ξ2e2sψa

)
x
vvxdxdt + 2

∫
Q

(ξ2e2sψa)v2
xdxdt.

Hence,

2
∫
Q

(ξ2e2sψa)v2
xdxdt = −2s

∫
Q

ψt

(
ξesψ

)2
v2dxdt

− 2
∫
Q

(
ξ2e2sψa

)
x

ξesψ
√
a

ξesψ
√
a
vvx dxdt

≤ −2s
∫
Q

ψt(ξe
sψ)2v2dxdt + 4

∫
Q

(
ξesψ

√
a
)2

x
v2dxdt

+
∫
Q

(ξ2e2sψa)v2
xdxdt.

Thus,

inf
ω′ {a}

T∫
0

∫
ω′
e2sψv2

xdxdt ≤ sup
ω×(0,T)

{ ∣∣∣∣4 (
ξesψ

√
a
)2

x
− 2sψt(ξe

sψ)2
∣∣∣∣ }

T∫
0

∫
ω

v2dxdt.

�

As a consequence of Proposition 4.2 one has:

LEMMA 4.3. Assume that Hypothesis 3.1 is satisfied. Let T0, T1 be such that 0 <

T0 < T1 < T . Then there exists a positive constant C = C(T0, T1) such that every solution
v ∈ W of (4.1) satisfies

T1∫
T0

1∫
0

v2 1

a
dxdt ≤ C

T∫
0

∫
ω

v2 1

a
dxdt.
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Proof. Let us consider a smooth function ξ : [0, 1] → R such that


0 ≤ ξ(x) ≤ 1, for all x ∈ [0, 1],

ξ(x) = 1, x ∈ [0, (2α+ β)/3],

ξ(x) = 0, x ∈ [(α+ 2β)/3, 1].

We define w(t, x) := ξ(x)v(t, x) where v ∈ W . Then w satisfies

wt + awxx = a(ξxxv+ 2ξxvx) =: h, (t, x) ∈ (0, T)× (0, β),

w(t, 0) = w(t, β) = 0, t ∈ (0, T).
Setting w′ := ((2α+ β)/3, (α+ 2β)/3) and using Proposition 4.2, it results

∫
Q

h2 e2sψ

a
dxdt =

T∫
0

∫
w′
a(ξxxv+ 2ξxvx)

2e2sψdxdt

≤ C

T∫
0

∫
w′
a(ξ2

xxv
2 + 4ξ2

xv
2
x) e

2sψdxdt

≤ C

T∫
0

∫
w′
v2dxdt + C

T∫
0

∫
w′
v2
xe

2sψdxdt

≤ C

T∫
0

∫
w

v2dxdt ≤ C

T∫
0

∫
w

v2 1

a
dxdt,

(4.4)

for some positive constant C. Applying the previous inequality with ψ = ϕ1 and
Theorem 3.3 with J1 = (0, β), one has

T∫
0

∫
ω

v2 1

a
dxdt ≥ C

∫
Q

h2 e
2s0ϕ1

a
dxdt ≥ C

T∫
0

β∫
0

s0θw
2
x e

2s0ϕ1dxdt

≥ C

T1∫
T0

β∫
0

w2
xdxdt.

By Proposition 2.6 it follows

T∫
0

∫
ω

v2 1

a
dxdt ≥ C

T1∫
T0

β∫
0

w2 1

a
dxdt ≥ C

T1∫
T0

(2α+β)/3∫
0

v2 1

a
dxdt. (4.5)
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Consider now z(t, x) := (
1 − ξ(x)

)
v(t, x). Then z satisfies



zt + azxx = −h, (t, x) ∈ (0, T)× (α, 1),

z(t, α) = z(t, 1) = 0, t ∈ (0, T),

and, as before, using (4.4) withψ = ϕ2, Theorem 3.4 with J2 = (α, 1) and Proposition 2.6,
it results

T∫
0

∫
ω

v2 1

a
dxdt ≥ C

T1∫
T0

1∫
(α+2β)/3

v2 1

a
dxdt. (4.6)

By (4.5) and (4.6), one has

T∫
0

∫
w

v2 1

a
dxdt ≥ C

T1∫
T0

1∫
wc

v2 1

a
dxdt,

where wc := (0, 1) \ w. Thus

2

T∫
0

∫
w

v2 1

a
dxdt ≥

T∫
0

∫
w

v2 1

a
dxdt +

T1∫
T0

∫
w

v2 1

a
dxdt

≥ C

T1∫
T0

∫
wc

v2 1

a
dxdt +

T1∫
T0

∫
w

v2 1

a
dxdt

≥ (1 ∧ C)
T1∫
T0

1∫
0

v2 1

a
dxdt,

for some positive constant C. �

LEMMA 4.4. Assume that Hypothesis 3.1 is satisfied. Let T0, T1 be such that 0 < T0 <

T1 < T . Then every solution v ∈ W of (4.1) satisfies,

1∫
0

v2(0, x)
1

a
dx ≤ 1

T1 − T0

T1∫
T0

1∫
0

v2 1

a
dxdt.
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Proof. Multiplying (4.1) by
v

a
and integrating over (0, 1), one has

0 =
1∫

0

vt(t, x)v(t, x)
1

a
dx+

1∫
0

vxx(t, x)v(t, x)dx

= 1

2

d

dt

1∫
0

v2(t, x)
1

a
dx−

1∫
0

v2
x(t, x)dx.

Then

d

dt

1∫
0

v2(t, x)
1

a
dx = 2

1∫
0

v2
x(t, x)dx ≥ 0 ∀ t ∈ [0, T ],

that is the function t 
→
∫ 1

0
v2(t, x)

1

a
dx is nondecreasing for all t ∈ [0, T ]. �

Proof of Proposition 4.1. As a direct consequence of the Lemmas 4.3 and 4.4 we have
that the observability inequality (4.2) hold for all v ∈ W . Now, let vT ∈ L2

1
a

(0, 1) and

v the solution of (4.1) associated to vT . Since D(A2) is densely contained in L2
1
a

(0, 1),

there exists a sequence (vnT )n ⊂ D(A2) which converges to vT in L2
1
a

(0, 1). Consider now

the solution vn associated to vnT . Obviously, (vn)n converges to v in L∞(0, T ;L2
1
a

(0, 1)) ∩
L2(0, T ;H1

1
a

(0, 1)) (see, e.g.,[2]) and

1∫
0

v2
n(0, x)

1

a
dx ≤ CT

T∫
0

∫
ω

v2
n

1

a
dxdt.

Clearly,

lim
n→+∞

T∫
0

∫
ω

v2
n

1

a
dxdt =

T∫
0

∫
ω

v2 1

a
dxdt

and

lim
n→+∞

1∫
0

v2
n(0, x)

1

a
dx =

1∫
0

v2(0, x)
1

a
dx.

�
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Assuming that Hypothesis 3.1 is satisfied, using the observability property proved in
Proposition 4.1 and a standard technique, one can prove a null controllability result for
the linear degenerate problem (2.1):

THEOREM 4.5. Assume that Hypotheses 3.1 is satisfied. Then, given T > 0 and u0 ∈
L2

1
a

(0, 1), there exists f ∈ L2(Q) such that the solution u of (2.1) satisfies

u(T, x) = 0 for every x ∈ [0, 1].

Moreover,

∫
Q

χωf
2 1

a
dxdt ≤ C

1∫
0

u2
0

1

a
dx,

for some positive constant C.

REMARK 4.6. We observe that if K1 or K2 > 2, then problem (2.1) fails to be null
controllable. To see this, it is sufficient to consider a coefficient a which degenerates only
at zero. For example, we can take a(x) = xK with K > 2. Using the standard change of
variables

X :=
1∫
x

dy√
a(y)

, U(t, X) := a(x)−1/4u(t, x),

the degenerate equation

ut − a(x)uxx = fχω

set in (0, 1) with ω ⊂⊂ (0, 1) becomes

Ut − UXX + b(X)U = Fχω̃, (4.7)

now set in (0,+∞), where ω̃ ⊂⊂ (0,+∞) and b(X) is given by

b(X) = K

4

(
3K

4
− 1

)(
1 +

(
K

2
− 1

)
X

)−2

.

Thus the degerate heat equation in (0, 1) is traslate in a non degenerate heat equation in
the unbounded domain (0,∞) with a regular potential term. Using a result of Escauriaza,
Seregin and Sverak (see [12] or [13]), that generalizes previous work by Micu and Zuazua
(see [26] or [27]), we deduce, as in [7], that (4.7) is not null controllable. With an analogous
technique and more sophisticated calculations, one can obtain the same conclusion also
when K = 2.
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5. Linear and semilinear extensions

5.1. A linear extension.

In this subsection, we will extend the results established in the previous sections to the
following degenerate parabolic problem



ut − a(x)uxx + b(t, x)u = f(t, x)χω(x), (t, x) ∈ Q,
u(t, 0) = u(t, 1) = 0, t ∈ (0, T),
u(0, x) = u0(x), x ∈ (0, 1),

(5.1)

where, as before, Q := (0, T) × (0, 1), T > 0 is fixed, ω := (α, β) ⊂⊂ (0, 1) is a
non-empty assigned interval, (f, u0) ∈ L2(Q) × L2

1
a

(0, 1) and a ∈ C0[0, 1] is such that

a(0) = a(1) = 0 and a > 0 on (0, 1). Furthermore we assume that the potential b = b(t, x)

is essentially bounded on Q.
Using a perturbation argument, one can prove that Theorem 2.4 still hold for (5.1), that

is (5.1) is well-posed in the sense of semigroup theory:

THEOREM 5.1. For all f ∈ L2(Q) and u0 ∈ L2
1
a

(0, 1), there exists a unique weak

solution u ∈ U := C0
(

[0, T ];L2
1
a

(0, 1)

)
∩ L2

(
0, T ;H1

1
a

(0, 1)

)
of (5.1). Moreover, one

has

sup
t∈[0,T ]

‖u(t)‖2
L2

1
a

(0,1)
+

T∫
0

‖u‖2
H1

1
a

(0,1)
dt ≤ C


‖u0‖2

L2
1
a

(0,1)
+

T∫
0

‖f‖2
L2

1
a

(ω)
dt


 ,

for a positive constant C.

Now, we have to prove that the observability property and the null controllability result
obtained in Section 4 still hold for the adjoint problem of (5.1). To this purpose first we
have to establish for


vt + a(x)vxx − b(x, t)v = h(t, x), (t, x) ∈ Qi := (0, T)× Ji,

v(t, ∂Ji) = 0, t ∈ (0, T)
(5.2)

Carleman estimates similar to the ones proved in Theorems 3.3 and 3.4. Here, as in Section
3, T > 0 is fixed, J1 := (0, j1) and J2 := (j2 , 1) are proper subintervals of (0, 1) and
h ∈ L2

(
0, T ;L2

1
a

(0, 1)
)
. Then, one has the following:
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PROPOSITION 5.2. Assume that the potential b ∈ L∞(Q) and that Hypothesis 3.1
holds for some ε ∈ (0, 1) such that ε < j1 and 1 − ε > j2 . Then, there exist two positive
constants C and s0, such that, for all s ≥ s0, the following Carleman estimates hold∫

Q1

(
sθv2

x + s3θ3
(x
a

)2
v2

)
e2sϕ1dxdt ≤ C

∫
Q1

h2 e
2sϕ1

a
dxdt

+ s C

T∫
0

θ(t)
[
xv2
xe

2sϕ1
]
(t, j1)dt,

for all solution v ∈ V1 of (5.2) and∫
Q2

(
sθv2

x + s3θ3
(x− 1

a

)2
v2

)
e2sϕ2dxdt ≤ C

∫
Q2

h2 e
2sϕ2

a
dxdt

+ sC

T∫
0

θ(t)
[
(1 − x)v2

xe
2sϕ2

]
(t, j2)dt,

for all solution v ∈ V2 of (5.2).

Proof. We will prove only the first estimate since the proof of the second one is analogous.
Rewrite the equation of (5.2) as vt+avxx = h̄,where h̄ := h+bv. Then, as a consequence
of Theorem 3.3, there exist two positive constants C and s0 > 0, such that, for all s ≥ s0,∫

Q1

(
sθv2

x + s3θ3
(x
a

)2
v2

)
e2sϕ1dxdt ≤ C

∫
Q1

|h̄|2 e
2sϕ1

a
dxdt

+ s C

T∫
0

θ(t)
[
xv2
xe

2sϕ1
]
(t, j1)dt.

(5.3)

By the definition of h̄ the term
∫
Q1

|h̄|2 e2sϕ1
a dxdt can be estimated in the following way∫

Q1

|h̄|2 e
2sϕ1

a
dxdt ≤ 2

∫
Q1

(
|h|2 + |b|2v2

)
e2sϕ1

a
dxdt. (5.4)

But, as a consequence of Proposition 2.6,∫
Q1

|b|2v2 e
2sϕ1

a
dxdt ≤ ‖b‖2∞

∫
Q1

(esϕ1v)2
1

a
dxdt ≤ ‖b‖2∞

∫
Q1

(esϕ1v)2xdxdt

≤ C

∫
Q1

e2sϕ1v2
xdxdt + Cs2

∫
Q1

θ2e2sϕ1
(x
a

)2
v2dxdt.
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Using this last inequality in (5.4), it follows

∫
Q1

|h̄|2 e
2sϕ1

a
dxdt ≤ 2

∫
Q1

|h|2 e
2sϕ1

a
dxdt + C

∫
Q1

e2sϕ1v2
xdxdt

+ Cs2
∫
Q1

θ2e2sϕ1
(x
a

)2
v2dxdt.

(5.5)

Substituting in (5.3), one can conclude

∫
Q1

(
sθv2

x + s3θ3
(x
a

)2
v2

)
e2sϕ1dxdt ≤ C

( ∫
Q1

|h|2 e
2sϕ1

a
dxdt

+
∫
Q1

e2sϕ1v2
xdxdt + s2

∫
Q1

θ2e2sϕ1
(x
a

)2
v2dxdt + s

T∫
0

θ(t)
[
xv2
xe

2sϕ1
]
(t, j1)dt

)
.

Hence, for all s ≥ s0, where s0 is assumed sufficiently large, the first estimate of Proposition
5.2 is proved. �

As a consequence of the previous Carleman estimates, one can deduce an observability
inequality for the adjoint problem



vt + a(x)vxx − b(t, x)v = 0, (t, x) ∈ Q,
v(t, 0) = v(t, 1) = 0, t ∈ (0, T),
v(T) = vT ∈ L2

1
a

(0, 1)

(5.6)

of (5.1). Without loss of generality we can assume that b ≥ 0. (Otherwise one can reduce
the problem to this case introducing ũ := e−λtu for a suitable λ > 0.) Moreover, we
observe that in a way analogous to the proof of Proposition 4.2, it is possible to prove that
the Caccioppoli’s inequality (4.3) is satisfies for all solution of (5.6).

PROPOSITION 5.3. Assume that the potential b ∈ L∞(Q) and that Hypothesis 3.1 is
satisfied. Then, there exists a positive constant CT such that every solution v ∈ U of (5.6)
satisfies

1∫
0

v2(0, x)
1

a
dx ≤ CT

T∫
0

∫
ω

v2 1

a
dxdt. (5.7)
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Proof. As in the proof of Lemma 4.4 and using the fact that b ≥ 0, it results that every
v ∈ W ′ := {v solution of (5.6) : vT ∈ D(A2)} satisfies

1∫
0

v2(0, x)
1

a
dx ≤ 1

T1 − T0

T1∫
T0

1∫
0

v2 1

a
dxdt,

for all 0 < T0 < T1 < T . Moreover, proceeding as in Lemma 4.3 and applying Proposition
5.2, one has

T1∫
T0

1∫
0

v2 1

a
dxdt ≤ C

T∫
0

∫
ω

v2 1

a
dxdt.

for some positive constant C and for all v ∈ W ′.
Now, proceeding as in the proof of Proposition 4.1, one obtains the conclusion. �

Finally, using Proposition 5.3 and a standard technique, one can extend the null control-
lability result established in Theorem 4.5:

THEOREM 5.4. Assume that the potential b ∈ L∞(Q) and that Hypothesis 3.1 is
satisfied. Then, given T > 0 and u0 ∈ L2

1
a

(0, 1), there exists f ∈ L2(Q) such that the

solution u in U of (5.1) satisfies

u(T, x) = 0 for every x ∈ [0, 1].

Moreover,

∫
Q

χωf
2 1

a
dxdt ≤ C

1∫
0

u2
0

1

a
dx,

for some positive constant C.

5.2. A semilinear extension.

In this subsection, as in [1], we will give, as a consequence of Theorem 5.4., the null
controllability result for the following semilinear degenerate parabolic problem:


ut − a(x)uxx + h(t, x, u) = f(t, x)χω(x), (t, x) ∈ Q := (0, T)× (0, 1),

u(t, 0) = u(t, 1) = 0, t ∈ (0, T),
u(0, x) = u0(x), x ∈ (0, 1),

(5.8)

where a is as in Hypothesis 3.1 and the data (f, u0) ∈ L2(Q) × L2
1
a

(0, 1). Moreover, we

assume the following:
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HYPOTHESES 5.5. Let h : [0, T ] × [0, 1] × R → R be such that

∀ λ ∈ R, (t, x) 
→ h(t, x, λ) is measurable, (5.9)

∀ (t, x) ∈ (0, T)× (0, 1), h(t, x, 0) = 0, (5.10)

and there exist two positive constant M and C such that

|h(t, x, λ)− h(t, x, µ)| ≤ M(1 + |λ| + |µ|)|λ− µ| (5.11)

and

∀ λ, µ ∈ R

(
h(t, x, λ+ µ)− h(t, x, µ)

)
λ ≥ −Cλ2. (5.12)

The previous assumptions on h guarantee that for (5.8), Theorem 5.1. still holds (see [6]).
However, for the well-posedness of (5.8) it is sufficient to require (5.12) with µ = 0, which
is equivalent, thanks to (5.10)-(5.11), to the following apparently more general condition

∃ C ≥ 0 such that − h(t, x, λ)λ ≤ C(1 + |λ|2) or, equivalently,

− h(t, x, λ)λ ≤ C|λ|2 (5.13)

(see [6]).
As in [1], using Theorem 5.4. applied to a suitable linear problem associated to (5.8),

a standard fixed point method and the compactness of the embedding of H1
0 (0, 1) into

L2(0, 1) (recall that, by Corollary 2.7.,H1
0 (0, 1) andH1

1
a

(0, 1) coincide), one can prove the

null controllability property for (5.8) when u0 ∈ H1
1
a

(0, 1) and f ∈ L2(Q). Obviously, in

this case the solutions of (5.8) and of the linear associated problem are more regular, i.e.,

u ∈ H1(0, T ;L2
1
a

(0, 1)
) ∩ L2(0, T ;D(A)) ∩ C0([0, T ];H1

1
a

(0, 1)
)
.

Finally, as in [1] or as in [4], one can prove the null controllability result for (5.8) when
u0 ∈ L2

1
a

(0, 1). In particular, one has:

THEOREM 5.6. Assume that Hypotheses 3.1 and 5.5. are satisfied. Then, given T > 0
and u0 ∈ L2

1
a

(0, 1), there exists f ∈ L2(Q) such that the solution u in U of (5.8) satisfies

u(T, x) = 0 for every x ∈ [0, 1]. (5.14)

Moreover,

∫
Q

χωf
2 1

a
dxdt ≤ C

1∫
0

u2
0

1

a
dx, (5.15)

for some positive constant C.
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