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1. Introduction

In this work, we investigate the global existence and asymptotic behavior at ∞ of the solutions of
the semilinear integro-differential equation

u′′(t) + Au(t) −
t∫

0

g(t − s)Au(s)ds = ∇ F
(
u(t)

) + f (t), t ∈ (0,∞), (1.1)
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where A is a positive operator on a Hilbert space X , with dense domain D(A), and ∇ F denotes the
gradient of a Gâteaux differentiable functional F : D(A1/2) → R. It is well known that the above ab-
stract model applies to a large variety of elastic systems, where u represents displacement. Indeed,
experience confirms that the behavior of some viscoelastic materials (polymers, suspensions, emul-
sions) shows memory properties. Consequently, in the constitutive assumptions, stress depends not
only on the present values of the strain and/or velocity gradient, but on the entire temporal history
of the motion as well. Typically, memory fades with time: disturbances which occurred in the more
recent past have more influence on the present stress than those which occurred in the distant past.
For these motivations, many constitutive models for viscoelastic materials lead to equations of motion
which have the form of a linear hyperbolic PDE perturbed by a dissipative integral term of Volterra
type, having a nonnegative, decreasing convolution kernel, see, e.g., [13,14,23,24,33].

When the problem is linear (F ≡ 0), Eq. (1.1) can be rewritten as an integral equation. Thus, the
theory developed by Prüss in [31] provides a general framework for the existence and uniqueness of
solutions, which is the initial step of the analysis even in the nonlinear case.

Stability results for the solutions of specific PDE models related to the above abstract context, were
obtained by Dafermos [13,14] for smooth convolution kernels g . Following this, several contributions
were added to the literature providing exponential and polynomial decay estimates for the energy of
the solutions of nonlinear wave equations and elasticity systems, possibly with additional frictional
damping. Examples of such results can be found, for instance, in [33,10–12,26–28,5,3,36]. The abstract
evolution equation (1.1) has been recently studied in [1] where g is supposed to be a nonnegative
absolutely continuous function satisfying g(0) > 0 and a suitable differential inequality which—for
exponentially decaying kernels—reduces to a bound of the form g′(t) � −kg(t) for some k > 0.

On the other hand, fewer results are available when g is not assumed to be absolutely continuous
but just integrable, so that the decay properties of g at infinity cannot be expressed by a differential
relation like the one above. Alternatively, one can assume that the primitive

G(t) =
∞∫

t

g(s)ds

is positive definite, or strongly positive definite. We recall that G is called positive definite if the convo-
lution operator defined by G is a positive operator in the L2 topology, and G is strongly positive
definite if G(t) − δe−t is positive definite for some δ > 0. Such classes of kernels, introduced in
[19] (see also [29]), have proven extremely useful in the asymptotic analysis of integro-differential
equations. It is also noteworthy that the positive definiteness of G implies a commonly accepted ther-
modynamical restriction on g (see (2.7) below) for the concrete models described by (1.1) (see, e.g.,
[16,17]).

For a one-dimensional nonlinear wave equation, with memory damping associated to the deriva-
tive of a strongly positive kernel, Kawashima [22] obtained global existence and strong stability results
for sufficiently small initial data. Related results for nonlinear problems in higher space dimension can
be found in [18]. Recently, abstract integro-differential equations associated to an integrable kernel g
satisfying

∞∫
0

∣∣g(t)
∣∣eα0t dt < ∞ (1.2)

for some α0 > 0, were studied in [9] and [30]. In [9], the energy of solutions is shown to decay ex-
ponentially at ∞ assuming g to be the derivative of a positive definite kernel and adding a nonlinear
frictional damping term to the equation. In [30], Prüss replaced positive definiteness by the stronger
requirement that g be a nonnegative locally absolutely continuous in (0,∞) with negative deriva-
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tive, deducing exponential and polynomial1 stability without additional frictional damping. A typical
example of kernel considered in [30] is the following

g(t) = k0
tβ−1

�(β)
e−γ t, t > 0, (1.3)

where γ > 0, β ∈ (0,1) and 0 < k0 < γ β . Further stability results for equations with boundary damp-
ing and integrable kernels under sign conditions have been also announced in [2].

In this paper, still under condition (1.2), we will prove the global existence and exponential stabil-
ity of the solution to (1.1) assuming that

Gα0(t) :=
∞∫

t

g(s)eα0s ds

is strongly positive definite. Compared to [9], in this paper we make it clear that the damping phe-
nomenon is due to the effect of memory with no need of additional frictional terms. In fact, we
compensate for the lack of frictional damping using the strong positive definiteness of Gα0 . Moreover,
such an assumption seems to be quite natural in light of the fading memory principle recalled at the
beginning of this introduction. Indeed, the fact that g is a nonnegative decreasing function just near 0
is a key property in Proposition 5.5 below, where we give sufficient conditions for the strong positive
definiteness of G .

As we show in Section 5 of this paper, in addition to (1.3) our results apply to several other
examples of kernels such as

• g(t) = 1
�(1/2)

e−att−1/2 cos(ct), t > 0, a > 0, c ∈ R,

• g(t) = θ
∑∞

n=1 cos(cnt)e−nβ t , t > 0, β > 1,

• g(t) = −e−βt log t , t > 0, β > 0.

This fact supports the idea that the damping effect of the convolution term in (1.1) depends on the
positivity of the convolution operator associated with G rather than of g itself. Another difference
between this paper and [30] is the technique we use for our stability analysis. In [30] the asymptotic
behavior of solutions is investigated by frequency domain methods. Our approach, on the contrary,
takes advantage of the coercivity properties of strongly positive definite kernels (see Lemmas 2.8 and
2.9 below) to adapt the so-called multiplier method to Eq. (1.1).

The outline of this paper is the following. In Section 2, we recall basic properties of positive def-
inite kernels as well as the definition of the resolvent for the linear equation associated with (1.1).
Section 3 is devoted to the well-posedness of (1.1) and Section 4 to exponential decay. In Section 5,
we compare our results with those obtained in [1] and [30] and discuss several examples of kernels,
possibly of variable sign. Section 6 contains an application to a nonlinear wave equation with mem-
ory. The paper ends with Appendix A intended to assist the reader with some technical properties for
linear systems.

2. Preliminaries

Let X be a real Hilbert space with scalar product 〈·,·〉 and norm ‖ · ‖.
For any T ∈ (0,∞] and p ∈ [1,∞] we denote by L p(0, T ; X) the usual spaces of measurable func-

tions v : (0, T ) → X such that one has

1 For polynomial stability the exponential in assumption (1.2) is replaced by a power of t .
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‖v‖p
p,T :=

T∫
0

∥∥v(t)
∥∥p

dt < ∞, 1 � p < ∞,

‖v‖∞,T := ess sup
0�t�T

∥∥v(t)
∥∥ < ∞,

respectively. We shall use the shorter notation ‖v‖p for ‖v‖p,∞ , 1 � p � ∞. We denote by
L p

loc(0,∞; X) the space of functions belonging to L p(0, T ; X) for any T ∈ (0,∞). In the case of
X = R, we will use the abbreviations L p(0, T ) and L p

loc(0,∞) to denote the spaces L p(0, T ;R) and
L p

loc(0,∞;R), respectively.
Ck([0, T ]; X), k = 0,1,2, stands for the space of continuous functions from [0, T ] to X having

continuous derivatives up to the order k in [0, T ]. In particular, we write C([0, T ]; X) for C0([0, T ]; X).
For any h ∈ L1

loc(0,∞) and any v ∈ L1
loc(0,∞; X) we define

h ∗ v(t) =
t∫

0

h(t − s)v(s)ds, t � 0.

Throughout the paper, for v ∈ L1
loc(0,∞; X) we denote by v̂ the Laplace transform of v , that is

v̂(z) :=
∞∫

0

e−zt v(t)dt, z ∈ C.

Given h ∈ L1
loc(0,∞), recall that h is a positive definite kernel if

t∫
0

〈
h ∗ y(s), y(s)

〉
ds � 0, t � 0, (2.1)

for any y ∈ L2
loc(0,∞; X). Also, h is said to be a strongly positive definite kernel if there exists a constant

δ > 0 such that h(t) − δe−t is positive definite, namely

t∫
0

〈
h ∗ y(s), y(s)

〉
ds � δ

t∫
0

〈
e ∗ y(s), y(s)

〉
ds, t � 0, (2.2)

for any y ∈ L2
loc(0,∞; X), where e(t) = e−t .

If h ∈ L∞(0,∞), h is positive definite if and only if

Re ĥ(z) � 0 for any z ∈ C, Re z > 0 (2.3)

(see, e.g., [31, p. 38]). For any h ∈ L1(0,∞) the following characterization is well known (see [29,
Theorem 2]): h is a positive definite kernel if and only if Re ĥ(iω) � 0 for any ω ∈ R. We note that
this result can be given as follows: h ∈ L1(0,∞) is positive definite if and only if

Re ĥ(iω) � 0 for any ω > 0. (2.4)
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From this it follows that h ∈ L1(0,∞) is a strongly positive definite kernel if and only if there is a
constant δ > 0 such that

Re ĥ(iω) � δ/
(
1 + ω2) for any ω > 0, (2.5)

where we have used Re ê(iω) = 1/(1 + ω2).
In order to check that a kernel is strongly positive definite, a handy result can be found in the

literature, see [29, Corollary 2.2]. For the reader’s convenience we recall it in the following.

Theorem 2.1. A twice differentiable function h(t) with h′ �≡ 0 satisfying

(−1)nh(n)(t) � 0 ∀t > 0, n = 0,1,2 (2.6)

is a strongly positive definite kernel.

From now on, let g ∈ L1(0,∞) be a function and G(t) := ∫ ∞
t g(s)ds.

The following results are useful to study exponential decay. The first proposition was stated and
proved in [9].

Proposition 2.2.

(a) If G is a positive definite kernel, then

∞∫
0

sin(ωt)g(t)dt � 0 for any ω > 0. (2.7)

(b) If G ∈ L1(0,∞) and g verifies (2.7), then G is a positive definite kernel.

Now, we will prove an analogous result for strongly positive definite kernels.

Corollary 2.3.

(a) If G is a strongly positive definite kernel, then there exists δ > 0 such that

∞∫
0

sin(ωt)g(t)dt � δ
ω

1 + ω2
for any ω > 0. (2.8)

(b) If G ∈ L1(0,∞) and there exists δ > 0 such that g verifies (2.8), then G is a strongly positive definite.

Proof. (a) Since G(t) = ∫ ∞
t g(s)ds is strongly positive definite, there exists δ > 0 such that

G(t) − δe−t =
∞∫

t

(
g(s) − δe−s)ds

is positive definite. Therefore, applying Proposition 2.2(a) to g(t) − δe−t and using the identity
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∞∫
0

sin(ωt)e−t dt = ω

1 + ω2
, (2.9)

the conclusion follows.
(b) If G ∈ L1(0,∞) and there exists δ > 0 such that g verifies (2.8), then G(t) − δe−t verifies (2.7),

taking into account (2.9). By Proposition 2.2(b) we obtain that G(t) − δe−t is positive definite, so the
statement holds true. �

We now recall a known result (see [7, Lemma 3.4]) that will be used next.

Lemma 2.4. If g ∈ L1(0,∞) is a function satisfying (2.7), then the perturbed function e−σ t g(t), σ > 0, satis-
fies (2.7) as well.

Proposition 2.5. Let g ∈ L1(0,∞) be a function such that t → ∫ ∞
t g(s)ds is strongly positive definite. Then

t → ∫ ∞
t e−σ s g(s)ds, σ > 0, is strongly positive definite as well.

In addition, if δ is the constant in (2.2) corresponding to t → ∫ ∞
t g(s)ds, then the analogous constant δσ

for t → ∫ ∞
t e−σ s g(s)ds is given by

δσ = δ

(σ + 1)2
. (2.10)

Proof. By Corollary 2.3(a) there exists δ > 0 such that g verifies (2.8), and hence, taking into account
that ω

1+ω2 = ∫ ∞
0 sin(ωt)e−t dt , we have

∞∫
0

sin(ωt)
(

g(t) − δe−t)dt � 0 for any ω > 0.

In view of Lemma 2.4 we get for any σ > 0

∞∫
0

sin(ωt)e−σ t(g(t) − δe−t)dt � 0 for any ω > 0,

whence, since
∫ ∞

0 sin(ωt)e−(σ+1)t dt = ω
(σ+1)2+ω2 , it follows

∞∫
0

sin(ωt)e−σ t g(t)dt � δ
ω

(σ + 1)2 + ω2
� δ

(σ + 1)2

ω

1 + ω2
,

for any ω > 0. Now, we observe that, for any σ > 0, the function t �→ te−σ t g(t) is in L1(0,∞), so also
the function t → ∫ ∞

t e−σ s g(s)ds is in L1(0,∞). Therefore, we can apply Corollary 2.3(b) to e−σ t g(t)
to obtain the conclusion. �

Now, we recall some estimates for positive definite kernels, which can be found in the previous
literature.
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Lemma 2.6. (See [34,22].) Let h ∈ C([0,∞)) be a positive definite kernel. Then h(0) � 0 and

∥∥h ∗ y(t)
∥∥2 � 2h(0)

t∫
0

〈
h ∗ y(τ ), y(τ )

〉
dτ , t � 0, (2.11)

for any y ∈ L1
loc(0,∞; X).

Remark 2.7. Note that if h is a strongly positive definite kernel and δ is the constant in (2.2), then by
Lemma 2.6 we have h(0) − δ � 0, that is

h(0) � δ. (2.12)

Lemma 2.8. (See [35,22].) Let h be a strongly positive definite kernel satisfying h,h′ ∈ L1(0,∞). Then

t∫
0

∥∥h ∗ y(τ )
∥∥2

dτ � 1

δ

(‖h‖2
1 + 4

∥∥h′∥∥2
1

) t∫
0

〈
h ∗ y(τ ), y(τ )

〉
dτ , t � 0, (2.13)

for any y ∈ L1
loc(0,∞; X), where δ is the constant in (2.2).

Lemma 2.9. (See [21,22].) Let h ∈ L1
loc(0,∞) be a strongly positive definite kernel. Then

t∫
0

∥∥y(τ )
∥∥2

dτ �
∥∥y(0)

∥∥2 + 2

δ

( t∫
0

〈
h ∗ y(τ ), y(τ )

〉
dτ +

t∫
0

〈
h ∗ y′(τ ), y′(τ )

〉
dτ

)
, (2.14)

for any t � 0 and y ∈ L2
loc(0,∞; X) with y′ ∈ L1

loc(0,∞; X), where δ is the constant in (2.2).

Classical results for integral equations (see, e.g., [20, Theorem 2.3.5]) ensure that, for any kernel
h ∈ L1

loc(0,∞) and any v ∈ L1
loc(0,∞; X), the problem

y(t) − h ∗ y(t) = v(t), t � 0, (2.15)

admits a unique solution y ∈ L1
loc(0,∞; X). In particular, there is a unique solution r ∈ L1

loc(0,∞) of

r(t) − h ∗ r(t) = h(t), t � 0. (2.16)

Such a solution is called the resolvent kernel of h. Furthermore, the solution y of (2.15) is given by the
variation of constants formula

y(t) = v(t) + r ∗ v(t), t � 0, (2.17)

where r is the resolvent kernel of h.
Now, we recall the classical Paley–Wiener Theorem (see, e.g., [20, Theorem 2.4.5]), which gives a

necessary and sufficient condition for the resolvent of a kernel h ∈ L1(0,∞) to belong to L1(0,∞).

Theorem 2.10. Let h ∈ L1(0,∞). Then, the resolvent kernel of h belongs to L1(0,∞) if and only if ĥ(z) �= 1
for all z ∈ C with Re z � 0.
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Proposition 2.11. Let g ∈ L1(0,∞) be such that
∫ ∞

0 g(s)ds < 1 and suppose that G(t) = ∫ ∞
t g(s)ds is a

strongly positive definite kernel. Then ĝ(z) �= 1, for all z ∈ C with Re z � 0.

Proof. Since G(t) = ∫ ∞
0 g(s)ds − ∫ t

0 g(s)ds, we have that

Ĝ(z) = 1

z

∞∫
0

g(s)ds − ĝ(z)

z
. (2.18)

Now, for Re z > 0,

1

z

∞∫
0

g(s)ds − ĝ(z)

z
�= 1

z

( ∞∫
0

g(s)ds − 1

)

because the real part of the left-hand side is nonnegative on account of (2.3), whereas the real part
of the right-hand side is negative. Therefore, ĝ(z) �= 1 for Re z > 0.

Moreover, since G is strongly positive definite, by Corollary 2.3(a) there exists δ > 0 such that for
any ω > 0

∞∫
0

sin(ωt)g(t)dt � δ
ω

1 + ω2
,

whence for any ω �= 0 we have Im ĝ(iω) �= 0. So, taking into account that
∫ ∞

0 g(s)ds < 1, we get
ĝ(z) �= 1 also for Re z = 0. �

The following corollary of Proposition 2.11 and Theorem 2.10 provides uniform estimates for solu-
tions of integral equations.

Corollary 2.12. Let g ∈ L1(0,∞) be such that
∫ ∞

0 g(s)ds < 1 and suppose that G(t) = ∫ ∞
t g(s)ds is a

strongly positive definite kernel. Then,

(a) the resolvent kernel r of g belongs to L1(0,∞);
(b) for any v ∈ L p(0,∞; X), 1 � p � ∞, the solution y of equation

y(t) − g ∗ y(t) = v(t), t � 0,

belongs to L p(0,∞; X) and

‖y‖p �
(
1 + ‖r‖1

)‖v‖p . (2.19)

For the reader’s convenience, we recall the notion of resolvent for the equation

u′′(t) + Au(t) −
t∫

0

g(t − s)Au(s)ds = 0, (2.20)

where A is a self-adjoint linear operator on X with dense domain D(A) and g ∈ L1
loc(0,∞) (see [9,8]

for smooth kernels).
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Definition 2.13. A family {S(t)}t�0 of bounded linear operators in X is called a resolvent for Eq. (2.20)
if the following conditions are satisfied:

(S1) S(0) = I and S(t) is strongly continuous on [0,∞), that is, for all x ∈ X , S(·)x is continuous;
(S2) S(t) commutes with A, which means that S(t)D(A) ⊂ D(A) and

A S(t)x = S(t)Ax, x ∈ D(A), t � 0;

(S3) for any x ∈ D(A), S(·)x is twice continuously differentiable in X on [0,∞) and S ′(0)x = 0;
(S4) for any x ∈ D(A) and any t � 0,

S ′′(t)x + A S(t)x −
t∫

0

g(t − τ )A S(τ )x dτ = 0.

Finally, we give a lemma establishing a sort of integration by parts, which will be useful in Sec-
tion 5.

Lemma 2.14. Let f ∈ W 1,1
loc (0,∞) ∩ L1(0,∞) and h ∈ C1([0,∞)) with h(0) = 0 be such that f ′(t)h(t) � 0

for a.e. t > 0, f h and f h′ belong to L1(0,∞). Then

∞∫
0

f ′(t)h(t)dt = −
∞∫

0

f (t)h′(t)dt, (2.21)

in the sense of generalized integrals.

Proof. First, we observe that there exists a sequence {an} of positive numbers such that limn→∞ an = 0
and limn→∞ an f (an) = 0, because otherwise | f (t)| � c0/t near 0, for some c0 > 0, which con-
tradicts f ∈ L1(0,∞). Since h ∈ C1([0,∞)) and h(0) = 0, it follows that limn→∞ f (an)h(an) = 0.
In addition, since f h ∈ L1(0,∞), there exists a sequence {bn} such that limn→∞ bn = ∞ and
limn→∞ f (bn)h(bn) = 0.

Integrating by parts, we get for any n ∈ N

bn∫
an

f ′(t)h(t)dt = [
f (t)h(t)

]bn

an
−

bn∫
an

f (t)h′(t)dt. (2.22)

Now, for any 0 < a < b we have an � a < b � bn for n ∈ N sufficiently large, so

b∫
a

f ′(t)h(t)dt �
bn∫

an

f ′(t)h(t)dt,

whence, taking into account (2.22) and passing to the limit as n → ∞, a → 0+ and b → ∞, we obtain

∞∫
f ′(t)h(t)dt � −

∞∫
f (t)h′(t)dt. (2.23)
0 0
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On the other hand, again by (2.22) we see that

[
f (t)h(t)

]bn

an
−

bn∫
an

f (t)h′(t)dt =
bn∫

an

f ′(t)h(t)dt �
∞∫

0

f ′(t)h(t)dt,

and hence

−
∞∫

0

f (t)h′(t)dt �
∞∫

0

f ′(t)h(t)dt. (2.24)

Finally, (2.21) follows from (2.23) and (2.24). �
Remark 2.15. We observe that, if f ∈ L1(0, T ) ∩ W 1,1(ε, T ), for every ε > 0, and h ∈ C1([0, T ]) is such
that h(0) = 0 and f ′(t)h(t) � 0 for a.e. t ∈ (0, T ), then, in the sense of generalized integrals,

T∫
0

f ′(t)h(t)dt = f (T )h(T ) −
T∫

0

f (t)h′(t)dt. (2.25)

The proof is similar to that of Lemma 2.14.

3. Existence and uniqueness

3.1. Local existence of mild and strong solutions

Let us consider the semilinear equation

u′′(t) + Au(t) −
t∫

0

g(t − s)Au(s)ds = ∇ F
(
u(t)

) + f (t), t � 0. (3.1)

Throughout this section we will assume that the following conditions are satisfied:

Assumptions (H1).

1. A is a self-adjoint linear operator on X with dense domain D(A) such that

〈Ax, x〉 � M‖x‖2 ∀x ∈ D(A) (3.2)

for some M > 0.
2. g ∈ L1(0,∞) such that

∞∫
0

g(t)dt < 1, (3.3)

t �→
∞∫

t

g(s)ds is positive definite. (3.4)
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3. F : D(A1/2) → R is a functional such that
(a) F is Gâteaux differentiable at any point x ∈ D(A1/2);
(b) for any x ∈ D(A1/2) there exists a constant c(x) > 0 such that∣∣DF(x)(y)

∣∣ � c(x)‖y‖, for any y ∈ D
(

A1/2), (3.5)

where DF(x) denotes the Gâteaux derivative of F in x; consequently, DF(x) can be extended
to the whole space X (and we will denote by ∇ F (x) the unique vector representing DF(x) in
the Riesz isomorphism, that is, 〈∇ F (x), y〉 = DF(x)(y), for any y ∈ X );

(c) for any R > 0 there exists a constant C R > 0 such that∥∥∇ F (x) − ∇ F (y)
∥∥ � C R

∥∥A1/2x − A1/2 y
∥∥ (3.6)

for all x, y ∈ D(A1/2) satisfying ‖A1/2x‖,‖A1/2 y‖ � R .

Let 0 < T � ∞ be given and f ∈ L1(0, T ; X). To begin with, we recall some notions of solution.

Definition 3.1. We say that u is a strong solution of (3.1) on [0, T ] if

u ∈ C2([0, T ]; X
) ∩ C

([0, T ]; D(A)
)

and u satisfies (3.1) for every t ∈ [0, T ].
Let u0, u1 ∈ X . A function u ∈ C1([0, T ]; X) ∩ C([0, T ]; D(A1/2)) is a mild solution of (3.1) on [0, T ]

with initial conditions

u(0) = u0, u′(0) = u1, (3.7)

if

u(t) = S(t)u0 +
t∫

0

S(τ )u1 dτ +
t∫

0

1 ∗ S(t − τ )
(∇ F

(
u(τ )

) + f (τ )
)

dτ , (3.8)

where {S(t)} is the resolvent for (2.20) (see Definition 2.13).

Notice that the convolution term in (3.8) is well defined, thanks to (3.6). A strong solution is also
a mild one.

Another useful notion of generalized solution of (3.1) is the so-called weak solution, that is a func-
tion u ∈ C1([0, T ]; X) ∩ C([0, T ]; D(A1/2)) such that, for any v ∈ D(A1/2), 〈u′(t), v〉 ∈ C1([0, T ]) and
for any t ∈ [0, T ] one has

d

dt

〈
u′(t), v

〉 + 〈
A1/2u(t), A1/2 v

〉 − 〈 t∫
0

g(t − s)A1/2u(s)ds, A1/2 v

〉

= 〈∇ F
(
u(t)

)
, v

〉 + 〈
f (t), v

〉
. (3.9)

Adapting a classical argument due to Ball [4], one can show that any mild solution of (3.1) is also a
weak solution, and the two notions of solution are equivalent when F ≡ 0 (see also [31]).

The next proposition ensures the local existence and uniqueness of mild solutions. The proof relies
on suitable regularity estimates for the resolvent {S(t)} (see, e.g., [9, Section 3]) and a standard fixed
point argument (see [6] for an analogous proof).
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Proposition 3.2. Let u0 ∈ D(A1/2), u1 ∈ X and f ∈ L1(0, T ; X). Then, a positive number T0 = T u
0 � T exists

so that Eq. (3.1) with initial conditions u(0) = u0 and u′(0) = u1 admits a unique mild solution on [0, T0].
In addition, for any u0, v0 ∈ D(A1/2), u1, v1 ∈ X and f u ∈ L1(0, T ; X), f v ∈ L1(0, T ; X), there exists a

constant CT > 0 (depending on T ) such that, called u and v the mild solutions with data u0 , u1 , f u and v0 ,
v1 , f v respectively, we have∥∥A1/2u(t) − A1/2 v(t)

∥∥ + ∥∥u′(t) − v ′(t)
∥∥

� CT
(∥∥A1/2u0 − A1/2 v0

∥∥ + ‖u1 − v1‖ + ∥∥ f u − f v
∥∥

1,T

)
, (3.10)

for any t ∈ [0, T u
0 ∧ T v

0 ].

Assuming more regular data and using standard argumentations, one can show that the mild so-
lution is a strong one.

Proposition 3.3. Let u0 ∈ D(A), u1 ∈ D(A1/2) and f ∈ W 1,1(0, T ; X). Then, the mild solution of the Cauchy
problem (3.1)–(3.7) in [0, T0], T0 ∈ (0, T ], is a strong solution.

In addition, u belongs to C1([0, T0]; D(A1/2)).

3.2. Global existence of mild and strong solutions

In this section we will investigate the existence in the large of the solution to the Cauchy problem⎧⎪⎪⎨⎪⎪⎩
u′′(t) + Au(t) −

t∫
0

g(t − s)Au(s)ds = ∇ F
(
u(t)

) + f (t),

u(0) = u0, u′(0) = u1.

(3.11)

We define the energy of a mild solution u of (3.11) on a given interval [0, T ], as

Eu(t) := 1

2

∥∥u′(t)
∥∥2 + 1

2

(
1 −

∞∫
0

g(s)ds

)∥∥A1/2u(t)
∥∥2 − F

(
u(t)

)
. (3.12)

Throughout this section let Assumptions (H1) be satisfied and we set

G(t) :=
∞∫

t

g(s)ds, t � 0.

First, we will show two preliminary results, which will be used later.

Lemma 3.4. For any v ∈ C1([0, T ]; X), T > 0, the following holds true for any t ∈ [0, T ]
t∫

0

〈
g ∗ v(s), v ′(s)

〉
ds = −

t∫
0

〈
G ∗ v ′(s), v ′(s)

〉
ds + G(0)

2

(∥∥v(t)
∥∥2 + ∥∥v(0)

∥∥2)

− G(t)
〈
v(0), v(t)

〉 − t∫
g(s)

〈
v(0), v(s)

〉
ds, (3.13)
0
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〈
v(t), v(t) − g ∗ v(t)

〉 = (
1 − G(0)

)∥∥v(t)
∥∥2 + G(t)

〈
v(0), v(t)

〉 + 〈
v(t), G ∗ v ′(t)

〉
. (3.14)

In addition, if G ∈ L2(0,∞), then we have for any t ∈ [0, T ]
t∫

0

∥∥v(s) − g ∗ v(s)
∥∥2

ds � 2
(
1 − G(0)

) t∫
0

〈
v(s), v(s) − g ∗ v(s)

〉
ds

+ 2‖G‖2
2

∥∥v(0)
∥∥2 + 2

t∫
0

∥∥G ∗ v ′(s)
∥∥2

ds. (3.15)

Proof. As g = −G ′ , the convolution term g ∗ v(t) can be estimated integrating by parts as follows:

g ∗ v(t) = −
t∫

0

G ′(t − r)v(r)dr

= G(0)v(t) − G(t)v(0) −
t∫

0

G(t − r)v ′(r)dr. (3.16)

Therefore, we have

t∫
0

〈
g ∗ v(s), v ′(s)

〉
ds

= G(0)

2

(∥∥v(t)
∥∥2 − ∥∥v(0)

∥∥2) −
〈

v(0),

t∫
0

G(s)v ′(s)ds

〉
−

t∫
0

〈
G ∗ v ′(s), v ′(s)

〉
ds.

Another integration by parts yields

t∫
0

G(s)v ′(s)ds = G(t)v(t) − G(0)v(0) +
t∫

0

g(s)v(s)ds,

so, putting the above identity into the previous one, we have (3.13).
By (3.16) we get

v(t) − g ∗ v(t) = (
1 − G(0)

)
v(t) + G(t)v(0) + G ∗ v ′(t), (3.17)

whence, multiplying by v(t), (3.14) follows.
Now, we multiply both sides of (3.17) by v(t) − g ∗ v(t) and evaluate the second and the third

terms on the right-hand side by applying the elementary inequality |ab| � a2/4 + b2. This yields∥∥v(t) − g ∗ v(t)
∥∥2

� 2
(
1 − G(0)

)〈
v(t), v(t) − g ∗ v(t)

〉 + 2
∣∣G(t)

∣∣2∥∥v(0)
∥∥2 + 2

∥∥G ∗ v ′(t)
∥∥2

.

Integrating the above estimate over [0, t] gives (3.15). �
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Lemma 3.5.

(i) If u0 ∈ D(A), u1 ∈ D(A1/2) and f ∈ W 1,1(0, T ; X), then the strong solution u of problem (3.11) on
[0, T0], T0 � T , satisfies the identity

Eu(t) +
t∫

0

〈
G ∗ A1/2u′(s), A1/2u′(s)

〉
ds

= Eu(0) + G(0)
∥∥A1/2u0

∥∥2 − 〈
A1/2u0, G(t)A1/2u(t)

〉
−

t∫
0

g(s)
〈
A1/2u0, A1/2u(s)

〉
ds +

t∫
0

〈
f (s), u′(s)

〉
ds, (3.18)

for any t ∈ [0, T0].
(ii) If u0 ∈ D(A1/2), u1 ∈ X and f ∈ L1(0, T ; X), then the mild solution u of problem (3.11) on [0, T0] verifies

Eu(t) � Eu(0) + G(0)
∥∥A1/2u0

∥∥2 − 〈
A1/2u0, G(t)A1/2u(t)

〉
−

t∫
0

g(s)
〈
A1/2u0, A1/2u(s)

〉
ds +

t∫
0

〈
f (s), u′(s)

〉
ds, (3.19)

for any t ∈ [0, T0].

Proof. (i) Let us suppose, first, that u0 ∈ D(A), u1 ∈ D(A1/2) and f ∈ W 1,1(0, T ; X); in particular, the
strong solution u belongs to C1([0, T0]; D(A1/2)), see Proposition 3.3.

If we multiply the equation in (3.11) by u′(t), then we obtain

1

2

d

dt

∥∥u′(t)
∥∥2 + 1

2

d

dt

∥∥A1/2u(t)
∥∥2 − 〈

g ∗ A1/2u(t), A1/2u′(t)
〉

= 〈∇ F
(
u(t)

)
, u′(t)

〉 + 〈
f (t), u′(t)

〉
.

Integrating from 0 to t yields

1

2

∥∥u′(t)
∥∥2 + 1

2

∥∥A1/2u(t)
∥∥2 −

t∫
0

〈
g ∗ A1/2u(τ ), A1/2u′(τ )

〉
dτ − F

(
u(t)

)

= 1

2
‖u1‖2 + 1

2

∥∥A1/2u0
∥∥2 − F (u0) +

t∫
0

〈
f (τ ), u′(τ )

〉
dτ .

To estimate the integral on the left-hand side of the above estimate, we use (3.13) with v = A1/2u, so
we have

1

2

∥∥u′(t)
∥∥2 + 1 − G(0)

2

∥∥A1/2u(t)
∥∥2 +

t∫ 〈
G ∗ A1/2u′(τ ), A1/2u′(τ )

〉
dτ − F

(
u(t)

)

0
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= 1

2
‖u1‖2 + 1 + G(0)

2

∥∥A1/2u0
∥∥2 − F (u0)

− 〈
A1/2u0, G(t)A1/2u(t)

〉 − t∫
0

g(τ )
〈
A1/2u0, A1/2u(τ )

〉
dτ +

t∫
0

〈
f (τ ), u′(τ )

〉
dτ ,

whence (3.18) follows.
(ii) Since G is a positive definite kernel, we have

t∫
0

〈
G ∗ A1/2u′(s), A1/2u′(s)

〉
ds � 0;

so, an approximation argument based on (3.10) suffices to prove (3.19) for mild solutions. �
Assuming an extra condition on functional F , global existence will follow with sufficiently small

data.

Theorem 3.6. Suppose that there exists an upper semicontinuous function ψ : [0,∞) → [0,∞) with
ψ(0) = 0 such that

∣∣F (x)
∣∣ � ψ

(∥∥A1/2x
∥∥)∥∥A1/2x

∥∥2 ∀x ∈ D
(

A1/2). (3.20)

Then a number ρ0 > 0 exists such that for any (u0, u1) ∈ D(A1/2) × X and any f ∈ L1(0,∞; X), satisfying

∥∥A1/2u0
∥∥ + ‖u1‖ + ‖ f ‖1 < ρ0,

problem (3.11) admits a unique mild solution u on [0,∞).
Moreover, Eu(t) is positive and for ε ∈ (0,

1−G(0)
2 ) we have

Eu(t) � 1

2

∥∥u′(t)
∥∥2 + ε

∥∥A1/2u(t)
∥∥2

, (3.21)

ψ
(∥∥A1/2u(t)

∥∥)
� 1 − G(0)

2
− ε, (3.22)

Eu(t) � C
(‖u1‖ + ∥∥A1/2u0

∥∥ + ‖ f ‖1
)
, (3.23)∥∥u′(t)

∥∥2 + ∥∥A1/2u(t)
∥∥2 � C

(‖u1‖ + ∥∥A1/2u0
∥∥ + ‖ f ‖1

)
(3.24)

for any t � 0, where C(R) is a positive, increasing, upper semicontinuous function such that C(0) = 0.
Furthermore, if u0 ∈ D(A), u1 ∈ D(A1/2) and f ∈ W 1,1

loc (0,∞; X) ∩ L1(0,∞; X), then u is a strong solu-

tion of the equation in (3.11) on [0,∞), u ∈ C1([0,∞); D(A1/2)) and for any t � 0

Eu(t) +
t∫

0

〈
G ∗ A1/2u′(s), A1/2u′(s)

〉
ds � C

(‖u1‖ + ∥∥A1/2u0
∥∥ + ‖ f ‖1

)
. (3.25)
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Proof. Let [0, T ) be the maximal domain of the mild solution u of (3.11). To prove T = ∞, we will
show that the energy of u is nonnegative and bounded from above by a constant independent of T .

First, we claim that for ε ∈ (0,
1−G(0)

2 ), if the initial data are suitably small, then

ψ
(∥∥A1/2u(t)

∥∥)
� 1 − G(0)

2
− ε ∀t ∈ [0, T ). (3.26)

To prove this, we observe that there exists ρ > 0 such that

ψ(ρ) � 1 − G(0)

2
− ε, ∀0 < ρ � ρ. (3.27)

We assume that

∥∥A1/2u0
∥∥ � ρ/2, (3.28)

so the set Λ of all s ∈ [0, T ) such that ‖A1/2u(t)‖ � ρ for any t ∈ [0, s] is not empty. Let τ be
the supremum of Λ. We will show that τ = T . Reasoning by contradiction, we suppose τ < T . By
continuity,

∥∥A1/2u(t)
∥∥ � ρ ∀t ∈ [0, τ ],

whence, by (3.27), we have

ψ
(∥∥A1/2u(t)

∥∥)
� 1 − G(0)

2
− ε ∀t ∈ [0, τ ]. (3.29)

Assumption (3.20) and estimate (3.29) yield for any t ∈ [0, τ ]

Eu(t) � 1

2

∥∥u′(t)
∥∥2 + 1 − G(0)

2

∥∥A1/2u(t)
∥∥2 − ψ

(∥∥A1/2u(t)
∥∥)∥∥A1/2u(t)

∥∥2

� 1

2

∥∥u′(t)
∥∥2 + ε

∥∥A1/2u(t)
∥∥2

. (3.30)

Now, we observe that by (3.19), (3.20) and (3.28) we get

Eu(t) � 1

2
‖u1‖2 + ∥∥A1/2u0

∥∥2 + 1

2ε
‖g‖1

(‖g‖1 + 1
)∥∥A1/2u0

∥∥2 + 1

2
‖ f ‖1

+ ε

2

∥∥A1/2u(t)
∥∥2 + ε

2

t∫
0

∣∣g(σ )
∣∣∥∥A1/2u(σ )

∥∥2
dσ + 1

2

t∫
0

∣∣ f (σ )
∣∣∥∥u′(σ )

∥∥2
dσ

�
(

2 + 1

2ε
‖g‖1

(‖g‖1 + 1
))(‖u1‖2 + ∥∥A1/2u0

∥∥2 + ‖ f ‖1
)

+ ε

2

∥∥A1/2u(t)
∥∥2 + ε

2

t∫
0

∣∣g(σ )
∣∣∥∥A1/2u(σ )

∥∥2
dσ + 1

2

t∫
0

∣∣ f (σ )
∣∣∥∥u′(σ )

∥∥2
dσ . (3.31)

Putting together (3.31) and (3.30), we get
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∥∥u′(t)
∥∥2 + ε

∥∥A1/2u(t)
∥∥2 �

(
4 + 1

ε
‖g‖1

(‖g‖1 + 1
))(∥∥u1

∥∥2 + ∥∥A1/2u0
∥∥2 + ‖ f ‖1

)
+

t∫
0

(∣∣g(σ )
∣∣ + ∣∣ f (σ )

∣∣)(∥∥u′(σ )
∥∥2 + ε

∥∥A1/2u(σ )
∥∥2)

dσ . (3.32)

Applying Gronwall Lemma, we have for any t ∈ [0, τ ]
∥∥u′(t)

∥∥2 + ε
∥∥A1/2u(t)

∥∥2

� e‖g‖1

(
4 + 1

ε
‖g‖1

(‖g‖1 + 1
))

e‖ f ‖1
(‖u1‖2 + ∥∥A1/2u0

∥∥2 + ‖ f ‖1
)
. (3.33)

Therefore, set

C := e‖g‖1

ε

(
4 + 1

ε
‖g‖1

(‖g‖1 + 1
))

if we take δ > 0 such that δeδ <
ρ2

4C , then for ‖ f ‖1 < δ and ‖u1‖2 + ‖A1/2u0‖2 < e−δ ρ2

4C − δ we have

e‖ f ‖1
(‖u1‖2 + ∥∥A1/2u0

∥∥2 + ‖ f ‖1
)
� ρ2

4C
,

so, by (3.33) we get

∥∥A1/2u(τ )
∥∥ � ρ

2
< ρ.

This contradicts the maximality of τ . So, τ = T .
To sum up, there exists ρ0 > 0 such that for any (u0, u1) ∈ D(A1/2) × X and any f ∈ L1(0,∞; X)

with ‖A1/2u0‖ + ‖u1‖ + ‖ f ‖1 � ρ0, we have

∥∥A1/2u(t)
∥∥ � ρ ∀t ∈ [0, T ),

so

ψ
(∥∥A1/2u(t)

∥∥)
� 1 − G(0)

2
− ε ∀t ∈ [0, T ).

Thus, for any t ∈ [0, T )

Eu(t) � 1

2

∥∥u′(t)
∥∥2 + ε

∥∥A1/2u(t)
∥∥2

,

and

∥∥u′(t)
∥∥2 + ε

∥∥A1/2u(t)
∥∥2

� e‖g‖1+‖ f ‖1

(
4 + 1

ε
‖g‖1

(‖g‖1 + 1
))(‖u1‖2 + ∥∥A1/2u0

∥∥2 + ‖ f ‖1
)
.
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Moreover, putting the above estimate into (3.31) we obtain

Eu(t) � C
(‖u1‖ + ∥∥A1/2u0

∥∥ + ‖ f ‖1
) ∀t ∈ [0, T ),

where C(R) is a positive, increasing, upper semicontinuous function such that C(0) = 0 and indepen-
dent of T . Therefore, u is global and estimates (3.21)–(3.23) hold true. Finally, (3.24) follows from
(3.21) and (3.23), while (3.25) holds for strong solutions in view of (3.18). �
Corollary 3.7. Under the assumptions of Theorem 3.6, for any R > 0 there exists ρR > 0 such that for any
(u0, u1) ∈ D(A1/2) × X and any f ∈ L1(0,∞; X), satisfying

∥∥A1/2u0
∥∥ + ‖u1‖ + ‖ f ‖1 < ρR ,

the mild solution u of problem (3.11) verifies

ψ
(∥∥A1/2u(t)

∥∥)
� R ∀t � 0.

Proof. The statement follows from the upper semicontinuity of ψ and (3.24). �
4. Exponential decay of the energy

This section is devoted to the study of the asymptotic behavior of the solution to the Cauchy
problem ⎧⎪⎪⎨⎪⎪⎩

u′′(t) + Au(t) −
t∫

0

g(t − s)Au(s)ds = ∇ F
(
u(t)

) + f (t),

u(0) = u0, u′(0) = u1.

(4.1)

For any measurable function h : (0,∞) → X and α ∈ R let us set

hα(t) := eαth(t), t > 0.

We will provide conditions to ensure that the energy of the solution decays exponentially at ∞. Such
conditions are obtained by strengthening Assumptions (H1) as follows.

Assumptions (H2).

1. There exists α0 � 0 such that gα0 ∈ L1(0,∞) and t �→ ∫ ∞
t gα0(s)ds is a strongly positive definite

kernel.
2. F (0) = 0 and there exists an upper semicontinuous function ψ : [0,∞) → [0,∞) with ψ(0) = 0

such that

∣∣〈∇ F (x), y
〉∣∣ � ψ

(∥∥A1/2x
∥∥)∥∥A1/2x

∥∥‖y‖, (4.2)

for any x ∈ D(A1/2) and y ∈ X .

Notice that (H2)-1 is satisfied (with α0 = 0) if G is a strongly positive definite kernel. For our next
result, however, we need that (H2)-1 holds true with α0 > 0.
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Theorem 4.1. Assume (H1) and (H2) with α0 > 0. Then, there exist positive numbers ρ1 � ρ0
2 and C such

that, for any (u0, u1) ∈ D(A1/2) × X and any fη0 ∈ L1(0,∞; X), η0 > 0, satisfying

∥∥A1/2u0
∥∥ + ‖u1‖ + ‖ fη0‖1 < ρ1,

the energy Eu(t) of the mild solution u of (4.1) decays as

Eu(t) � C
(∥∥A1/2u0

∥∥ + ‖u1‖ + ‖ fη0‖1
)
e−2αt ∀t � 0, (4.3)

and

∞∫
0

e2αt Eu(t)dt � C
(∥∥A1/2u0

∥∥ + ‖u1‖ + ‖ fη0‖1
)

(4.4)

for any α ∈ [0,α∗], where α∗ ∈ (0,α0 ∧η0] and C(R) is a positive, increasing, upper semicontinuous function
such that C(0) = 0.

Moreover, one can take ρ1 = ∞ if F ≡ 0.

Remark 4.2.

1. In the proof of Theorem 4.1 we give an estimate of the decay rate α∗ . Precisely, it can be taken
as in the following formula

2α∗ := δα0

4(1 + α0)2

(∥∥A−1/2
∥∥2 + (1 + α0)

2

δα0

+ 8α2
1‖A−1/2‖2

1 − G(0)

)−1

∧ α1

2
∧ η0,

with

α1 := α2
0δ2

α0

8(1 + α2
0)(1 + α0)4‖gα0‖2

1

∧ α0

2
,

see (4.15) and (4.25) below.
2. As we shall see in Section 5, the above set-up can be used to treat kernels with variable sign. For

instance, our assumptions for convolution kernels, namely (H1)-2 and (H2)-1, hold true for

ga,b,c(t) := 1

�(1 − b)
e−att−b cos(ct)

when a,b, c satisfy suitable constraints.
3. For any α ∈ [0,α0], gα ∈ L1(0,∞) and

Gα(t) :=
∞∫

t

gα(s)ds

is a strongly positive definite kernel with

2 ρ0 is given by Theorem 3.6.
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δα := δα0

(1 + α0 − α)2
� δα0

(1 + α0)2
, (4.5)

as one can see noting that Gα(t) = ∫ ∞
t e−(α0−α)s gα0(s)ds and applying Proposition 2.5 to gα0 .

Moreover, thanks to (2.12) and (4.5), we have

Gα(0) � δα � δα0

(1 + α0)2
. (4.6)

4. Thanks to gα0 ∈ L1(0,∞), the dominated convergence theorem and G(0) < 1, we have for any
α ∈ [0,α′]

1 − Gα(0) � 1 − G(0)

2
> 0, (4.7)

for some α′ ∈ (0,α0]. For simplicity, in the following we assume α′ = α0, so (4.7) is satisfied for
any α ∈ [0,α0].

5. For any α ∈ (0,α0 − ε0], 0 < ε0 < α0, Gα ∈ L1(0,∞) and

‖Gα‖1 � 1

ε0
‖gα0‖1, (4.8)

because it suffices to note that

∞∫
0

∣∣Gα(t)
∣∣dt �

∞∫
0

seαs
∣∣g(s)

∣∣ds

=
∞∫

0

se−(α0−α)seα0s
∣∣g(s)

∣∣ds � 1

ε0

∞∫
0

eα0s
∣∣g(s)

∣∣ds. (4.9)

6. Observe that for any α ∈ (0,α0 − ε0], 0 < ε0 < α0, Gα ∈ L2(0,∞) and also by (4.8) we have

‖Gα‖2
2 � ‖Gα‖1‖gα‖1 � 1

ε0
‖gα0‖2

1. (4.10)

7. We note that ∇ F (0) = 0, as follows from (4.2).
8. Observe that assumption (H2)-2 ensures that hypothesis (3.20) is satisfied. Indeed, since F (0) = 0

for any x ∈ D(A1/2) we have

∣∣F (x)
∣∣ �

1∫
0

∣∣〈∇ F (tx), x
〉∣∣dt

�
∥∥A1/2x

∥∥‖x‖
1∫

0

ψ
(
t
∥∥A1/2x

∥∥)
t dt � 1

2
√

M
ψ

(∥∥A1/2x
∥∥)∥∥A1/2x

∥∥2
,

also in view of (3.2).
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Proof of Theorem 4.1. Due to some tricky technical features of the proof, we prefer to treat, at first,
the linear case F = 0.

Let us suppose that u0 ∈ D(A), u1 ∈ D(A1/2) and f ∈ C1([0,∞); X), so that the mild solution u is
a strong one. It is easy to see that, for any α � 0, the function uα(t) = eαt u(t) solves the problem{

u′′
α(t) − 2αu′

α(t) + α2uα(t) + Auα(t) − gα ∗ Auα(t) = fα(t),

uα(0) = u0; u′
α(0) = u0 + αu1.

(4.11)

As in the nonintegral case, the more difficult term to estimate is the kinetic energy. Indeed, to evaluate∫ t
0 ‖u′

α(s)‖2 ds, we apply inequality (2.14) with h = Gα and y = u′
α , obtaining for any t � 0

t∫
0

∥∥u′
α(s)

∥∥2
ds �

∥∥u′
α(0)

∥∥2 + 2

δα

( t∫
0

〈
Gα ∗ u′

α(s), u′
α(s)

〉
ds +

t∫
0

〈
Gα ∗ u′′

α(s), u′′
α(s)

〉
ds

)
. (4.12)

Therefore, to proceed with the proof, we need to give suitable estimates for the integrals on the
right-hand side. That is our goal in the following lemmas.

From now on, we denote by the symbol Ci , i ∈ N, positive constants depending only on data and
‖A1/2u0‖, ‖u1‖, ‖ fη0‖1.

Lemma 1. For any α ∈ [0,α0] and t � 0 we have

t∫
0

〈
Gα ∗ u′

α(s), u′
α(s)

〉
ds � C1 + Hα,1(t) + 2α

∥∥A−1/2
∥∥2

t∫
0

∥∥u′
α(s)

∥∥2
ds, (4.13)

where C1 > 0 and

Hα,1(t) := −Gα(t)
〈
u0, uα(t)

〉 − t∫
0

gα(s)
〈
u0, uα(s)

〉
ds

+
t∫

0

〈
fα(s), A−1u′

α(s)
〉
ds. (4.14)

Proof. If we multiply the equation in (4.11) by A−1u′
α(t) and integrate from 0 to t , then we obtain

1

2

∥∥A−1/2u′
α(t)

∥∥2 + α2

2

∥∥A−1/2uα(t)
∥∥2 + 1

2

∥∥uα(t)
∥∥2 −

t∫
0

〈
gα ∗ uα(s), u′

α(s)
〉
ds

= 1

2

∥∥A−1/2u′
α(0)

∥∥2 + α2

2

∥∥A−1/2u0
∥∥2 + 1

2
‖u0‖2

+
t∫

0

〈
fα(s), A−1u′

α(s)
〉
ds + 2α

t∫
0

∥∥A−1/2u′
α(s)

∥∥2
ds.

Therefore, applying (3.13) with v = uα to the integral on the left-hand side, one gets (4.13)–(4.14). �
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Lemma 2. For any α ∈ [0,α1 − ε0], 0 < ε0 < α1 , with

α1 := α2
0δ2

α0

8(1 + α2
0)(1 + α0)4‖gα0‖2

1

∧ α0

2
, (4.15)

and t � 0 the following two estimates hold true

t∫
0

〈
Gα ∗ u′′

α(s), u′′
α(s)

〉
ds � α1

ε0

(
C2 + Hα,2(t)

)

+ α
α1

ε0

(
(1 + α0)

2

δα0

+ 8α2
1

1 − G(0)

∥∥A−1/2
∥∥2

) t∫
0

∥∥u′
α(s)

∥∥2
ds, (4.16)

1 − Gα(0)

2

∥∥u′
α(t)

∥∥2 + 1

2

∥∥A1/2(uα − gα ∗ uα)(t)
∥∥2 + α2 1 − Gα(0)

4

∥∥uα(t)
∥∥2

� C2 + Hα,2(t) + α

(
(1 + α0)

2

δα0

+ 8α2
1

1 − G(0)

∥∥A−1/2
∥∥2

) t∫
0

∥∥u′
α(s)

∥∥2
ds, (4.17)

where C2 > 0 and

Hα,2(t) := 2α2

1 − Gα(0)
Hα,1(t) − Gα(t)

〈
u′

α(0), u′
α(t)

〉
−

t∫
0

gα(s)
〈
u′

α(0), u′
α(s)

〉
ds −

t∫
0

gα(s)
〈
A1/2u0, A1/2(uα − gα ∗ uα)(s)

〉
ds

+
t∫

0

〈
fα(s), u′

α(s) − gα ∗ u′
α(s)

〉
ds. (4.18)

Proof. First, we multiply the equation in (4.11) by

u′
α(t) − gα ∗ u′

α(t) = d

dt
(uα − gα ∗ uα)(t) + gα(t)u0 (4.19)

and, since u ∈ C1([0,∞); D(A1/2)) (see Theorem 3.6), we obtain

〈
u′′

α(t), u′
α(t) − gα ∗ u′

α(t)
〉 − 2α

〈
u′

α(t), u′
α(t) − gα ∗ u′

α(t)
〉

+ α2〈uα(t), u′
α(t) − gα ∗ u′

α(t)
〉 + 1

2

d

dt

∥∥A1/2(uα − gα ∗ uα)(t)
∥∥2

+ gα(t)
〈
A1/2u0, A1/2(uα − gα ∗ uα)(t)

〉 = 〈
fα(t), u′

α(t) − gα ∗ u′
α(t)

〉
.

Integrating from 0 to t yields



P. Cannarsa, D. Sforza / J. Differential Equations 250 (2011) 4289–4335 4311
1

2

∥∥u′
α(t)

∥∥2 −
t∫

0

〈
u′′

α(s), gα ∗ u′
α(s)

〉
ds + 1

2

∥∥A1/2(uα − gα ∗ uα)(t)
∥∥2

= 1

2

∥∥u′
α(0)

∥∥2 + 1

2

∥∥A1/2u0
∥∥2 −

t∫
0

gα(s)
〈
A1/2u0, A1/2(uα − gα ∗ uα)(s)

〉
ds

+
t∫

0

〈
fα(s), u′

α(s) − gα ∗ u′
α(s)

〉
ds + 2α

t∫
0

〈
u′

α(s), u′
α(s) − gα ∗ u′

α(s)
〉
ds

− α2

t∫
0

〈
uα(s), u′

α(s) − gα ∗ u′
α(s)

〉
ds.

To estimate the integral on the left-hand side, we use (3.13) with v = u′
α , so we have

1 − Gα(0)

2

∥∥u′
α(t)

∥∥2 +
t∫

0

〈
Gα ∗ u′′

α(s), u′′
α(s)

〉
ds + 1

2

∥∥A1/2(uα − gα ∗ uα)(t)
∥∥2

= 1 + Gα(0)

2

∥∥u′
α(0)

∥∥2 + 1

2

∥∥A1/2u0
∥∥2 − Gα(t)

〈
u′

α(0), u′
α(t)

〉
−

t∫
0

gα(s)
〈
u′

α(0), u′
α(s)

〉
ds −

t∫
0

gα(s)
〈
A1/2u0, A1/2(uα − gα ∗ uα)(s)

〉
ds

+
t∫

0

〈
fα(s), u′

α(s) − gα ∗ u′
α(s)

〉
ds + 2α

t∫
0

〈
u′

α(s), u′
α(s) − gα ∗ u′

α(s)
〉
ds

− α2

t∫
0

〈
uα(s), u′

α(s) − gα ∗ u′
α(s)

〉
ds. (4.20)

We must evaluate the last two terms on the right-hand side. By means of (3.15) with v = u′
α we

obtain

2

t∫
0

〈
u′

α(s), u′
α(s) − gα ∗ u′

α(s)
〉
ds

�
t∫

0

∥∥u′
α(s)

∥∥2
ds +

t∫
0

∥∥u′
α(s) − gα ∗ u′

α(s)
∥∥2

ds

�
t∫ ∥∥u′

α(s)
∥∥2

ds + 2
(
1 − Gα(0)

) t∫ 〈
u′

α(s), u′
α(s) − gα ∗ u′

α(s)
〉
ds
0 0
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+ 2‖Gα‖2
2

∥∥u′
α(0)

∥∥2 + 2

t∫
0

∥∥Gα ∗ u′′
α(s)

∥∥2
ds,

whence, thanks also to (2.13),

2Gα(0)

t∫
0

〈
u′

α(s), u′
α(s) − gα ∗ u′

α(s)
〉
ds

� 2‖Gα‖2
2

∥∥u′
α(0)

∥∥2 + 2

t∫
0

∥∥Gα ∗ u′′
α(s)

∥∥2
ds +

t∫
0

∥∥u′
α(s)

∥∥2
ds

� 2‖Gα‖2
2

∥∥u′
α(0)

∥∥2 + 2

δα

(‖Gα‖2
1 + 4‖gα‖2

1

) t∫
0

〈
Gα ∗ u′′

α(s), u′′
α(s)

〉
ds +

t∫
0

∥∥u′
α(s)

∥∥2
ds. (4.21)

Next, if we use (4.19), then we get

t∫
0

〈
uα(s), u′

α(s) − gα ∗ u′
α(s)

〉
ds

= 〈uα, uα − gα ∗ uα〉|t0 +
t∫

0

gα(s)
〈
u0, uα(s)

〉
ds

−
t∫

0

〈
u′

α(s), uα(s) − gα ∗ uα(s)
〉
ds

= 〈uα, uα − gα ∗ uα〉|t0 +
t∫

0

gα(s)
〈
u0, uα(s)

〉
ds + 1

2
‖u0‖2

− 1

2

∥∥uα(t)
∥∥2 +

t∫
0

〈
u′

α(s), gα ∗ uα(s)
〉
ds.

If now we evaluate the last term on the right-hand side by means of (3.13) with v = uα , we have

t∫
0

〈
uα(s), u′

α(s) − gα ∗ u′
α(s)

〉
ds

= 〈uα, uα − gα ∗ uα〉|t0 + 1 + Gα(0)

2
‖u0‖2 − Gα(t)

〈
u0, uα(t)

〉
− 1 − Gα(0)

2

∥∥uα(t)
∥∥2 −

t∫ 〈
Gα ∗ u′

α(s), u′
α(s)

〉
ds. (4.22)
0
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Now, thanks to (3.14), we obtain

〈
uα(t), uα(t) − gα ∗ uα(t)

〉 − Gα(t)
〈
u0, uα(t)

〉
= (

1 − Gα(0)
)∥∥uα(t)

∥∥2 + 〈
uα(t), Gα ∗ u′

α(t)
〉
,

so (4.22) can be written in the form

t∫
0

〈
uα(s), u′

α(s) − gα ∗ u′
α(s)

〉
ds = Gα(0) − 1

2
‖u0‖2 + 1 − Gα(0)

2

∥∥uα(t)
∥∥2

+ 〈
uα(t), Gα ∗ u′

α(t)
〉 − t∫

0

〈
Gα ∗ u′

α(s), u′
α(s)

〉
ds. (4.23)

Put (4.21) and (4.23) into (4.20), to get

1 − Gα(0)

2

∥∥u′
α(t)

∥∥2 +
t∫

0

〈
Gα ∗ u′′

α(s), u′′
α(s)

〉
ds + 1

2

∥∥A1/2(uα − gα ∗ uα)(t)
∥∥2

+ α2 1 − Gα(0)

2

∥∥uα(t)
∥∥2

� 1 + Gα(0)

2

∥∥u′
α(0)

∥∥2 + 1

2

∥∥A1/2u0
∥∥2 + α

2‖Gα‖2
2

Gα(0)

∥∥u′
α(0)

∥∥2

+ α2 1 − Gα(0)

2
‖u0‖2 − Gα(t)

〈
u′

α(0), u′
α(t)

〉 − t∫
0

gα(s)
〈
u′

α(0), u′
α(s)

〉
ds

−
t∫

0

gα(s)
〈
A1/2u0, A1/2(uα − gα ∗ uα)(s)

〉
ds +

t∫
0

〈
fα(s),

(
u′

α − gα ∗ u′
α

)
(s)

〉
ds

+ 2α
‖Gα‖2

1 + 4‖gα‖2
1

Gα(0)δα

t∫
0

〈
Gα ∗ u′′

α(s), u′′
α(s)

〉
ds + α

Gα(0)

t∫
0

∥∥u′
α(s)

∥∥2
ds

− α2〈uα(t), Gα ∗ u′
α(t)

〉 + α2

t∫
0

〈
Gα ∗ u′

α(s), u′
α(s)

〉
ds. (4.24)

Thanks to (4.8), (4.6), and (4.5), for α � α0/2 we have

‖Gα‖2
1 + 4‖gα‖2

1

Gα(0)δα
�

4(1 + α2
0)(1 + α0)

4

α2
0δ2

α0

‖gα0‖2
1 � 1

2α1
,

and by (2.11)
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−〈
uα(t), Gα ∗ u′

α(t)
〉

� 1 − Gα(0)

4

∥∥uα(t)
∥∥2 + 2Gα(0)

1 − Gα(0)

t∫
0

〈
Gα ∗ u′

α(s), u′
α(s)

〉
ds,

so, in view also of (4.13), from (4.24) we get

1 − Gα(0)

2

∥∥u′
α(t)

∥∥2 +
t∫

0

〈
Gα ∗ u′′

α(s), u′′
α(s)

〉
ds + 1

2

∥∥A1/2(uα − gα ∗ uα)(t)
∥∥2

+ α2 1 − Gα(0)

4

∥∥uα(t)
∥∥2

� C2 + 2α2

1 − Gα(0)
Hα,1(t) − Gα(t)

〈
u′

α(0), u′
α(t)

〉
−

t∫
0

gα(s)
〈
u′

α(0), u′
α(s)

〉
ds −

t∫
0

gα(s)
〈
A1/2u0, A1/2(uα − gα ∗ uα)(s)

〉
ds

+
t∫

0

〈
fα(s),

(
u′

α − gα ∗ u′
α

)
(s)

〉
ds + α

α1

t∫
0

〈
Gα ∗ u′′

α(s), u′′
α(s)

〉
ds

+ α

(
1

Gα(0)
+ 4α2

1 − Gα(0)

∥∥A−1/2
∥∥2

) t∫
0

∥∥u′
α(s)

∥∥2
ds,

for some C2 > 0. Finally, the term α
α1

∫ t
0 〈Gα ∗ u′′

α(s), u′′
α(s)〉ds can be absorbed by the similar term on

the left-hand side, to deduce (4.16) and (4.17) for α � α1 − ε0. �
Lemma 3. Set

α2 := δα0

4(1 + α0)2

(∥∥A−1/2
∥∥2 + (1 + α0)

2

δα0

+ 8α2
1‖A−1/2‖2

1 − G(0)

)−1

∧ α1

2
∧ η0, (4.25)

then for any α ∈ [0,α2 − ε0], 0 < ε0 < α2 , and t � 0 we have

1 − Gα(0)

2

∥∥u′
α(t)

∥∥2 + 1

2

∥∥A1/2(uα − gα ∗ uα)(t)
∥∥2 + α2 1 − Gα(0)

2

∥∥uα(t)
∥∥2 � C3, (4.26)

t∫
0

∥∥u′
α(τ )

∥∥2
dτ � C4, (4.27)

where C3, C4 > 0.

Proof. First, we estimate the term
∫ t

0 ‖u′
α(τ )‖2 dτ by applying inequality (4.12). Indeed, in view of

(4.5), (4.13) and (4.16), we obtain, for α � α1/2 and t � 0,
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t∫
0

∥∥u′
α(τ )

∥∥2
dτ �

∥∥u′
α(0)

∥∥2 + 2(1 + α0)
2

δα0

(C1 + 2C2)

+ 2(1 + α0)
2

δα0

(
Hα,1(t) + 2Hα,2(t)

) + α

α2

t∫
0

∥∥u′
α(τ )

∥∥2
dτ ,

whence for α � α2 − ε0 the inequality

t∫
0

∥∥u′
α(τ )

∥∥2
dτ � α2

ε0

∥∥u′
α(0)

∥∥2 + 2α2(1 + α0)
2

δα0ε0
(C1 + 2C2)

+ 2α2(1 + α0)
2

δα0ε0

(
Hα,1(t) + 2Hα,2(t)

)
(4.28)

holds true. Moreover, if we put (4.28) into (4.17), we have, taking into account (4.14) and (4.18),

1 − Gα(0)

2

∥∥u′
α(t)

∥∥2 + 1

2

∥∥A1/2(uα − gα ∗ uα)(t)
∥∥2 + α2 1 − Gα(0)

2

∥∥uα(t)
∥∥2

� ε
(∥∥u′

α(t)
∥∥2 + α2

∥∥uα(t)
∥∥2) + Cε + C

t∫
0

(∥∥ fη0(s)
∥∥ + ∣∣gα0(s)

∣∣)∥∥u′
α(s)

∥∥2
ds

+ C

t∫
0

∣∣gα0(s)
∣∣∥∥A1/2(uα − gα ∗ uα)(s)

∥∥2
ds + C

t∫
0

∣∣gα0(s)
∣∣∥∥uα(s)

∥∥2
ds

+ C

t∫
0

∥∥ fη0(s)
∥∥∥∥u′

α(s) − gα ∗ u′
α(s)

∥∥ds,

for any ε > 0 and some Cε, C > 0. By using Gronwall Lemma we get

1 − Gα(0)

2

∥∥u′
α(t)

∥∥2 + 1

2

∥∥A1/2(uα − gα ∗ uα)(t)
∥∥2

+ α2 1 − Gα(0)

2

∥∥uα(t)
∥∥2 � C + C

t∫
0

∥∥ fη0(s)
∥∥∥∥u′

α(s) − gα ∗ u′
α(s)

∥∥ds,

for some C > 0. Since for any T > 0∥∥u′
α − gα ∗ u′

α

∥∥∞,T �
(
1 + ‖gα0‖1

)∥∥u′
α

∥∥∞,T ,

we have

1 − Gα(0)

2

∥∥u′
α(t)

∥∥2 + 1

2

∥∥A1/2(uα − gα ∗ uα)(t)
∥∥2 + α2 1 − Gα(0)

2

∥∥uα(t)
∥∥2

� ε
∥∥u′

α

∥∥2 + Cε,
∞,T
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for any t ∈ [0, T ], so we are able to control the term ‖u′
α‖2∞,T by some positive constant independent

of T , and hence (4.26) follows.
Finally, functions Hα,1(t) and Hα,2(t) in (4.28) can be bounded thanks to (4.26), so one obtains

(4.27). �
Lemma 4. For any α ∈ [0,α2 − ε0], 0 < ε0 < α2 , and t � 0 we have

t∫
0

∥∥A1/2(uα − gα ∗ uα)(s)
∥∥2

ds � C5, (4.29)

where C5 > 0.

Proof. We will follow the same method as in the proofs of Lemmas 1 and 2, now by using uα(t) −
gα ∗ uα(t) as a multiplier. If we take the scalar product of both sides of the equation in (4.11) with
uα(t) − gα ∗ uα(t) and integrate from 0 to t , we obtain

t∫
0

∥∥A1/2(uα − gα ∗ uα)(s)
∥∥2

ds

=
t∫

0

〈
fα(s), uα(s) − gα ∗ uα(s)

〉
ds − 〈

u′
α, uα − gα ∗ uα

〉∣∣∣t

0

+
t∫

0

〈
u′

α(s), u′
α(s) − gα ∗ u′

α(s)
〉
ds −

t∫
0

gα(s)
〈
u′

α(s), u0
〉
ds

+ 2α

t∫
0

〈
u′

α(s), uα(s) − gα ∗ uα(s)
〉
ds − α2

t∫
0

〈
uα(s), uα(s) − gα ∗ uα(s)

〉
ds. (4.30)

To estimate the last term on the right-hand side we use (3.15) and get

−(
1 − Gα(0)

) t∫
0

〈
uα(s), uα(s) − gα ∗ uα(s)

〉
ds

� −1

2

t∫
0

∥∥uα(s) − gα ∗ uα(s)
∥∥2

ds + ‖Gα‖2
2‖u0‖2 +

t∫
0

∥∥Gα ∗ u′
α(s)

∥∥2
ds.

If we put the above inequality into (4.30), we have

t∫
0

∥∥A1/2(uα − gα ∗ uα)(s)
∥∥2

ds + α2

2(1 − Gα(0))

t∫
0

∥∥(uα − gα ∗ uα)(s)
∥∥2

ds

�
t∫ ∥∥ fη0(s)

∥∥∥∥uα(s) − gα ∗ uα(s)
∥∥ds − 〈

u′
α, uα − gα ∗ uα

〉∣∣∣t

0

0
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+
t∫

0

〈
u′

α(s), u′
α(s) − gα ∗ u′

α(s)
〉
ds −

t∫
0

gα(s)
〈
u′

α(s), u0
〉
ds

+ α2‖Gα‖2
2

1 − Gα(0)
‖u0‖2 + α2

1 − Gα(0)

t∫
0

∥∥Gα ∗ u′
α(s)

∥∥2
ds

+ 4
(
1 − Gα(0)

) t∫
0

∥∥u′
α(s)

∥∥2
ds + α2

4(1 − Gα(0))

t∫
0

∥∥uα(s) − gα ∗ uα(s)
∥∥2

ds.

To conclude, in view of (4.26) and (4.27), the desired estimate (4.29) follows. �
Proof of Theorem 4.1 (continued). First, by Remark 4.2-3,4 we can apply Corollary 2.12 to give a uni-
form estimate for ‖A1/2uα(t)‖. Indeed, since the resolvent kernel of gα is given by rα(t) = eαtr(t)
(r is the resolvent kernel of g) thanks to (2.19) we have∥∥A1/2uα

∥∥∞ �
(
1 + ‖rα0‖1

)∥∥A1/2(uα − gα ∗ uα)
∥∥∞, (4.31)

whence, by using (4.26) and (4.7) we get, for any t � 0,∥∥A1/2uα(t)
∥∥2 + ∥∥u′

α(t)
∥∥2 � C

(∥∥A1/2u0
∥∥ + ‖u1‖ + ‖ fη0‖1

)
, (4.32)

where C(R) is a positive, increasing, upper semicontinuous function such that C(0) = 0. Reasoning
as in (4.31), by (2.19) and (4.29) we can show a uniform estimate for

∫ ∞
0 ‖A1/2uα(s)‖2 ds as well.

Therefore, thanks also to (4.27), we get

∞∫
0

∥∥A1/2uα(s)
∥∥2

ds +
∞∫

0

∥∥u′
α(s)

∥∥2
ds � C

(∥∥A1/2u0
∥∥ + ‖u1‖ + ‖ fη0‖1

)
. (4.33)

In the nonlinear case F �= 0 the function uα(t) = eαt u(t) fulfills the equation

u′′
α(t) − 2αu′

α(t) + α2uα(t) + Auα(t) − gα ∗ Auα(t) = eαt∇ F
(
u(t)

) + fα(t). (4.34)

Now, we can repeat the same argumentations used in the linear case: as in Lemmas 1, 2 and 4 we
multiply Eq. (4.34) by the three multipliers A−1u′

α(t), u′
α(t) − gα ∗ u′

α(t) and uα(t) − gα ∗ uα(t) and
then integrate from 0 to t . So, to complete our analysis, we must only evaluate the integrals related
to the nonlinear term eαt∇ F (u(t)).

For the first multiplier A−1u′
α(t), in view of (4.2) and Corollary 3.7, we have for any ε > 0

t∫
0

eαs〈∇ F
(
u(s)

)
, A−1u′

α(s)
〉
ds �

t∫
0

ψ
(∥∥A1/2u(s)

∥∥)∥∥A1/2uα(s)
∥∥∥∥A−1u′

α(s)
∥∥ds

� ε

t∫
0

(∥∥A1/2uα(s)
∥∥2 + ∥∥u′

α(s)
∥∥2)

ds,

by taking ‖A1/2u0‖ + ‖u1‖ + ‖ fη0‖1 < ρε , with ρε � ρ0. In a similar way, we obtain
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t∫
0

eαs〈∇ F
(
u(s)

)
, u′

α(s) − gα ∗ u′
α(s)

〉
ds � ε

t∫
0

(∥∥A1/2uα(s)
∥∥2 + ∥∥u′

α(s)
∥∥2)

ds,

t∫
0

eαs〈∇ F
(
u(s)

)
, uα(s) − gα ∗ uα(s)

〉
ds � ε

t∫
0

∥∥A1/2uα(s)
∥∥2

ds.

Therefore, thanks to the above three estimates, we can show that there exists ρ1 � ρ0 such that for
‖A1/2u0‖ + ‖u1‖ + ‖ fη0‖1 < ρ1 (4.32) and (4.33) also hold in the nonlinear case. So, by Remark 4.2-8
and recalling that u(t) = e−αt uα(t) and u′(t) = e−αt u′

α(t) − αe−αt uα(t), we obtain (4.3) and (4.4) for
strong solutions.

Finally, an approximation argument suffices to extend such a conclusion to mild solutions. �
In conclusion, we are able to recover the asymptotic behavior of the energy, thanks also to some

results for the linear case (see Appendix A).

Theorem 4.3. Assume (H1) and (H2). Then, there exist positive numbers ρ1 � ρ0
3 and C such that, for any

(u0, u1) ∈ D(A1/2) × X and any f ∈ L1(0,∞; X), satisfying

∥∥A1/2u0
∥∥ + ‖u1‖ + ‖ f ‖1 < ρ1,

the energy Eu(t) of the mild solution u of (4.1) belongs to L1(0,∞) and converges to 0 as t → ∞.
Moreover, one can take ρ1 = ∞ if F ≡ 0.

Proof. First, the energy Eu(t) belongs to L1(0,∞) by means of Lemmas 1–4 with α = 0. Moreover,
since ∇ F (u) ∈ L2(0,∞; X), in view of Theorem A.3 Eu(t) is uniformly continuous on [0,∞), so our
claim follows. �
Remark 4.4. Notice that, assuming that t �→ ∫ ∞

t g(s)ds is strongly positive definite and f ∈
L2(0,∞; X), we can prove a global existence result similar to Theorem 3.6, by using the same
argumentations as in the proof of Theorem A.2. So, the previous theorems also hold in the case
f ∈ L2(0,∞; X).

5. Positive definite kernels

As we have just seen, our main stability result holds true for a certain class of strongly positive
definite kernels. Such a class is described, however, in a rather abstract way by Assumptions (H2).
In this section, we shall give easy-to-check sufficient conditions for a given kernel g to satisfy the
positivity hypothesis (H2)-1. Moreover, the conditions we discuss below will allow us to compare
Theorem 4.1 with other related results in the literature, namely [1,30]. Finally, we shall discuss a few
concrete examples of strongly positive kernels.

We begin by showing that any exponentially decaying absolutely continuous kernel satisfies As-
sumption (H2)-1. Therefore, in the case of exponential decay, we find a stability result like in [1]
under weaker regularity assumptions for g .

Proposition 5.1. Let g : [0,∞) → [0,∞) be a locally absolutely continuous function with g(0) > 0 and for
some k > 0

3 ρ0 is given by Theorem 3.6.
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g′(t) � −kg(t), for a.e. t � 0. (5.1)

Then, for all 0 < α0 < k, gα0 ∈ L1(0,∞) and the kernel t �→ ∫ ∞
t gα0(s)ds is strongly positive.

Proof. First of all, we observe that in virtue of (5.1) we have

g(t) � g(0)e−kt, t � 0,

so, taking α0 < k, we get gα0 = eα0· g ∈ L1(0,∞). To prove our claim, we apply Theorem 2.1 to the
function Gα0 (t) = ∫ ∞

t gα0(s)ds with α0 < k. Indeed, Gα0 (t) � 0 and G ′
α0

(t) = −eα0t g(t) � 0, with
G ′

α0
(0) = −g(0) < 0. Moreover, if we use again (5.1), we obtain

G ′′
α0

(t) = −α0eα0t g(t) − eα0t g′(t) � −eα0t(α0 − k)g(t) � 0.

Finally, by Theorem 2.1 we can conclude that Gα0 (t) is strongly positive. �
Now, we give sufficient conditions for a given kernel g ensuring that the positivity hypothesis

(H2)-1 is satisfied.

Proposition 5.2. Let g be a locally absolutely continuous function on (0,∞) satisfying the following:

(1) there exists α0 > 0 such that
∫ ∞

0 eα0t(|g(t)| + t|g′(t)|)dt < ∞;
(2) the kernel G(t) = ∫ ∞

t g(s)ds is strongly positive.

Then, there exists α ∈ (0,α0) such that the kernel Gα(t) = ∫ ∞
t gα(s)ds is strongly positive.

Proof. To begin with, thanks to Remark 4.2-5, we have Gα ∈ L1(0,∞) for any α ∈ (0,α0). So, in view
of Corollary 2.3(b) it is enough to prove that there exist α ∈ (0,α0) and δ > 0 such that

Hα(ω) := 1 + ω2

ω

∞∫
0

eαs g(s) sin(ωs)ds � δ for any ω > 0. (5.2)

First, we note that by Corollary 2.3(a) there exists δ0 > 0 such that

H0(ω) := 1 + ω2

ω

∞∫
0

g(s) sin(ωs)ds � δ0 for any ω > 0. (5.3)

For any ω ∈ (0,1] we have

∣∣Hα(ω) − H0(ω)
∣∣ � 1 + ω2

ω

∞∫
0

(
eαs − 1

)∣∣g(s)
∣∣∣∣sin(ωs)

∣∣ds

� 2

∞∫
0

(
eαs − 1

)
s
∣∣g(s)

∣∣ | sin(ωs)|
ωs

ds

� 2

∞∫ (
eαs − 1

)
s
∣∣g(s)

∣∣ds.
0
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Now, we observe that for any α ∈ (0,α0/2] we have

∞∫
0

eαss
∣∣g(s)

∣∣ds � 2

α0

∞∫
0

eα0s
∣∣g(s)

∣∣ds, (5.4)

so by the dominated convergence theorem we get

∞∫
0

(
eαs − 1

)
s
∣∣g(s)

∣∣ds −→
α→0+ 0.

Therefore, in view of (5.3) there exists α ∈ (0,α0/2] such that for any α ∈ (0,α]

Hα(ω) � δ0 − 2

∞∫
0

(
eαs − 1

)
s
∣∣g(s)

∣∣ds � δ0

2
for any ω ∈ (0,1]. (5.5)

To study the case ω > 1, for any α ∈ [0,α0/2] we introduce the function

h(ω,α) := ω

∞∫
0

eαs g(s) sin(ωs)ds,

whence

Hα(ω) − H0(ω) = 1 + ω2

ω2

[
h(ω,α) − h(ω,0)

]
. (5.6)

First,

hα(ω,α) = ω

∞∫
0

seαs g(s) sin(ωs)ds.

We note that the function s �→ seαs g(s) belongs to W 1,1(0,∞), and hence lims→0+ seαs g(s) = 0 and
lims→∞ seαs g(s) = 0. Therefore,

hα(ω,α) = {
seαs g(s)

[
1 − cos(ωs)

]}∞
0 −

∞∫
0

(
seαs g(s)

)′[
1 − cos(ωs)

]
ds

= −
∞∫

0

eαs g(s)
[
1 − cos(ωs)

]
ds − α

∞∫
0

seαs g(s)
[
1 − cos(ωs)

]
ds

−
∞∫

0

seαs g′(s)
[
1 − cos(ωs)

]
ds,

whence, using also (5.4), for any α ∈ (0,α0/2] we get
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∣∣hα(ω,α)
∣∣ � 4

∞∫
0

eα0s
∣∣g(s)

∣∣ds + 2

∞∫
0

seα0s
∣∣g′(s)

∣∣ds =: C .

Then,

∣∣h(ω,α) − h(ω,0)
∣∣ � α

1∫
0

∣∣hα(ω,αt)
∣∣dt � Cα, ∀ω > 0.

From (5.6), if we use the above estimate and (5.3), we obtain for any α � (δ0/4C) ∧ α0/2

Hα(ω) � H0(ω) − 1 + ω2

ω2
Cα � δ0 − 2Cα � δ0

2
for any ω > 1. (5.7)

Finally, putting together (5.5) and (5.7), our claim (5.2) follows. �
Next, it is useful to single out specific situations where the assumptions of Proposition 5.2 are

satisfied. This is the purpose of our next result.

Lemma 5.3. Let g : (0,∞) → (0,∞) be a locally absolutely continuous function such that g �≡ 0, g′(t) � 0
for a.e. t � 0, and

∞∫
0

g(t)eα0t dt < ∞ (5.8)

for some α0 > 0. Then,

(1) for any α ∈ [0,α0) we have
∫ ∞

0 t|g′(t)|eαt dt < ∞;
(2) the kernel t �→ ∫ ∞

t g(s)ds is strongly positive.

Proof. First of all, we note that (5.8) yields
∫ ∞

0 tg(t)eαt dt < ∞, for any α ∈ [0,α0). Therefore by
Lemma 2.14 we have

∞∫
0

t
∣∣g′(t)

∣∣eαt dt = −
∞∫

0

tg′(t)eαt dt =
∞∫

0

(1 + αt)g(t)eαt dt,

so (1) holds true.
Moreover, by means of Theorem 2.1 we have that t �→ ∫ ∞

t g(s)ds is strongly positive. �
Remark 5.4. In [30] an exponential stability result is obtained for an integro-differential equation of
the same type as (3.1), under exactly the same hypotheses as in Lemma 5.3 for g . So, in view of
Lemma 5.3 and Proposition 5.2, we see that one can derive the result of [30] from Theorem 4.1.

Our next proposition is useful to study the concrete examples we will discuss at the end of this
section.

Proposition 5.5. Assume that

(1) g ∈ L1(0,∞) such that
∫ ∞

0 t|g(t)|dt < ∞;
(2)

∫ ∞
0 g(t) sin(ωt)dt > 0 ∀ω > 0;
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(3)
∫ ∞

0 tg(t)dt > 0;
(4) g ∈ ⋂

ε>0 W 1,1(ε,∞) and there exists ε0 > 0 such that g(t) > 0, g′(t) � 0 for a.e. t ∈ (0, ε0].

Then, the kernel G(t) = ∫ ∞
t g(s)ds is strongly positive.

Proof. Let us observe that, being the function t �→ tg(t) in L1(0,∞), so also the function G is in
L1(0,∞). Therefore, to apply Corollary 2.3(b), it suffices to verify (2.8), that is, for some δ > 0,

H(ω) := 1 + ω2

ω

∞∫
0

g(t) sin(ωt)dt � δ, for any ω > 0. (5.9)

Since the function H is continuous and strictly positive on (0,∞), it is enough to verify that

lim
ω→0+ H(ω) > 0, (5.10)

lim inf
ω→∞ H(ω) > 0. (5.11)

First, (5.10) holds true, because if we use the dominated convergence theorem we have

lim
ω→0+ H(ω) =

∞∫
0

tg(t)dt > 0.

Moreover, to prove (5.11) we note that

ω

∞∫
0

g(t) sin(ωt)dt = ω

ε0∫
0

g(t) sin(ωt)dt + ω

∞∫
ε0

g(t) sin(ωt)dt.

By (2.25) we have

ω

ε0∫
0

g(t) sin(ωt)dt = g(ε0)
(
1 − cos(ωε0)

) −
ε0∫

0

g′(t)
(
1 − cos(ωt)

)
dt. (5.12)

Since g ∈ ⋂
ε>0 W 1,1(ε,∞), we have limt→∞ g(t) = 0, so an integration by parts yields

ω

∞∫
ε0

g(t) sin(ωt)dt = −g(ε0)
(
1 − cos(ωε0)

) −
∞∫

ε0

g′(t)
(
1 − cos(ωt)

)
dt. (5.13)

Putting together (5.12) and (5.13), we obtain

ω

∞∫
0

g(t) sin(ωt)dt = −
ε0∫

0

g′(t)
(
1 − cos(ωt)

)
dt −

∞∫
ε0

g′(t)
(
1 − cos(ωt)

)
dt

� −
∞∫

ε

g′(t)dt +
∞∫

ε

g′(t) cos(ωt)dt = g(ε0) +
∞∫

ε

g′(t) cos(ωt)dt,
0 0 0
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whence, in virtue of the Riemann–Lebesgue lemma, we get

lim inf
ω→∞ H(ω) � g(ε0) > 0.

So, the proof is complete. �
Remark 5.6. (i) If a kernel g verifies

∫ ∞
0 t|g(t)|dt < ∞, for any ω > 0

∫ ∞
0 g(t) sin(ωt)dt > 0 and∫ ∞

0 tg(t)dt = 0, by Proposition 2.2(b) G is positive definite, but not strongly positive, since

inf
ω>0

1 + ω2

ω

∞∫
0

g(t) sin(ωt)dt = 0.

(ii) We note that G is not positive definite when g verifies
∫ ∞

0 t|g(t)|dt < ∞ and
∫ ∞

0 tg(t)dt < 0.
Indeed,

lim
ω→0+

1

ω

∞∫
0

g(t) sin(ωt)dt =
∞∫

0

tg(t)dt < 0

and we conclude owing to Proposition 2.2(a).

We want to give examples of kernels g ∈ L1(0,∞) fit to the above theory, that is:

{
(i) t �→ ∫ ∞

t g(s)ds is strongly positive,

(ii)
∫ ∞

0 g(s)ds < 1.

Example 5.7. Let �(s) = ∫ ∞
0 ts−1e−t dt (s > 0) be the Euler gamma function. Set

ga,b,0(t) := 1

�(1 − b)
e−att−b, t > 0, a > 0, 0 � b < 1.

Noting that

t �→
∞∫

t

ga,b,0(s)ds

verifies conditions (2.6), by Theorem 2.1 we conclude that property (i) above holds true for ga,b,0. As
for property (ii), we have

∞∫
0

ga,b,0(s)ds = 1

a1−b
< 1 for all a > 1.

Now, we give some examples of functions with variable sign.
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Example 5.8. Let us consider

ga,1/2,c(t) := 1

�(1/2)
e−att−1/2 cos(ct), t > 0, a > 0, c ∈ R.

Then, Ga,1/2,c(t) := ∫ ∞
t ga,1/2,c(s)ds is:

• strongly positive definite if |c| < √
3a;

• positive definite (but not strongly positive) if |c| = √
3a;

• not positive definite if |c| > √
3a.

From the above assertions, that will be proved later in this section, it follows that ga,1/2,c has prop-
erty (i) if and only if |c| < √

3a.
As for property (ii), it is easy to observe that, for any a � 1 and c �= 0,

1

�(1/2)

∞∫
0

e−att−1/2 cos(ct)dt <
1

�(1/2)

∞∫
0

e−tt−1/2 dt = 1.

A more complete analysis, however, can be achieved recalling the Laplace transform formula

ĝ0,1/2,0(z) := 1

�(1/2)

∞∫
0

e−ztt−1/2 dt = 1

z1/2

= 1√
2|z|

[(|z| + Re z
)1/2 − i sign(Im z)

(|z| − Re z
)1/2]

, z ∈ C, Re z > 0. (5.14)

Indeed

∞∫
0

ga,1/2,c(t)dt = Re ĝ0,1/2,0(a + ic) =
(√

a2 + c2 + a

2(a2 + c2)

)1/2

< 1

if and only if

c2 >
1 + 4a − 8a2 + √

1 + 8a

8
.

To summarize, we conclude that ga,1/2,c satisfies both (i) and (ii) if and only if

a > 0 and
1 + 4a − 8a2 + √

1 + 8a

8
< c2 < 3a2.

(See Fig. 1.)

To fully justify the analysis of Example 5.8, let us prove the assertions related to property (i). Notice
that, hereafter, we just need to consider the case of c > 0. Indeed, the case of c = 0 has already been
studied in Example 5.7, while, for c < 0, the analysis is obtained by a symmetry argument. Let us
begin with a preliminary result.
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Fig. 1. The parameter region where (i) and (ii) hold true.

Lemma 5.9. For any 0 < c �
√

3a we have that

∞∫
0

ga,1/2,c(t) sin(ωt)dt > 0 ∀ω > 0. (5.15)

Proof. Since

∞∫
0

ga,1/2,c(t) sin(ωt)dt = −1

2
Im ĝ0,1/2,0

(
a + i(ω + c)

) − 1

2
Im ĝ0,1/2,0

(
a + i(ω − c)

)
,

by (5.14) and standard computations (see, for instance, [9]), one can prove that, for any ω > 0,

∞∫
0

ga,1/2,c(t) sin(ωt)dt

= 1

2
√

2a

((
1 + (ω + c)2

a2

)−1/2

−
(

1 + (ω + c)2

a2

)−1)1/2

+ 1

2
√

2a
sign(ω − c)

((
1 + (ω − c)2

a2

)−1/2

−
(

1 + (ω − c)2

a2

)−1)1/2

. (5.16)

Now, set ω = ω/a, c = c/a and define

j±(ω) := 1

1 + (ω ± c)2
.

We have
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∞∫
0

ga,1/2,c(t) sin(ωt)dt = 1

2
√

2a

(
j+(ω)1/2 − j+(ω)

)1/2

+ 1

2
√

2a
sign(ω − c)

(
j−(ω)1/2 − j−(ω)

)1/2
. (5.17)

It is clear that (5.15) holds true for any ω � c. So, suppose ω < c. We want to check that

j+(ω)1/2 − j+(ω) > j−(ω)1/2 − j−(ω).

The previous inequality is equivalent to

4ωc√
1 + (ω − c)2

√
1 + (ω + c)2

>
4ωc√

1 + (ω + c)2 + √
1 + (ω − c)2

,

or, after simple computations,(
ω2 − c2)2

< 1 + 2
√

1 + (ω + c)2
√

1 + (ω − c)2. (5.18)

If c � a, then (5.18) holds true since, in view of the fact that c = c/a � 1,∣∣ω2 − c2
∣∣ = c2 − ω2 � 1.

Next, suppose a < c �
√

3a. Then (5.18) trivially holds true for any ω � (c2 − 1)1/2. Therefore, we only
need to prove (5.18) for ω < (c2 − 1)1/2. For this we note that, if ω2 < c2 − 1, then we can rewrite
(5.18) in the form ((

ω2 − c2)2 − 1
)2

< 4
(
1 + 2

(
ω2 + c2) + (

ω2 − c2)2)
. (5.19)

Let t = c2 − ω2. Then, our claim is equivalent to prove that

F (t) := t4 − 6t2 + 8t − 16c2 − 3 < 0, ∀1 < t < c2.

Since F is strictly increasing for t > 1 and

F
(
c2) = c8 − 6c4 − 8c2 − 3 � 0, ∀1 � c �

√
3,

F must be negative. We have thus proved that (5.15) holds true for all 0 < c �
√

3a. �
Proposition 5.10. For any |c| < √

3a Ga,1/2,c is strongly positive definite and for |c| = √
3a Ga,1/2,c is positive

definite, but not strongly positive. Moreover, Ga,1/2,c is not even positive definite for |c| > √
3a.

Proof. Thanks to Proposition 5.5 and Lemma 5.9, we only need to evaluate

∞∫
0

tga,1/2,c(t)dt = 1

�(1/2)
Re

∞∫
0

e−(a+ic)tt1/2 dt

= 1

2
Re

1

(a + ic)3/2
= 1√ c(2a − √

a2 + c2)

2 2 3/2
√

2 2 1/2
.

2 2 (a + c ) ( a + c − a)
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Therefore, for any |c| <
√

3a we see that
∫ ∞

0 tga,1/2,c(t)dt > 0, whence Ga,1/2,c is strongly positive.
The last part of the claim follows by Remark 5.6. �
Example 5.11. Let us examine the kernels

g(t) := θ

∞∑
n=1

cos(cnt)e−nβ t, t > 0, β > 1, (5.20)

where the sequence {cn} of real numbers and θ > 0 satisfy:

(i) there exists C � 0 such that |cn| � C ∧ nβ for any n ∈ N,
(ii) θ

∑∞
n=1

nβ

n2β+c2
n

< 1.

The special case cn = 0 for any n ∈ N has been introduced in polymer dynamics (see, e.g., [15,32]).
Since

∣∣g(t)
∣∣ � θ

∞∑
n=1

e−nβ t � θ

∞∫
0

e−sβ t ds = t−1/βθ

∞∫
0

e−τβ

dτ , t > 0,

we have g(t) = O (t−1/β) as t → 0+ . Moreover, the kernel g does not have, in general, constant sign.
Indeed, taking c1 = 1 and cn = 0 for any n � 2 we have

g(t) = θ

(
cos te−t +

∞∑
n=2

e−nβ t

)
, t > 0.

Therefore,

g(π) = θ

(
−e−π +

∞∑
n=2

e−nβπ

)
� θ

(
−e−π +

∞∑
n=2

e−nπ

)

= θ

(
−1 − 2e−π + 1

1 − e−π

)
= θ

2 − eπ

eπ (eπ − 1)
< 0.

In the case cn = 0 for any n ∈ N, by Theorem 2.1 the kernel t → ∫ ∞
t

∑∞
n=1 e−nβτ dτ is strongly

positive.
In the general case, we will prove that the kernel t → ∫ ∞

t g(t)dt is strongly positive, applying
Proposition 5.5.

We start our analysis observing that g ∈ L1(0,∞), since

∞∫
0

∣∣g(t)
∣∣dt � θ

∞∑
n=1

∞∫
0

e−nβ t dt = θ

∞∑
n=1

1

nβ
.

In addition,

∞∫
t
∣∣g(t)

∣∣dt � θ

∞∑
n=1

∞∫
te−nβ t dt = θ

∞∑
n=1

1

n2β
0 0
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and

∞∫
0

tg(t)dt = θ

∞∑
n=1

∞∫
0

t cos(cnt)e−nβ t dt = θ

∞∑
n=1

Re

∞∫
0

te−(nβ+icn)t dt

= θ Re
∞∑

n=1

∞∫
0

e−(nβ+icn)t

nβ + icn
dt = θ Re

∞∑
n=1

1

(nβ + icn)2
= θ

∞∑
n=1

n2β − c2
n

(n2β + c2
n)2

> 0,

in virtue of (i). In a similar way, we get

∞∫
0

sin(ωt)g(t)dt = θ

∞∑
n=1

∞∫
0

sin(ωt) cos(cnt)e−nβ t dt

= θ

2

∞∑
n=1

∞∫
0

sin
(
(ω + cn)t

)
e−nβ t dt + θ

2

∞∑
n=1

∞∫
0

sin
(
(ω − cn)t

)
e−nβ t dt

= θ

2

∞∑
n=1

Im

∞∫
0

e(i(ω+cn)−nβ )t dt + θ

2

∞∑
n=1

Im

∞∫
0

e(i(ω−cn)−nβ )t dt

= θ

2

∞∑
n=1

ω + cn

n2β + (ω + cn)2
+ θ

2

∞∑
n=1

ω − cn

n2β + (ω − cn)2

= θω

∞∑
n=1

n2β − c2
n + ω2

[n2β + (ω + cn)2][n2β + (ω − cn)2] > 0 ∀ω > 0.

Last, also the assumption (4) of Proposition 5.5 holds. Indeed, being

g′(t) = −θ

∞∑
n=1

[
cn sin(cnt) + nβ cos(cnt)

]
e−nβ t, t > 0,

by (i) we have, for any ε > 0,

∞∫
ε

∣∣g′(t)
∣∣dt � θ

∞∑
n=1

[|cn| + nβ
] ∞∫

ε

e−nβ t dt

� 2θ

∞∑
n=1

nβ

∞∫
ε

e−nβ t dt = 2θ

∞∑
n=1

e−nβε

and there exists ε0 > 0 such that for any t ∈ (0, ε0] and n � 1 we have

cn sin(cnt) + nβ cos(cnt) � −1 + nβ

> 0.

4 2
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Therefore, thanks to Proposition 5.5, we can conclude that the kernel t → ∫ ∞
t g(t)dt is strongly posi-

tive.
Moreover, for any α0 ∈ (0,1) we have

∞∫
0

eα0t
∣∣g(t)

∣∣dt � θ

∞∑
n=1

∞∫
0

e(α0−nβ )t dt = θ

∞∑
n=1

1

nβ − α0

and

∞∫
0

teα0t
∣∣g′(t)

∣∣dt � 2θ

∞∑
n=1

nβ

∞∫
0

te(α0−nβ )t dt = 2θ

∞∑
n=1

nβ

(nβ − α0)2
,

so by Proposition 5.2 for some α ∈ (0,α0) the kernel Gα(t) = ∫ ∞
t gα(s)ds is strongly positive.

Finally, by (ii) we have

∞∫
0

g(t)dt = θ

∞∑
n=1

Re

∞∫
0

e−(nβ+icn)t dt = θ

∞∑
n=1

nβ

n2β + c2
n

< 1.

Example 5.12. We consider the kernels

g(t) := −e−βt log t, t > 0, β > 0. (5.21)

This type of kernel has been also considered in [18] for the special case β = e.
Set γ = 0.5772 . . . the Euler–Mascheroni constant, we will prove that for β > e1−γ the kernel

G(t) = ∫ ∞
t g(t)dt is strongly positive and for β = e1−γ is positive definite, but not strongly positive.

Moreover, G is not even positive definite for β < e1−γ .
First, we note that G ∈ L1(0,∞), since the function t �→ tg(t) belongs to L1(0,∞). In addition,

recalling that

γ = −
∞∫

0

e−s log s ds = −�′(1), (5.22)

we have for any ω ∈ R

∞∫
0

e−(β+iω)t log t dt = −
1
2 log(β2 + ω2) + i arctan(ω/β) + γ

β + iω
, (5.23)

whence

∞∫
0

sin(ωt)g(t)dt = Im

∞∫
0

e−(β+iω)t log t dt

=
(

1

2
log

(
β2 + ω2) + γ − β

ω
arctan

(
ω

β

))
ω

β2 + ω2
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� (logβ + γ − 1)
1 + ω2

β2 + ω2

ω

1 + ω2
∀ω > 0. (5.24)

If β > e1−γ , by (5.24) we obtain

∞∫
0

sin(ωt)g(t)dt � logβ + γ − 1

β2

ω

1 + ω2
for any ω > 0,

that is (2.8) is satisfied. Therefore, in virtue of Corollary 2.3(b) G is strongly positive.
In addition, if β = e1−γ , we have logβ + γ − 1 = 0, so again by (5.24) and Proposition 2.2(b) G is

positive definite. On the other hand, since

lim
ω→0

(
1

2
log

(
β2 + ω2) + γ − β

ω
arctan

(
ω

β

))
= logβ + γ − 1, (5.25)

we get infω>0
1+ω2

ω

∫ ∞
0 sin(ωt)g(t)dt = 0 and hence G is not strongly positive.

In the last case β < e1−γ , we have log β + γ − 1 < 0, so by (5.25) for some ω > 0

∞∫
0

sin(ωt)g(t)dt =
(

1

2
log

(
β2 + ω2) + γ − β

ω
arctan

(
ω

β

))
ω

β2 + ω2
< 0,

whence, in view of Proposition 2.2(a), G is not positive definite.
Finally, by (5.23) for ω = 0 we have

∞∫
0

g(t)dt = log β + γ

β
� 1

e1−γ
< 1, ∀β > 0. (5.26)

6. Application to PDEs

We shall now give an application of our stability result to a concrete model for partial differential
operators. In this section, Ω will denote a bounded open domain in R

N , N � 3, with sufficiently
smooth boundary ∂Ω . Points in Ω will be denoted by the Greek letter ξ . Moreover, the lower-
dimensional cases N = 1,2 can be treated by the same method in an even easier way.

Our example concerns a semilinear wave equation with memory. In [25] was analyzed a similar
problem in one-dimensional case.

Let us consider the semilinear problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2
t u(t, ξ) − �u(t, ξ) +

t∫
0

g(t − s)�u(s, ξ)ds

= ∣∣u(t, ξ)
∣∣λu(t, ξ) + f (t, ξ), t � 0, ξ ∈ Ω,

u(t, ξ) = 0, t � 0, ξ ∈ ∂Ω,

u(0, ξ) = u0(ξ), ξ ∈ Ω,

∂t u(0, ξ) = u1(ξ), ξ ∈ Ω.

(6.1)

Here, u(t, ξ) is real-valued, and we have denoted by ∂t u the time derivative of u and by �u the
Laplacian of u with respect to space variable ξ . As for the convolution kernel g , we shall assume that
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∫ ∞
0 g(t)dt < 1 and there exists α0 > 0 such that eα0t g ∈ L1(0,∞) and t �→ ∫ ∞

t eα0s g(s)ds is strongly
positive definite. Also, λ > 0 satisfies a suitable restriction to be specified later.

We can rewrite (6.1) as an abstract problem of the type (4.1). Indeed, let X = L2(Ω) be endowed
with the usual inner product and norm

‖x‖ :=
(∫

Ω

∣∣x(ξ)
∣∣2

dξ

)1/2

, x ∈ L2(Ω).

We consider the operator A : D(A) ⊂ X → X defined by

D(A) = H2(Ω) ∩ H1
0(Ω),

Ax(ξ) = −�x(ξ), x ∈ D(A), ξ ∈ Ω a.e.

It is well known that A verifies Assumption (H1)-1. Moreover, the fractional power A1/2 of A is well
defined and D(A1/2) = H1

0(Ω). Next, consider the functional

F (x) := 1

λ + 2

∫
Ω

∣∣x(ξ)
∣∣λ+2

dξ, x ∈ H1
0(Ω),

which, if 0 < λ � 4/(N − 2), is well defined in view of Sobolev’s embedding theorem. By assuming
the more restrictive condition 0 < λ � 2/(N − 2), F satisfies Assumptions (H1) and

∇ F (x)(ξ) = ∣∣x(ξ)
∣∣λx(ξ), x ∈ H1

0(Ω), ξ ∈ Ω a.e.,

see [1]. In addition, since 2(λ + 1) � 2N/(N − 2) = 2∗ , again by Sobolev’s theorem we have for any
x ∈ H1

0(Ω) and y ∈ L2(Ω)

∣∣〈∇ F (x), y
〉∣∣ �

∫
Ω

∣∣x(ξ)
∣∣λ+1∣∣y(ξ)

∣∣dξ

�
(∫

Ω

∣∣x(ξ)
∣∣2(λ+1)

dξ

)1/2

‖y‖

� C

(∫
Ω

∣∣∇x(ξ)
∣∣2

dξ

)λ/2(∫
Ω

∣∣∇x(ξ)
∣∣2

dξ

)1/2

‖y‖,

so, Assumption (H2)-2 is also satisfied with ψ(s) = C sλ . Therefore, by Theorem 3.6 we conclude that,
if the data u0 ∈ H1

0(Ω), u1 ∈ L2(Ω) and f ∈ L1(0,∞; L2(Ω)) are sufficiently small, that is,

∫
Ω

(∣∣∇u0(ξ)
∣∣2 + ∣∣u1(ξ)

∣∣2)
dξ +

∞∫
0

(∫
Ω

∣∣ f (t, ξ)
∣∣2

dξ

)1/2

dt < ρ

for some ρ > 0, then problem (6.1) admits a unique mild solution u on [0,∞). Moreover, as recalled
in Section 3.1, u is a weak solution of the equation in (6.1), that is,

u ∈ C1([0,∞); L2(Ω)
) ∩ C

([0,∞); H1
0(Ω)

)
,
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for all v ∈ H1
0(Ω), t �→ ∫

Ω
∂t u(t, ξ)v(ξ)dξ is of class C1 and

d

dt

∫
Ω

∂t u(t, ξ)v(ξ)dξ +
∫
Ω

∇u(t, ξ) · ∇v(ξ)dξ

−
t∫

0

g(t − s)

∫
Ω

∇u(s, ξ) · ∇v(ξ)dξ ds

=
∫
Ω

∣∣u(t, ξ)
∣∣λu(t, ξ)v(ξ)dξ +

∫
Ω

f (t, ξ)v(ξ)dξ, ∀t � 0.

Defining the energy of u by

Eu(t) := 1

2

∫
Ω

∣∣∂t u(t, ξ)
∣∣2

dξ + 1

2

(
1 −

∞∫
0

g(s)ds

)∫
Ω

∣∣∇u(t, ξ)
∣∣2

dξ

− 1

λ + 2

∫
Ω

∣∣u(t, ξ)
∣∣λ+2

dξ,

we can invoke Theorem 4.1 to obtain, for any (u0, u1) ∈ H1
0(Ω) × L2(Ω) and any eη0t f ∈ L1(0,∞;

L2(Ω)) sufficiently small, the following decay estimates:

Eu(t) � C
(‖∇u0‖ + ‖u1‖ + ‖ fη0‖1

)
e−2α∗t ∀t � 0,

∞∫
0

e2α∗t Eu(t)dt � C
(‖∇u0‖ + ‖u1‖ + ‖ fη0‖1

)
,

for some α∗ ∈ (0,α0 ∧ η0], where C(R) is a positive, increasing, upper semicontinuous function such
that C(0) = 0.

Appendix A

For the reader’s convenience, in this section we will list and prove some results concerning the
linear equation

u′′(t) + Au(t) −
t∫

0

g(t − s)Au(s)ds = f (t), t � 0. (A.1)

Throughout the section, we suppose that Assumptions (H1)-1,2 and (H2)-1 are verified. To begin with,
we recollect some known estimates for the resolvent (see Definition 2.13) of equation

u′′(t) + Au(t) −
t∫

0

g(t − s)Au(s)ds = 0.
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Proposition A.1.

(i) For any x ∈ X and any t > 0, 1 ∗ S(t)x ∈ D(A1/2) and

∥∥S(t)x
∥∥2 +

(
1 −

∞∫
0

g(t)dt

)∥∥∥∥∥A1/2

t∫
0

S(τ )x dτ

∥∥∥∥∥
2

� ‖x‖2. (A.2)

(ii) For any x ∈ D(A1/2), S(·)x is continuously differentiable on [0,∞) and

∥∥S ′(t)x
∥∥ �

(
1 + ‖g‖1

)(
1 −

∞∫
0

g(t)dt

)−1/2∥∥A1/2x
∥∥ ∀t � 0. (A.3)

(iii) For any x ∈ X and any t > 0, 1 ∗ 1 ∗ S(t)x ∈ D(A) and

∥∥A1 ∗ 1 ∗ S(t)x
∥∥ � C‖x‖, (A.4)

for some constant C > 0.

Proof. As for (i) and (ii) see [9, Proposition 3.4], while (iii) follows by [9, Proposition 3.5] and Propo-
sition 2.11. �

We define the energy of a mild solution u of (A.1) as

Eu(t) := 1

2

∥∥u′(t)
∥∥2 + 1

2

(
1 −

∞∫
0

g(s)ds

)∥∥A1/2u(t)
∥∥2

, t � 0.

Theorem A.2. For any u0 ∈ D(A1/2), u1 ∈ X and f ∈ L2(0,∞; X) the mild solution u of linear equation (A.1)
with initial conditions

u(0) = u0, u′(0) = u1, (A.5)

has the following continuous dependence on data

Eu(t) � C
(‖u1‖2 + ∥∥A1/2u0

∥∥2 + ‖ f ‖2
2

)
, (A.6)

for any t � 0 and some constant C > 0.

Proof. Assuming u0 ∈ D(A), u1 ∈ D(A1/2) and f ∈ L2(0,∞; X) ∩ W 1,1
loc (0,∞; X), u is the strong solu-

tion of (A.1)–(A.5) that, in view of (3.18) (with F = 0), verifies

Eu(t) � Eu(0) + G(0)
∥∥A1/2u0

∥∥2 − 〈
A1/2u0, G(t)A1/2u(t)

〉
−

t∫
g(s)

〈
A1/2u0, A1/2u(s)

〉
ds + 1

2

t∫ ∥∥ f (s)
∥∥2

ds + 1

2

t∫ ∥∥u′(s)
∥∥2

ds. (A.7)
0 0 0
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Next, arguing as in Lemmas 1–3 with α = 0, we can prove that there exists a constant C > 0 such
that for any t � 0

t∫
0

∥∥u′(s)
∥∥2

ds � C
(‖u1‖2 + ∥∥A1/2u0

∥∥2 + ‖ f ‖2
2

)
.

By putting the previous estimate into (A.7), we easily obtain (A.6) for more regular data. Finally, our
claim follows by using a standard approximation argument. �
Theorem A.3. For any u0 ∈ D(A1/2), u1 ∈ X and f ∈ L1(0,∞; X) or f ∈ L2(0,∞; X) the energy Eu(t) of
the mild solution u for Eq. (A.1) with initial conditions (A.5) is uniformly continuous on [0,∞[.

Proof. First, we verify that for u0 ∈ D(A), u1 ∈ D(A1/2) and f ∈ W 1,1(0,∞; X), u′′(t) and A1/2u′(t)
are bounded. Indeed, by using formula (3.8) (with F = 0) we have

Au(t) = S(t)Au0 + A1/2

t∫
0

S(τ )A1/2u1 dτ

+ A

t∫
0

1 ∗ S(τ ) f (0)dτ +
t∫

0

A

t−σ∫
0

1 ∗ S(τ ) f ′(σ )dτ dσ ,

whence in view of (A.2) and (A.4) we have Au ∈ L∞(0,∞; X). Since f ∈ L∞(0,∞; X), by Eq. (A.1) we
deduce that u′′ ∈ L∞(0,∞; X) as well. In a similar way we have

A1/2u′(t) = S ′(t)A1/2u0 + S(t)A1/2u1

+ A1/2

t∫
0

S(τ ) f (0)dτ +
t∫

0

A1/2

t−σ∫
0

S(τ ) f ′(σ )dτ dσ ,

whence by (A.2) and (A.3) we obtain A1/2u′ ∈ L∞(0,∞; X). Therefore, for more regular data Eu(t) is
uniformly continuous on [0,∞[.

Finally, thanks to (3.23) (with F = 0) if f ∈ L1(0,∞; X) or to (A.6) if f ∈ L2(0,∞; X), we are able
to apply an approximation argument and conclude the proof. �
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