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Abstract. We provide sufficient conditions for the existence and Lipschitz continuity of solu-

tions to the constrained Bolza optimal control problem

minimize

∫ T

0
L(x(t), u(t)) dt + `(x(T ))

over all trajectory/control pairs (x, u), subject to the state equation
x′(t) = f(x(t), u(t)) for a.e. t ∈ [0, T ]

u(t) ∈ U for a.e. t ∈ [0, T ]
x(t) ∈ K for every t ∈ [0, T ]
x(0) ∈ Q0 .

The main feature of our problem is the unboundedness of f(x, U) and the absence of superlinear
growth conditions for L. Such classical assumptions are here replaced by conditions on the

Hamiltonian that can be satisfied, for instance, by some Lagrangians with no growth. This

paper extends our previous results in Existence and Lipschitz regularity of solutions to Bolza
problems in optimal control to the state constrained case.

1. Introduction. The existence theory for the so-called Bolza problem in optimal control is well-
established for Lagrangians that exhibit superlinear growth with respect to controls or velocities,
see, e.g., [17], [14], [13] and [5]. At the same time, some interesting functionals, such as the one
in the brachistocrone problem of the calculus of variations, or in the mathematical economics
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2 PIERMARCO CANNARSA, HĹÈNE FRANKOWSKA AND ELSA, MARIA MARCHINI

models by Baumol or Knowles (see, e.g. Chiang’s mongraph [6]), fail to possess such a property.
Consequently, Tonelli’s direct method for existence cannot be applied to such problems.

It turns out that a useful complementary property to the existence result is the Lipschitz con-
tinuity of optimal trajectories. Indeed, such a property is essential to study further regularity of
solutions as well as to construct efficient schemes for numerical approximation.

For problems in the calculus of variations without growth conditions, a general approach to the
existence and Lipschitz regularity of solutions was proposed by Clarke [7]. In [4], we extended
Clarke’s results to optimal control problems using a direct method, coupled with penalization and
necessary optimality conditions. However, unlike [7], no state constraints were allowed in our
work. The main object of this paper is to show that the very same ideas of [4] can be adapted
to investigate constrained control problems. As we shall see, such an extension is highly non
trivial mainly because optimality conditions in the constrained case involve vector-valued measures
without a priori bounds.

More precisely, let us consider the problem of minimizing the functional

J(x, u) =
∫ T

0

L(x(t), u(t)) dt+ `(x(T )) (1)

over all trajectory/control pairs (x, u), subject to the state equation
x′(t) = f(x(t), u(t)) for a.e. t ∈ I
u(t) ∈ U for a.e. t ∈ I
x(t) ∈ K for every t ∈ I
x(0) ∈ Q0 .

(2)

Here, I = [0, T ] where T > 0, while K,Q0 ⊂ RN and U ⊂ Rm. Moreover, L : RN × Rm → R
and ` : RN → R are nonnegative functions, f : RN × Rm → RN , and u : I → U is measurable.
We would like to underline from the very beginning that no growth condition is imposed on the
Lagrangian L.

As noted above, the case of K = Rn (no state constraints) was investigated in [4] studying the
penalized problem for some α ≥ 2

min
∫ T

0

[
L(x(t), u(t)) +

ε

α
|f(x(t), u(t))|α

]
dt+ `(x(T )), (3)

which, having superlinear growth, admits an optimal solution (xε, uε). This is still true when
state constraints are present, see [5]. On the other hand, in order for (3) to provide a useful
approximation of (1) we need to know that, for any trajectory/control pair (x, u) of (2), J(x, u)
can be approximated by J(xk, uk) where (xk, uk) satisfy (2) and xk ∈ W 1,α(I; RN ). Such an
approximation result, which is trivial in absence of state constraints, is the first main difficulty we
have to overcome in this paper, see Theorem 3.2 and Corollary 1.

Once this step is completed, from normal necessary optimality conditions for constrained prob-
lems and the superlinear growth of the penalized Lagrangian it follows that all optimal trajectories
xε of (3) are Lipschitz continuous. Then, imposing a structural assumption on the Hamiltonian as
in [4], we show that x′ε are essentially bounded uniformly in ε. Notice, however, that, to pass to
the limit as ε ↓ 0 in (3), we still need to know that the functions

Lε(xε(t), uε(t)) = L(xε(t), uε(t)) +
ε

α
|f(xε(t), uε(t))|α
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are essentially bounded on I uniformly in ε. For this purpose, we need to show that the co-states
in the constrained maximum principle for the penalized problems are bounded uniformly in ε.
This fact, which is a straightforward consequence of Gronwall’s Lemma in the unconstrained case,
is the second major difficulty we have to overcome in presence of state constraints. Indeed, the
constrained maximum principle involves vector-valued measures related to normals to the constraint
set, for which no a priori bounds are available. Nevertheless, we show that, under an inward
pointing condition for velocities at the boundary of the constraint set, such a uniform bound can
be derived. Thus, we can pass to the limit using classical arguments obtaining the existence of a
solution (x∗, u∗) to our original problem, such that x∗(·) is Lipschitz continuous and L(x∗(·), u∗(·))
is essentially bounded.

The outline of the paper is as follows. In section 2, we introduce our notations and assumptions,
and we recall the maximum principle for constrained problems showing how it can be exploited to
deduce the Lipschitz continuity of optimal trajectories for problems satisfying a quadratic growth
condition. Then, in section 3, we state our main existence and regularity results as well as an
approximation theorem and provide an example. In the same section we prove, as a corollary,
that our minimization problem can be restricted to trajectory/control pairs (x, u) of (2) such that
x ∈W 1,α(I; RN ). Section 4 is devoted to the proof of the existence and regularity results, whereas
the proof of the approximation theorem is provided in the Appendix.

2. Preliminaries. We begin this section with a list of notations:
- W 1,1(I; RN ) denotes the space of absolutely continuous functions from I to RN andW 1,∞(I; RN )

the space of Lipschitz continuous functions from I to RN ;
- NBV (I; RN ) denotes the space of normalized functions of bounded variation on I with values

in RN , i.e. the space of functions vanishing at zero, right-continuous on (0, T ) and having
bounded total variation ‖ · ‖BV ;

- we define the set of controls

U := {u : I → U is measurable};

- a pair (x, u) where x ∈ W 1,1(I; RN ) and u ∈ U is called a trajectory/control pair if (x, u)
satisfies (2);

- for a, b ∈ R, we set a ∧ b := min{a, b};
- for a Banach space X and r > 0, B(0, r) denotes the open ball of center 0 and radius r;
- given mappings a : RN → R, b : RN × U → R, c : RN × U → RN such that for every u ∈ U ,
a(·), b(·, u) and c(·, u) are locally Lipschitz, we denoted by ∂a(x), ∂xb(x, u) and ∂xc(x, u)
respectively their generalized gradients and generalized Jacobian with respect to x, see [8],
and by (∂xc)∗(x, u) the set of the adjoint elements from ∂xc(x, u);

- given a nonempty set V ⊂ Rr and y ∈ V , CV (y) and NV (y) denote, respectively, Clarke’s
tangent and normal cones to V at y, see [8];

- given K ⊂ RN , we denote by Int(K) its interior, by ∂K its boundary, by K its closure and
define the signed distance

dK(x) :=
{
−dist(x, ∂K) ∀x ∈ K
dist(x, ∂K) otherwise;

we say that ∂K is C1,1
loc if ∀R > 0, dK is C1,1 on a neighborhood of ∂K ∩B(0, R);

- C denotes a generic constant that may differ from line to line;
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- L(Rm; RN ) denotes the space of linear operators from Rm into RN .
Throughout the whole paper we assume that L : RN × Rm → R and ` : RN → R are nonnegative
functions, f : RN × Rm → RN , U ⊂ Rm is closed, K,Q0 ⊂ RN are closed with K ∩Q0 6= ∅, and,
for every x ∈ RN , L(x, ·) is locally Lipschitz and f(x, ·) is differentiable.

The following assumptions will be in use.

Assumptions (H):
i) for some α ≥ 2 and every R > 0, ∃CR > 0 such that, for any x, y ∈ B(0, R) ∩K and any
u ∈ U ,
i1) |`(x)− `(y)| ≤ CR|x− y|,
i2) |L(x, u)− L(y, u)| ≤ CR|x− y|

[
1 + L(x, u) ∧ L(y, u)

]
,

i3) |f(x, u)− f(y, u)| ≤ CR|x− y|
[
1 + |f(x, u)| ∧ |f(y, u)|+

(
L(x, u) ∧ L(y, u)

)1/α
]
;

ii) ∃ u ∈ U , υ ∈ Lα(I; R) such that for a.e t ∈ I, |f(x, u(t))| ≤ υ(t)(1 + |x|) and ∀R > 0,
∃ mR ∈ L1(I; R) satisfying a.e in I,

L(x, u(t)) ≤ mR(t), ∀x ∈ B(0, R) ∩K;

iii) ∂K is C1,1
loc , there exists κ > 0, so that for all R > 0, ∃ ρR, ηR > 0 such that for every

x ∈ ∂K ∩B(0, R) and some ux ∈ U ,

〈∇dK(x), f(x, ux)〉 < −ρR , |f(x, ux)| ≤ κ(1 + |x|) and L(x, ux) ≤ ηR;

iv) for all x ∈ ∂K ∩Q0, Int
(
CK(x)

)
∩ Int

(
CQ0(x)

)
6= ∅;

v) ∀x ∈ K, the set F (x) :=
{(
f(x, u), L(x, u) + v

)
: u ∈ U and v ≥ 0

}
is closed and convex.

Remark 1. By (H) ii), iii), applying a measurable viability theorem from [1], it can be shown
that there exists a trajectory/control pair (x, u) of (2) such that x′ ∈ Lα(I; RN ) and J(x, u) <∞.

We recall next the necessary optimality conditions for constrained problems. A trajectory/control
pair (x∗, u∗) satisfies an Autonomous Constrained Maximum Principle if there exist λ ∈ {0, 1},
p ∈W 1,1(I; RN ) and ψ ∈ NBV (I; RN ), not vanishing simultaneously, such that, for some positive
Radon measure µ on I and Borel measurable mapping ν : I → Rn with ν(t) ∈ NK(x∗(t))∩B(0, 1) µ-
almost everywhere,

ψ(t) =
∫

[0,t]

ν(s)dµ(s), for every t ∈ (0, T ], (4)

and the following three relations hold true:
i) autonomous maximum principle : for some c ∈ R and for a.e. t ∈ I

c = 〈p(t) + ψ(t), x∗′(t)〉 − λL(x∗(t), u∗(t)) (5)

= max
u∈U

(〈p(t) + ψ(t), f(x∗(t), u)〉 − λL(x∗(t), u));

ii) adjoint equation : for some measurable selectionsA(t) ∈ ∂xf(x∗(t), u∗(t)), π(t) ∈ ∂xL(x∗(t), u∗(t))

−p′(t) = A(t)∗(p(t) + ψ(t))− λπ(t), a.e. in I; (6)

iii) transversality conditions:

−p(T )− ψ(T ) ∈ λ∂`(x∗(T )) and p(0) ∈ NQ0(x
∗(0)). (7)

The maximum principle is called normal if λ = 1.
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We refer to [19] for various results on the above necessary optimality conditions, where the
adjoint equation is written as an inclusion

−p′(t) ∈
(
∂xf

)∗(x∗(t), u∗(t))(p(t) + ψ(t))− λ∂xL(x∗(t), u∗(t)), for a.e. t ∈ I.
Notice that, under the assumptions of [19, Theorem 9.3.1], by a measurable selection theorem
there exist measurable mappings A : I → L(RN ; RN ) and π : I → RN such that, for a.e. t ∈ I,
A(t) ∈ ∂xf(x∗(t), u∗(t)), π(t) ∈ ∂xL(x∗(t), u∗(t)), and (6) holds true.

Let us define the Hamiltonian H : RN × RN → R associated to problem (1), (2):

H(x, p) = sup
u∈U

(
〈p, f(x, u)〉 − L(x, u)

)
.

Notice that, when λ = 1, equality (5) can be written as

c = H(x∗(t), p(t) + ψ(t)) = 〈p(t) + ψ(t), x∗′(t)〉 − L(x∗(t), u∗(t)), a.e. in I.

In the literature, many papers have been devoted to the validity of the Constrained Maximum
Principle, see for instance [19] and the bibliography contained therein. The question of normality
was considered recently under an additional assumption that x∗ is Lipschitz, see e.g. [3, 10, 12, 15],
while the case x∗ ∈W 1,1(I; RN ) was investigated in [11].

When a quadratic growth condition is satisfied, then optimal trajectories are Lipschitz.

Theorem 2.1. Assume (H) and that for all (x, u) ∈ RN × U , L(x, u) ≥ a|f(x, u)|2 − b, where
a, b > 0. Then,

a) problem (1), (2) has an optimal solution (x∗, u∗) and every optimal trajectory/control pair is
so that x∗ is Lipschitzian and L(x∗(·), u∗(·)) ∈ L∞(I; R);

b) (x∗, u∗) satisfies a normal Autonomous Constrained Maximum Principle with p ∈W 1,∞(I; RN ).

Proof. By the growth condition we get lim|f(x,u)|→+∞ L(x, u)/|f(x, u)| = +∞. So, by Cesari [5,
chapter 11], an optimal solution does exist. Consider an optimal trajectory/control pair (x∗, u∗).
By [19, p.203] it satisfies an Autonomous Constrained Maximum Principle and using exactly the
same arguments as in [11, Proof of Theorem 2] and assumptions H) we show that this maximum
principle is normal. Let c, p, ψ be as in (4) - (7). Then for a.e. t ∈ I, L(x∗(t), u∗(t)) =
〈p(t) + ψ(t), f(x∗(t), u∗(t))〉 − c and therefore

L(x∗(t), u∗(t))
|f(x∗(t), u∗(t))|

≤ |p(t) + ψ(t)| − c

|f(x∗(t), u∗(t))|
whenever f(x∗(t), u∗(t)) 6= 0. Since limr→+∞

c
r = 0, by the growth condition, |f(x∗(·), u∗(·))| is

essentially bounded and so x∗ is Lipschitz. This also implies that L(x∗(·), u∗(·)) is essentially
bounded and ends the proof of a). To prove b) it is enough to use the adjoint equation and
assumption H) i).

3. Main results. Our main theorem concerns existence and Lipschitzianity of solutions for a class
of Bolza problems (1), (2).

For (x, u, p) ∈ RN × U × RN , set

P (x, u) =
{
p ∈ RN :

∂f

∂u
(x, u)∗p ∈ ∂uL(x, u) +NU (u)

}
,

H(x, u, p) = 〈p, f(x, u)〉 − L(x, u).
The key assumption is a separation property 2) below of the pre-Hamiltonian H.
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Theorem 3.1. Assume (H) and suppose that there exists a trajectory/control pair (x1, u1) satis-
fying x′1 ∈ Lα(I; RN ) and

inf{J(x, u) : (x, u) is a trajectory/control pair of (2)} < J(x1, u1) <∞.

Moreover, assume that there exists k > 0 such that:
1) for any trajectory/control pair (x, u) of (2) such that J(x, u) < J(x1, u1), we have

‖x‖∞ ≤ k and ess inft∈I |f(x(t), u(t))| ≤ k;

2) sup
|x| ≤ k, |f(x, u)| ≤ k

x ∈ K, p ∈ P (x, u)

H(x, u, p) < lim inf
c→+∞

inf
|x| ≤ k, |f(x, u)| ≥ c

x ∈ K, p ∈ P (x, u)

H(x, u, p).

Then,
a) problem (1), (2) has an optimal solution (x∗, u∗) such that x∗ is Lipschitzian and L(x∗(·), u∗(·)) ∈

L∞(I; R);
b) (x∗, u∗) satisfies a normal Autonomous Constrained Maximum Principle with a costate p ∈

W 1,∞(I; RN ).

The above theorem is proved in Section 4. For this aim we need the two approximation results
below.

Theorem 3.2. Assume (H) i), iii), iv). Let ε > 0 and let (x, u) be a trajectory/control pair of
(2). Then, there exists a trajectory/control pair (xε, uε) of (2) satisfying

xε(I) ⊂ Int(K); ‖xε − x‖∞ ≤ ε and J(xε, uε) < J(x, u) + ε. (8)

The proof of Theorem 3.2 is postponed to the appendix. Its consequence is that the infimum of
the functional (1) evaluated along tajectory/control pairs with absolutely continuous trajectories
is equal to the infimum over trajectory/control pairs with more regular trajectories, as stated in
the next corollary.

Corollary 1. Assume (H). Then

inf
{
J(x, u) : (x, u) is a trajectory/control pair of (2)

}
= inf

{
J(x, u) : (x, u) is a trajectory/control pair of (2) and x ∈W 1,α(I; RN )

}
,

Proof. Consider a trajectory/control pair (x, u) of (2) with J(x, u) <∞. We claim that, for every
ε > 0, there exists a trajectory/control pair (xε, uε) of (2) such that

xε ∈W 1,α(I; RN ) and J(xε, uε) < J(x, u) + ε. (9)

By Theorem 3.2, there exists (x̂ε, ûε) satisfying (2) such that

x̂ε(I) ⊂ Int(K) and J(x̂ε, ûε) < J(x, u) +
ε

2
.

Let R = ‖x̂ε‖∞ + 1 and
δε = − sup

t∈I
dK(x̂ε(t)). (10)

Set, for every n ∈ N,

un(t) =
{
ûε(t) if |f(x̂ε(t), ûε(t))| ≤ n
u(t) otherwise, (11)
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where u is as in (H) ii), and consider the system{
x′(t) = f(x(t), un(t)) for a.e. t ∈ I
x(0) = x̂ε(0). (12)

We claim that, for every n sufficiently large, (12) admits a solution xn satisfying

xn(I) ⊂ Int(K), x′n ∈ Lα(I; RN ) , and J(xn, un) < J(x̂ε, ûε) +
ε

2
, (13)

implying (9). Define an absolutely continuous function zn(t) := x(0) +
∫ t

0
f(x̂ε(s), un(s)) ds. Then

‖x̂ε − zn‖∞ ≤
∫
{s:|f(x̂ε(s),ûε(s))|>n}

|f(x̂ε(s), u(s))− f(x̂ε(s), ûε(s))| ds.

As f(x̂ε(·), u(·)), f(x̂ε(·), ûε(·)) ∈ L1(I; RN ), it follows that zn → x̂ε uniformly in I. So, for all
large n, ‖x̂ε − zn‖∞ ≤ 1. Set γ(t) := |z′n(t)− f(zn(t), un(t))|. From (H) i) we deduce

γ(t) ≤ CR|x̂ε(t)− zn(t)|
[
1 + |f(x̂ε(t), un(t))|+ L(x̂ε(t), un(t))1/α

]
.

From (11), for some positive constant C independent of n,∥∥∥1 + |f(x̂ε(·), un(·))|+ L(x̂ε(·), un(·))1/α
∥∥∥

L1
≤ C. (14)

As zn → x̂ε uniformly in I, for all n large enough,∫ T

0

γ(t)e
(∫ T

t
CR

[
1+|f(x̂ε(s),un(s))|+L(x̂ε(s),un(s))1/α

]
ds

)
dt

≤
∫ T

0

CR|x̂ε(t)− zn(t)|
[
1 + |f(x̂ε(t), un(t))|+ L(x̂ε(t), un(t))1/α

]
eCRC dt ≤ 1.

Applying Filippov’s Theorem (see for instance [19]), we deduce that for n sufficiently large, there
exists a solution xn to (12) such that ‖xn − zn‖∞ ≤ 1 and, for a.e. t ∈ I,

|x′n(t)− x̂′ε(t)| ≤ |f(xn(t), un(t))− f(x̂ε(t), un(t))|+ |f(x̂ε(t), un(t))− f(x̂ε(t), ûε(t))|

≤ CR+2|xn(t)− x̂ε(t)|
[
1 + |f(x̂ε(t), un(t))|+ L(x̂ε(t), un(t))1/α

]
+ |f(x̂ε(t), un(t))− f(x̂ε(t), ûε(t))|.

Set Rn = ‖x̂ε‖∞ + ‖xn‖∞. From (11), (H) i), ii), for a.e. t ∈ I,

|f(xn(t), un(t))| ≤ 2CRn

[
1 + n+ L(x̂ε(t), ûε(t))1/α

]
+ υ(t)(1 +Rn),

implying that x′n ∈ Lα(I; RN ). By (H) i) and ii), using Gronwall’s Lemma, we obtain

‖xn − x̂ε‖∞ ≤ C

∫ T

0

|f(x̂ε(s), un(s))− f(x̂ε(s), ûε(s))| ds

= C

∫
{s:|f(x̂ε(s),ûε(s))|>n}

|f(x̂ε(s), u(s))− f(x̂ε(s), ûε(s))| ds.
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Therefore, as n→∞, xn → x̂ε uniformly in I. So, for all n large enough, ‖xn−x̂ε‖∞ < min
{
δε,

ε
2

}
,

with δε as in (10), implying xn(I) ⊂ Int(K) and xn(I) ⊂ B(0, R). Further,

L(xn(t), un(t))− L(x̂ε(t), un(t)) ≤ CR|xn(t)− x̂ε(t)|
[
1 + L(x̂ε(t), un(t))

]
.

So, owing to (H) i), for all n sufficiently large

J(xn, un) ≤ J(x̂ε, ûε) + CR|xn(T )− x̂ε(T )|+ CR‖xn − x̂ε‖∞
∫ T

0

[
1 + L(x̂ε(t), un(t))

]
dt+

+
∫
{t∈I:|f(x̂ε(t),ûε(t))|>n}

[
L(x̂ε(t), u(t))− L(x̂ε(t), ûε(t))

]
dt < J(x̂ε, ûε) +

ε

2

and (13) follows.

Example 1. Let T > 0, U = Rm
+ , ` : RN → R+, L : RN ×Rm → R+ with L(x, ·) convex for all x,

g : RN → L(Rm,RN ), K = {x : x2
N ≥ (x2

1 + ...+x2
N−1)/2}, Q0 ⊂ RN be compact and Q0 ∩K 6= ∅.

Consider the problem of minimizing the functional

J(x, u) =
∫ T

0

L(x(t), u(t))dt+
∫ T

0

m∑
i=1

ui(s)ds+ `(x(T )) (15)

over all pairs (x, u) satisfying x′(t) = g(x(t))u(t), u(t) ∈ U for a.e. t ∈ I
x(t) ∈ K for every t ∈ I
x(0) ∈ Q0.

(16)

Assume that for all x ∈ ∂K, g(x)∗(x1, ..., xN−1,−1) /∈ Rm
+ , Q0 satisfies iv) of assumption (H),

L satisfies i2), ` is locally Lipschitz and for every R > 0, ∃CR > 0 such that

|g(x)u− g(y)u| ≤ CR|x− y|
[
1 + |g(x)u| ∧ |g(y)u|+

(
L(x, u) ∧ L(y, u)

)1/2
]
.

Then it is not difficult to verify that all the assumptions (H) are satisfied.
We further assume that L(x, ·) is differentiable and that for all k > 0 there exists αk > 0 such

that 
∀ x ∈ K,∀ u ∈ U, |x|+ |g(x)u| ≤ k =⇒

〈
∂L
∂u (x, u), u

〉
− L(x, u) ≤ −αk

lim inf
c→+∞

inf
x ∈ K, |x| ≤ k,
u ∈ U, |g(x)u| ≥ c

(〈
∂L

∂u
(x, u), u

〉
− L(x, u)

)
= 0.

(17)

We claim that then there exists an optimal solution to our problem satisfying the normal au-
tonomous maximum principle.

Indeed observe first that the set P (x, u) defined in section 3 is as follows

P (x, u) =
{
p ∈ RN : g(x)∗p ∈ ∂L

∂u
(x, u) + (1, ..., 1) +NU (u)

}
.

Since U is a closed convex cone, for all u ∈ U and n ∈ NU (u) we have 〈n, u〉 = 0. Therefore
for all p ∈ P (x, u),
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H(x, u, p) = 〈g(x)∗p, u〉 − L(x, u)−
m∑

i=1

ui =
〈
∂L

∂u
(x, u), u)

〉
− L(x, u).

Consequently assumption 2) of Theorem 2 is satisfied.
Pick x0 ∈ Q0 ∩K and consider the trajectory/control pair (x, u), where u ≡ 0, x(0) = x0.

If J(x, u) = inf
{
J(x, u) : (x, u) solves (16)

}
, then (x, u) is the optimal solution we are looking for:

by the assumptions on L, x ≡ x0 is Lipschitzian, L(x(·), u(·)) is essentially bounded, and by [19]
an autonomous maximum principle holds true. It follows from [10] that this maximum principle
is normal. It remains to consider the case J(x̄, ū) > inf{J(x, u) : (x, u) solves (16)}.

Observe that if for some trajectory/control pair (x, u), J(x, u) < J(x0, 0), then ‖u‖L1 ≤ J(x0, 0).
Since Q0 is bounded, from the assumption on g and the Gronwall lemma we deduce that for a
constant k > 0 independent of (x, u)(·) we have ‖x‖∞ ≤ k. Furthermore, using that L ≥ 0 and l ≥
0, we deduce that ess infs∈I

∑m
i=1 ui(s) <

J(x0,0)
T . This implies that ess infs∈I |u(s)| < J(x0,0)

T
and therefore for a constant k′ > 0 independent of (x, u)(·) we have ess infs∈I |g(x(s))u(s)| ≤ k′.
Consequently assumption 1) of Theorem 2 is satisfied.

If g : R2 → L(R2,R2) is given by

g(x, y) =
[
−x y
1 1

]
, (18)

U = R2
+ and L(x, y, u, v) =

√
1 + u(t)2 + v(t)2 then our assumption (17) holds true. That is the

result applies with the Lagrangian having a linear growth. Similarly it can be also applied with the
same g and L(x, y, u, v) = e−[u(t)+2v(t)], that goes to zero when the norm of control does increase.

4. Proof of Theorem 3.1. To prove Theorem 3.1 we need some preliminary results.
Let α be as in (H) i). For every ε > 0, consider the penalized problem:

minimize Jε(x, u) =
∫ T

0

[
L(x(t), u(t)) +

ε

α
|f(x(t), u(t))|α

]
dt+ `(x(T )) (19)

over all trajectory/control pairs (x, u) of (2). Notice that, by Remark 1, the infimum of problem
(19), (2) is finite. For (x, u) ∈ RN × Rm, define

Lε(x, u) = L(x, u) +
ε

α
|f(x, u)|α. (20)

Lemma 4.1. Assume (H) and suppose that there exists a trajectory/control pair (x1, u1) satisfying
x′1 ∈ Lα(I; RN ) and

inf{J(x, u) : (x, u) is a trajectory/control pair of (2)} < J(x1, u1) <∞.

Moreover, assume that there exists k > 0 such that:

‖x‖∞ ≤ k for any trajectory/control pair (x, u) of (2) with J(x, u) < J(x1, u1). (21)

Then, for any sufficiently small ε > 0,
a) there exists an optimal solution (xε, uε) to problem (19), (2) and J(xε, uε) < J(x1, u1);
b) (xε, uε) satisfies a normal Autonomous Constrained Maximum Principle for some ψε, pε and

cε ∈ R.
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Proof. By Cesari [5, chapter 11], for every ε > 0, problem (19), (2) admits a solution (xε, uε).
From Corollary 1 and the assumptions on (x1, u1), we deduce that there exists a trajectory/control
pair (x̃, ũ) such that x̃′ ∈ Lα(I; RN ), x̃(0) ∈ Q0, and J(x̃, ũ) < J(x1, u1). Since f(x̃(·), ũ(·)) ∈
Lα(I; RN ), for all small enough ε > 0

J(xε, uε) ≤ Jε(xε, uε) ≤ Jε(x̃, ũ) < J(x1, u1), (22)

implying a).
To prove b), fix ε sufficiently small. We claim that:
(h) there exist two Borel measurable functions l, k : U → R+ such that l(uε(·)), k(uε(·)) ∈

L1(I; R) and

|Lε(x, u)− Lε(y, u)| ≤ l(u)|x− y| and |f(x, u)− f(y, u)| ≤ k(u)|x− y|,
for every u ∈ U and every x, y ∈ xε(I) +B(0, 1).

Indeed, let Rε := ‖xε‖∞ + 1. From (H) i), for some C > 0, any x ∈ B(0, Rε), and any u ∈ U ,

|f(x, u)| ≤ C
[
1 + |f(0, u)|+ L(0, u)1/α

]
and L(x, u)1/α ≤ C[1 + L(0, u)1/α]. (23)

Let x, y ∈ xε(I) +B(0, 1) ⊂ B(0, Rε). From (23) and (H) i), we obtain that, for all u ∈ U ,

|f(x, u)− f(y, u)| ≤ CRε |x− y|
[
1 + |f(x, u)|+ L(x, u)1/α

]
≤ k(u)|x− y|,

where k(u) = Cf

[
1 + |f(0, u)|+ L(0, u)1/α

]
, for some Cf > 0.

Moreover, from (23),∣∣∣|f(x, u)|α − |f(y, u)|α
∣∣∣ ≤ α|f(x, u)− f(y, u)|

(
|f(x, u)|+ |f(y, u)|

)α−1

≤ αk(u)|x− y|
[
2C(1 + |f(0, u)|+ L(0, u)1/α)

]α−1
.

Hence, we deduce that

|Lε(x, u)− Lε(y, u)| ≤ |L(x, u)− L(y, u)|+ ε

α

∣∣|f(x, u)|α − |f(y, u)|α
∣∣

≤ CRε
|x− y|(1 + L(x, u)) +

ε

α

∣∣|f(x, u)|α − |f(y, u)|α
∣∣ ≤ l(u)|x− y|,

where l(u) = Cl

[
1 + L(0, u) +

[
1 + |f(0, u)|+ L(0, u)1/α

]α
]
, for some Cl > 0.

We claim that, for this choice of k and l, assumption (h) is satisfied. Indeed, since |f(xε(·), uε(·))|
and L(xε(·), uε(·))1/α belong to Lα(I; R), an easy computation implies that k(uε(·)) and l(uε(·)) are
integrable. Then, by [19, p.203], (xε, uε) satisfies an Autonomous Constrained Maximum Principle.
Finally, from assumptions (H) i), iii), iv), using arguments similar to [11, Proof of Theorem 2], we
deduce that this maximum principle is normal.

Lemma 4.2. Under all assumptions of Theorem 3.1, let (xε, uε) be as in Lemma 4.1. Then for
some ε0 > 0 we have

sup
ε∈(0,ε0)

‖f(xε(·), uε(·))‖∞ <∞ .

In particular, there exist a sequence εn → 0+ and x∗ ∈W 1,∞(I; RN ) with x∗(0) ∈ Q0 satisfying{
xεn

→ x∗ uniformly
f(xεn

(·), uεn
(·)) ⇀ x∗′ weakly−∗ in L∞,
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Proof. The proof follows the same ideas as the proof of [4, Theorem 1]. For ε > 0 consider the
penalized problem (19), (2). Lemma 4.1 and our assumptions ensure that, for any small enough ε
(say ε ∈ (0, ε0)), problem (19), (2) admits an optimal solution (xε, uε) such that

J(xε, uε) < J(x1, u1), ‖xε‖∞ ≤ k, (24)

satisfying a normal maximum principle for some cε, ψε, pε. In particular,

cε = 〈pε(t) + ψε(t), f(xε(t), uε(t))〉 − Lε(xε(t), uε(t)) (25)

= max
u∈U

(〈pε(t) + ψε(t), f(xε(t), u)〉 − Lε(xε(t), u)), for a.e. t ∈ I.

By assumption 1) of Theorem 3.1, the set

Aε =
{
t ∈ I : |f(xε(t), uε(t))| ≤ k

}
(26)

has positive measure. In view of (25) for a.e. t ∈ I, ∂f
∂u (xε(t), uε(t))∗

(
pε(t) + ψε(t)

)
belongs to the

set

∂uL(xε(t), uε(t)) + ε|f(xε(t), uε(t))|α−1 ∂f

∂u
(xε(t), uε(t))∗φ(xε(t), uε(t)) +NU (uε(t)),

where φ is a measurable function satisfying
φ(xε(t), uε(t)) =

f(xε(t), uε(t))
|f(xε(t), uε(t))|

if f(xε(t), uε(t)) 6= 0

φ(xε(t), uε(t)) ∈ B(0, 1) otherwise .

Hence, for a.e. t ∈ I,
∂f

∂u
(xε(t), uε(t))∗

[(
pε(t) + ψε(t)

)
− ε|f(xε(t), uε(t))|α−1φ(xε(t), uε(t))

]
∈ ∂uL(xε(t), uε(t)) +NU (uε(t)),

or equivalently,

pε(t) + ψε(t)− ε|f(xε(t), uε(t))|α−1φ(xε(t), uε(t)) ∈ P (xε(t), uε(t)). (27)

Using assumption 2) of Theorem 3.1 we deduce that, for some c(k) ≥ k,

sup
|x| ≤ k, |f(x, u)| ≤ k

p ∈ P (x, u)

H(x, u, p) < inf
|x| ≤ k, |f(x, u)| ≥ c(k)

p ∈ P (x, u)

H(x, u, p). (28)

Set
Bε =

{
t ∈ I : |f(xε(t), uε(t))| > c(k)

}
.

We claim that µ(Bε) = 0, from which the first conclusion of Lemma 4.2 follows. Indeed, suppose
for a moment that µ(Bε) > 0. Let a ∈ Aε and b ∈ Bε be such that (25) and (27) hold true.

Then (25) yields

cε = 〈pε(a) + ψε(a), f(xε(a), uε(a))〉 − L(xε(a), uε(a))−
ε

α
|f(xε(a), uε(a))|α

= 〈pε(b) + ψε(b), f(xε(b), uε(b))〉 − L(xε(b), uε(b))−
ε

α
|f(xε(b), uε(b))|α.
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If |f(xε(a), uε(a))| > 0, then, by (27) and (28),

〈pε(a) + ψε(a)− ε|f(xε(a), uε(a))|α−2f(xε(a), uε(a)), f(xε(a), uε(a))〉 − L(xε(a), uε(a))

< 〈pε(b) + ψε(b)− ε|f(xε(b), uε(b))|α−2f(xε(b), uε(b)), f(xε(b), uε(b))〉 − L(xε(b), uε(b)).

Hence we obtain

cε = 〈pε(a) + ψε(a)− ε|f(xε(a), uε(a))|α−2f(xε(a), uε(a)), f(xε(a), uε(a))〉

− L(xε(a), uε(a)) + ε
(
1− 1

α

)
|f(xε(a), uε(a))|α

< 〈pε(b) + ψε(b)− ε|f(xε(b), uε(b))|α−2f(xε(b), uε(b)), f(xε(b), uε(b))〉

− L(xε(b), uε(b)) + ε
(
1− 1

α

)
|f(xε(a), uε(a))|α

= cε − ε
(
1− 1

α

)
|f(xε(b), uε(b))|α + ε

(
1− 1

α

)
|f(xε(a), uε(a))|α.

Therefore,
c(k)α < |f(xε(b), uε(b))|α < |f(xε(a), uε(a))|α ≤ kα,

contradicting the choice of c(k).
If f(xε(a), uε(a)) = 0, then pε(a) + ψε(a) ∈ P (xε(a), uε(a)). Arguing as above we derive the

contradiction c(k)α < |f(xε(b), uε(b))|α < 0.
This implies that µ(Bε) = 0. The last statement of Lemma 4.2 follows by applying Ascoli’s and

Alaoglu’s theorems.

The following lemma is needed to prove the boundedness of {ψεn
}n∈N with εn as in Lemma 4.2.

Lemma 4.3. Under all assumptions of Theorem 3.1, consider a sequence (xεn
, uεn

) as in the claim
of Lemma 4.2. For any n, let An, πn be measurable mappings such that An(t) ∈ ∂xf(xεn

(t), uεn
(t)),

πn(t) ∈ ∂xLεn
(xεn

(t), uεn
(t)) for a.e. t ∈ I. Then there exist M > 0, ρ̃ > 0, a function γ ∈

L∞(I; R+) and un ∈ U such that for all large n the two systems below{
w′(t) = An(t)w(t) + γ(t)

(
f(xεn

(t), un(t))− x′εn
(t)

)
a.e. in I

w(0) ∈ Int
(
CK(xεn

(0))
)
∩ Int

(
CQ0(xεn

(0))
) (29)

{
ξ′(t) = 〈πn(t), w(t)〉+ γ(t)

(
Lεn

(xεn
(t), un(t))− Lεn

(xεn
(t), uεn

(t)
)

a.e. in I
ξ(0) = 0, (30)

admit a solution (wn, ξn) satisfying

|wn(t)| ≤M, for any t ∈ I (31)

|ξn(t)| ≤M, for any t ∈ I (32)

〈∇dK(xεn(t)), wn(t)〉 ≤ −ρ̃, for any t such that xεn(t) ∈ ∂K. (33)

Proof. From Lemmas 4.1, 4.2 there exist M̃ > 0, ε0 > 0 such that for any ε ∈ (0, ε0),

‖f(xε(·), uε(·))‖∞ ≤ M̃, ‖L(xε(·), uε(·))‖L1(I;RN ) ≤ M̃ and ‖xε‖∞ ≤ k. (34)

It is not restrictive to assume that εn ∈ (0, ε0) for all n ≥ 1.
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By (34) and assumption (H) i), there exists M ′ > 0 such that for all n

‖An‖Lα(I;RN×RN ) ≤M ′ and ‖πn‖L1(I;RN ) ≤M ′. (35)

Assumptions (H) i), iii) and Lipschitz continuity of xεn
imply that there exist τ, δ, ρ, η > 0

(independent from n) and un ∈ U such that dK is C1,1 on (∂K ∩B(0, k)) +B(0, δ)

‖f(xεn(·), un(·))‖∞ ≤ η, ‖L(xεn(·), un(·))‖∞ ≤ η (36)

and for all s, t ∈ I satisfying |s− t| ≤ τ and xεn
(t), xεn

(s) ∈ ∂K +B(0, δ)

〈∇dK(xεn
(s)), f(xεn

(s), un(s))〉 < −ρ, |∇dK(xεn
(t))−∇dK(xεn

(s))| ≤ ρ

4(M̃ + η + 1)
. (37)

Let x∗ be as in Lemma 4.2. Fix any 0 6= w̄0 ∈ Int
(
CK(x∗(0))

)
∩ Int

(
CQ0(x

∗(0))
)

and set
vn(·) := f(xεn

(·), un(·)), ln(·) := L(xεn
(·), un(·)). Since xεn

(0) → x∗(0) and the set-valued map
K ∩Q0 3 x Int

(
CK(x)

)
∩ Int

(
CQ0(x)

)
is lower semicontinuous, see [2], for all large enough n,

say n ≥ ñ0, w̄0 ∈ Int
(
CK(xεn(0))

)
∩ Int

(
CQ0(xεn(0))

)
.

Set

A =
{
t ∈ I : x∗(t) ∈ ∂K +B(0, δ/2)

}
, B =

{
t ∈ I : x∗(t) ∈ ∂K +B(0, δ/4)

}
,

and, for any n,

An =
{
t ∈ I : xεn(t) ∈ ∂K +B(0, δ)

}
, Bn =

{
t ∈ I : xεn(t) ∈ ∂K +B(0, δ/8)

}
.

Since xεn
→ x∗ uniformly, for any large enough n (say n ≥ n̄0 ≥ ñ0)

Bn ⊂ B ⊂ A ⊂ An.

Moreover, as A is open in I and B is compact, we deduce that

A =
⋃
j∈N

Ij ⊇
ν⋃

i=1

Ii ⊇ B,

for some disjoint relatively open subintervals Ij of [0, T ]. Then, it is not difficult to check that for
some m ≤ ν, 0 ≤ t10 < t1f < · · · < tm0 < tmf ≤ tm+1

0 = T and for any n ≥ n0,

Bn ⊂
m⋃

j=1

[tj0, t
j
f ] =

ν⋃
i=1

Ii

To obtain a function wn as in the claim (of the lemma), we solve the system

w′(t) = An(t)w(t) + γ(t)
(
vn(t)− x′εn

(t)
)
, (38)

with a piecewise constant function γ independent of n and wn(0) = w̄0. Since {vn − x′εn
}n∈N is

bounded in L∞, estimate (35) will imply (31) for some M > 0 independent of n.
Let t0 ∈ I and, for n ∈ N, let Wn(·, t0) be the matrix solution to{

Ẇn(t; t0) = An(t)Wn(t; t0) for a.e. t ∈ [t0, T ]
Wn(t0; t0) = IRN .

From (35) and Gronwall’s Lemma, it follows that there exist ζ, σ > 0 independent of n such that
for any t0 and any n,

‖Wn(·; t0)‖∞ ≤ ζ, (39)
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and for all s, t ∈ I satisfying |t− s| ≤ σ∥∥Wn(t; t0)Wn(s; t0)−1 − IRm

∥∥ ≤ ρ

4
(
M̃ + η + 1

) . (40)

The construction of γ and of a solution wn to (29) is structured in the following way:

In Step 1: we define wn in [0, t1f ]. For this aim we consider two cases : t10 > 0 and t10 = 0;
In Step 2: we extend wn on [0, T ] iterating the construction of step 1.

Step 1: Let t10 = t0 < t1 < · · · < tm1 = t1f be such that

ti − ti−1 ≤ min{τ, σ}, for i = 1, . . . ,m1.

Case 1: t10 > 0. By the definition of t10, x
∗([0, t10]) ⊂ Int(K). Since xεn

→ x∗ uniformly, for all n
large enough, xεn([0, t10]) ⊂ Int(K). So, for some M0 > 0, n0 ≥ n̄0, and all n ≥ n0, the solution
wn to (38) with γ ≡ 0 and wn(0) = w̄0 satisfies

|wn(t)| ≤M0, ∀ t ∈ [0, t10]. (41)

Consider the time interval [t0, t1].
If x∗([t0, t1]) ⊂ Int(K), then for any n large enough also xεn([t0, t1]) ⊂ Int(K) and we extend

wn on [t0, t1], by taking the solution to (38) with γ ≡ 0 and starting at wn(t10). As in (41), we
obtain that for some M1 > 0, n1 > n0 and all n ≥ n1,

|wn(t)| ≤M1, ∀ t ∈ [t0, t1]. (42)

If x∗([t0, t1]) ∩ ∂K 6= ∅, then define

s0 = min{t ∈ [t0, t1] : x∗(t) ∈ ∂K}, sf = max{t ∈ [t0, t1] : dK(x∗(t)) ≥ dK(x∗(t0))
4

}. (43)

Since x∗(t0) 6∈ ∂K, we deduce that s0 > t0 and that dK(x∗(t0)) < 0. As xεn
→ x∗, there exists

n̄1 ≥ n0 such that

‖xεn
− x∗‖∞ < −dK(x∗(t0))

4
, for any n ≥ n̄1. (44)

Hence, using that x∗ is Lipschitz and that xεn
→ x∗ uniformly, for some σ0 > 0, n1 ≥ n̄1 and for

all n ≥ n1,

min
{
t ∈ [t0, t1] : dK

(
xεn

(t)
)
≥ dK(x∗(t0))

2

}
≥ t0 + σ0.

Let n ≥ n1 and wn solve (38) in [t0, sf ] with the initial condition wn(t0), γ ≡ 4ζM0
ρσ0

, where ζ is as
in (39), ρ as in (37), and M0 as in (41). Then,

wn(t) = Wn(t; t0)wn(t0) +
4ζM0

ρσ0

∫ t

t0

Wn(t; t0)Wn(s; t0)−1
(
vn(s)− x′εn

(s)
)
ds. (45)

For any t ∈ [t0, t0 + σ0), xεn
(t) ∈ Int(K). Let t ∈ [t0 + σ0, sf ] be such that xεn

(t) ∈ ∂K +
B

(
0,−dK(x∗(t0))/2

)
. From (40) and (37), for all s ∈ [t0 + σ0, sf ],

〈∇dK(xεn
(t)),Wn(t; t0)Wn(s; t0)−1

(
vn(s)− x′εn

(s)
)〉
≤

〈
∇dK(xεn

(s)), vn(s)− x′εn
(s)

〉
+
ρ

2
.
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So, by (37) and (44), for all t ∈ [t0, sf ] such that dK(xεn
(t)) ≥ dK(x∗(t0))/2∫ t

t0

〈
∇dK(xεn

(t)),Wn(t; t0)Wn(s; t0)−1
(
vn(s)− x′εn

(s)
)〉
ds (46)

≤ −ρ(t− t0)− dK(xεn(t)) + dK(xεn(t0)) +
ρ

2
(t− t0) ≤ −ρ

2
(t− t0).

Hence, from (45), for all t ∈ [t0, sf ] satisfying dK(xεn
(t)) ≥ dK(x∗(t0))/2

〈∇dK(xεn
(t)), wn(t)〉 ≤ 〈∇dK(xεn

(t)),Wn(t; t0)wn(t0)〉 − 2ζM0 ≤ −ζM0 := −ρ1. (47)

The above inequality implies that

〈∇dK(xεn(sf )), wn(sf )〉 ≤ −ρ1, (48)

and so wn(sf ) 6= 0. Further, by (34), (35), (36), (38), (41), and Gronwall’s Lemma, for some
M1 > 0, |wn(t)| ≤M1, for any n ≥ n1 and any t ∈ [t1, sf ].

If sf < t1, then we take the solution wn to (38) in [sf , t1] with γ ≡ 0 and starting at wn(sf ), so
that wn(t1) 6= 0.

So, we proved that for some M1 > 0, n1 ≥ 1 and for all n ≥ n1 there exists a solution wn to
(38) in [t0, t1] satisfying (33), wn(t1) 6= 0, and

|wn(t)| ≤M1, for any t ∈ [t0, t1].

Consider, next, the time interval [t1, t2]. Then either sf < t1 or sf = t1.

a) If sf < t1, then x∗(t1) ∈ Int(K). Arguing as in [t0, t1] we deduce that there exist M2 >
0, ρ2 > 0, a piecewise constant function γ independent of n and n2 ≥ n1 such that, for all n ≥ n2,
the solution wn to (38) defined in [t1, t2] starting at wn(t1) satisfies

|wn(t)| ≤M2, ∀ t ∈ [t1, t2], (49)

〈∇dK(xεn(t)), wn(t)〉 ≤ −ρ2, ∀ t ∈ I such that xεn(t) ∈ ∂K +B(0,−dK(x∗(t1))/2).

b) If sf = t1, then from (48) and (H) iii), there exist n2 ≥ n1 and 0 < σ1 < t2 − t1 such that,
for any t ∈ (t1, t1 + σ1) and any n ≥ n2,

|∇dK(xεn(t))−∇dK(xεn(t1))| ≤
ρ1

8M1
and ‖Wn(t; t1)− IRm‖ ≤ ρ1

8M1
. (50)

We may also assume that, for any n ≥ n2,

‖xεn
− x∗‖∞ < δ1 := min

{ρσ1

8
,
ρ1 ∧ ζM1

8

(4ζM1

ρσ1

)−1

,
δ

2

}
, (51)

Define
s1f = max

{
t ∈ [t1, t2] : dK(x∗(t)) ≥ −δ1

}
and consider the solution wn to (38) on [t1, s1f ] starting at wn(t1), with γ ≡ 4ζM1

ρσ1
. Then,

wn(t) = Wn(t; t1)wn(t1) +
4ζM1

ρσ1

∫ t

t1

Wn(t; t1)Wn(s; t1)−1
(
vn(s)− x′εn

(s)
)
ds.

Let t be such that xεn
(t) ∈ ∂K +B(0, 2δ1).
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If t ≤ t1 + σ1, arguing as in (46), from (50) we deduce that

〈∇dK(xεn(t)), wn(t)〉 ≤ 〈∇dK(xεn(t1)), wn(t1)〉+
∣∣∇dK(xεn(t))−∇dK(xεn(t1))

∣∣M1

+
∥∥Wn(t; t1)− IRm

∥∥M1 −
2ζM1

σ1
(t− t1) +

4ζM1

ρσ1

[
dK(xεn

(t1))− dK(xεn
(t))

]
≤ −ρ1

2
.

If t ≥ t1 + σ1, then, as in (46)–(47), from the definition of δ1 we obtain that

〈∇dK(xεn(t)), wn(t)〉 ≤ 〈∇dK(xεn(t)),Wn(t; t1)wn(t1)〉 − 2ζM1 ≤ −1
2
ζM1 := −ρ2.

The above inequality implies that (33) is satisfied in [t1, s1f ] and

〈∇dK(xεn
(s1f )), wn(s1f )〉 ≤ −ρ2.

So wn(s1f ) 6= 0. Further, by (34), (35), (36), (38), (42), and Gronwall’s Lemma, for some M2 > 0
and all large enough n, wn satisfies (49) in [t1, s1f ]. If s1f < t2, then we extend wn on [s1f , t2] by a
solution to (38) with γ ≡ 0 starting at wn(s1f ).

Iterating the procedure described above, for all n large enough we construct on [0, t1f ] a mea-
surable bounded function γ and a solution wn to (38) which satisfies wn(0) = w̄0, wn(t1f ) 6= 0,
and

|wn(t)| ≤ M̃1, for any t ∈ [0, t1f ],

〈∇dK(xεn
(t)), wn(t)〉 ≤ −ρ̃1, for any t ∈ [0, t1f ] with xεn

(t) ∈ ∂K,

where ρ̃1, M̃1 are positive constants independent of n.

Case 2: t10 = 0. If x∗(0) 6∈ ∂K, then we obtain a solution wn in [t0, t1] arguing exactly as in
Case 1. It remains to consider the case x∗(0) ∈ ∂K. Since xεn

(0) → x∗(0) and ∂K is C1,1
loc , there

exists δ0 > 0 such that〈
∇dK(xεn(0)), w̄0

〉
≤ −δ0, for all n large enough.

We can define a solution to (38), arguing as in b). The construction of wn in [t10, t
1
f ] follows exactly

as in case 1.

Step 2. We extend wn to [t1f , T ], as we did in case 1, by setting γ ≡ 0 in any interval [tj−1
f , tj0], for

j = 2, . . . ,m+ 1, and taking γ piecewise constant in [tj0, t
j
f ] and independent of n. Notice that by

the definition of tj0, x
∗(tj0) ∈ Int(K). As the number of steps is finite for all n large enough we

obtain a solution wn to (29) satisfying

|wn(t)| ≤ M̃j , ∀ t ∈ [tj0, t
j
f ],

〈∇dK(xεn(t)), wn(t)〉 ≤ −ρ̃j , ∀ t ∈ [tj0, t
j
f ] such that xεn(t) ∈ ∂K.

Estimates (31) and (33) follow.

Consider next, the solution ξn to (30) for n large enough. Since {πn}n∈N, {`n}n∈N and
{L(xεn

(·), uεn
(·)}n∈N are bounded in L1, and γ is essentially bounded and independent of n, the

sequence {ξn}n∈N is bounded in C(I; R) and (32) follows.
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Lemma 4.4. Under all assumptions of Theorem 3.1, consider a sequence (xεn
, uεn

) as in Lemma 4.2
and let ψεn

, pεn
be as in Lemma 4.1. Then

sup
n∈N

‖ψεn
‖BV <∞. (52)

Proof. From Lemma 4.3, there exist γ ∈ L∞(I; R+), ρ̃, M > 0 and un ∈ U such that, for all n
large enough, (29), (30) admit a solution (wn, ξn) satisfying

wn(t) +B(0, ρ̃) ∈ Int
(
CK(xεn

(t))
)
, ∀ t ∈ I & ‖wn‖∞ + ‖ξn‖∞ ≤M. (53)

Set vn(·) = f(xεn
(·), un(·)) and ln(·) = L(xεn

(·), un(·)). Using (29) and (30), it is not difficult
to prove that

〈pεn(T ),wn(T )〉 − 〈pεn(0), wn(0)〉 − ξn(T )

=
∫ T

0

(
〈p′εn

(t), wn(t)〉+ 〈pεn
(t), w′n(t)〉 − ξ′n(t)

)
dt

=
∫ T

0

−〈ψεn
(t), w′n(t)〉 dt

+
∫ T

0

γ(t)
(
〈pεn

(t) + ψεn
(t), vn(t)− x′εn

(t)〉 −
(
ln(t)− Lεn

(xεn
(t), uεn

(t))
))
dt.

This and (5) yield

〈pεn(T ), wn(T )〉 − 〈pεn(0), wn(0)〉 − ξn(T ) ≤
∫ T

0

−〈ψεn(t), w′n(t)〉 dt.

Integrating by parts and using (53), we obtain

〈pεn
(T ), wn(T )〉 ≤ 〈pεn

(0), wn(0)〉+M − 〈ψεn
(T ), wn(T )〉+

∫ T

0

wn(t) dψεn
(t).

Thus, by the Ck Lipschitzianity of `, and by (7),

−
∫ T

0

wn(t) dψεn
(t) ≤ |pεn

(T ) + ψεn
(T )|M +M ≤ (Ck + 1)M, (54)

with M as in (53).
Let w ∈ C(I; RN ) satisfy ‖w‖∞ ≤ ρ̃. By (53)

wn(t) + w(t) ∈ Int
(
CK(xεn

(t))
)
, ∀ t ∈ I.

So, from (54) and (4),∫ T

0

w(t) dψεn
(t) =

∫ T

0

(wn(t) + w(t)) dψεn
(t)−

∫ T

0

wn(t) dψεn
(t) ≤ (Ck + 1)M,

implying (52).

Lemma 4.5. Under all assumptions of Theorem 3.1, consider a sequence (xεn
, uεn

) as in Lemma 4.2
and ψεn

, pεn
as in Lemma 4.1. Then supn∈N ‖pεn

‖∞ <∞.
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Proof. From Lemmas 4.1, 4.2 and 4.4 we deduce that for some C > 0 and all n large enough

‖L(xεn
(·), uεn

(·))‖L1 ≤ C, ‖xεn
‖∞ ≤ k, ‖f(xεn

(·), uεn
(·))‖∞ ≤ C, ‖ψεn

‖BV ≤ C. (55)

Since the optimal pair (xεn , uεn) satisfies the normal maximum principle, from (H) i) and (6) with
L replaced by Lεn we deduce that, for a.e. t ∈ I,

|p′εn
(t)| ≤ Ck

[
1 + |f(xεn(t), uεn(t))|+ L(xεn(t), uεn(t))1/α

](
|pεn(t)|+ |ψεn(t)|

)
(56)

+ Ck

[
1 + L(xεn

(t), uεn
(t))

]
+ εnCk

[
1 + |f(xεn

(t), uεn
(t))|+ L(xεn

(t), uεn
(t))1/α

]
|f(xεn

(t), uεn
(t))|α−1.

As α ≥ 2, (56) and (55) imply that for some C̃ > 0 and for all n large enough

|p′εn
(t)| ≤ C̃

[
1 + L(xεn

(t), uεn
(t))

](
|pεn

(t)|+ 1
)

a.e. in I.

By the Ck-Lipschitzianity of ` on K, (7) and (55), |pεn
(T )| ≤ C + Ck. Hence, applying estimates

(55) and Gronwall’s Lemma, for some C1 > 0 and all n large enough, ‖pεn
‖∞ ≤ C1.

Proof of Theorem 3.1. Lemma 4.1 ensures that, for any ε ∈ (0, ε0), problem (19), (2) admits an
optimal solution (xε, uε) such that

J(xε, uε) < J(x1, u1), ‖xε‖∞ ≤ k, (57)

and the normal Autonomous Constrained Maximum Principle holds true with some cε, ψε, pε

satisfying (25).
Step 1. Consider a sequence {εn}n∈N as in Lemma 4.2. We claim that there exist a subsequence

{εni
}i∈N and ξ ∈ L∞(I; R) such that

L(xεni
(·), uεni

(·)) ⇀ ξ weakly−∗ in L∞. (58)

Applying Lemmas 4.4 and 4.5, we deduce that for some M > 0

sup
n∈N

{
‖pεn‖∞ + ‖ψεn‖BV

}
≤M. (59)

Define Aεn
as in (26) and fix any u0 ∈ U . Let t ∈ Aεn

be such that (25) holds true. Since f(·, u0)
and L(·, u0) are continuous, from (57) and (59) it follows that, for some m > 0 independent of
n ∈ N,

cεn
≥ 〈pεn

(t) + ψεn
(t), f(xεn

(t), u0)〉 − L(xεn
(t), u0)−

εn
α
|f(xεn

(t), u0)|α ≥ −m.

Equality (25) and the above estimate imply that, for a.e. t ∈ I,

〈pεn(t) + ψεn(t), f(xεn(t), uεn(t))〉 − L(xεn(t), uεn(t))− εn
α
|f(xεn(t), uεn(t))|α = cεn ≥ −m. (60)

Hence, by Lemmas 4.2, 4.4 and 4.5 for some C > 0 and all n ∈ N large enough,

L(xεn(t), uεn(t)) ≤
(
|pεn(t)|+ |ψε(t)|

)
|f(xεn(t), uεn(t))|+m ≤ C.

This implies that the sequence {L(xεn(·), uεn(·))} is bounded in L∞(I; R+). Then, (58) follows
from the Alaoglu theorem.
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Step 2. From Lemma 4.2 and Step 1 it follows that there exist x∗ ∈W 1,∞(I; RN ) with x∗(0) ∈ Q0,
ξ ∈ L∞(I; RN ), and εn ↓ 0 such that xεn → x∗ uniformly

x′εn
⇀ x∗′ weakly−∗ in L∞

L(xεn
(·), uεn

(·)) ⇀ ξ weakly−∗ in L∞.
(61)

To complete the proof of the existence of an optimal trajectory/control pair for problem (1), (2),
we use standard arguments based on Mazur’s Theorem. Assumptions (H) i), v) imply that

(x∗′(t), ξ(t)) ∈
{(
f(t, x∗(t), u), L(t, x∗(t), u) + v

)
: u ∈ U and v ≥ 0

}
, for a.e. t ∈ I.

Applying a measurable selection lemma, see [2], we obtain the existence of two measurable functions
u∗, v∗ satisfying, for a.e. t ∈ I,

u∗(t) ∈ U, v∗(t) ≥ 0, and
{
x∗′(t) = f(x∗(t), u∗(t))
ξ(t) = L(x∗(t), u∗(t)) + v∗(t). (62)

Now, let (x, u) be a trajectory/control pair of (2) with x′ ∈ Lα(I; R). Then we get

lim inf
n→+∞

J(xεn
, uεn

) ≤ lim inf
n→+∞

Jεn
(xεn

, uεn
) ≤ lim inf

n→+∞
Jεn

(x, u) = J(x, u).

From (61) and (62) we deduce that∫ T

0

[
L(x∗(t), u∗(t)) + v∗(t)

]
dt+ `(x∗(T )) ≤ lim inf

n→+∞
J(xεn , uεn)

≤ inf
{
J(x, u) : (x, u) is a trajectory/control pair of (2) and x′ ∈ Lα(I; RN )

}
.

In particular, v∗(t) = 0, for a.e. t ∈ I. Applying Corollary 1 we obtain that (x∗, u∗) minimizes (1)
over all trajectory/control pairs (x, u) of (2). Moreover, from (61) and (62),

x∗′ and L(x∗(·), u∗(·)) are essentially bounded, (63)

implying conclusions a).

Arguing as in the proof of Lemma 4.1, we deduce that the optimal trajectory/control pair
(x∗, u∗) satisfies an Autonomous Constrained Maximum Principle for some ψ, p, λ as in (4)-(7).
Also, from (63), applying [10, Corollary 6.3] we obtain that the maximum principle is normal.
Hence, by (6), (H) i) for a.e. t ∈ I,

|p′(t)| ≤ Ck

[
1 + |f(x∗(t), u∗(t))|+ L(x∗(t), u∗(t))1/α

]
|p(t) + ψ(t)|+ Ck

[
1 + L(x∗(t), u∗(t))

]
,

and b) follows from (63) and Gronwall’s lemma.

Appendix A. Proof of the approximation result.
The two lemmas below are instrumental for the proof of Theorem 3.2.

Lemma A.1. Assume (H) i), iii). Then, ∀R > 0, ∃ δ̃R, ρ̃R, η̃R > 0 such that, for any x ∈(
∂K ∩B(0, R) +B(0, δ̃R)

)
∩K and some ux ∈ U ,

〈∇dK(x), f(x, ux)〉 < −ρ̃R , |f(x, ux)| ≤ η̃R , and L(x, ux) ≤ η̃R. (64)
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Proof. Let 0 < δR < 1 such that the signed distance dK is C1,1 in ∂K ∩B(0, R)+B(0, δR), and let
CR+1, ρR+1, ηR+1 be as in assumptions (H) i), iii). We may assume that ηR+1 ≥ κ(2 +R). Then,
there exists

0 < δ̃R < min
{
δR,

ρR+1

2CR+1(1+ηR+1+η
1/α
R+1)

}
such that, for any x ∈

(
∂K ∩ B(0, R) + B(0, δ̃R)

)
∩K, the projection of x on ∂K, π(x), belongs

to ∂K ∩ B(0, R + 1). We associate to π(x) the control uπ(x) as in assumption (H) iii), and set
ux := uπ(x). By the Lipschitz continuity of f and by the definitions of δ̃R

〈∇dK(x), f(x, ux)〉 = 〈∇dK(π(x)), f(x, uπ(x))〉

≤ 〈∇dK(π(x)), f(π(x), uπ(x))〉+ CR+1(1 + ηR+1 + η
1/α
R+1)|x− π(x)| < −ρR+1

2
.

Assumptions (H) i), iii) imply that

|f(x, ux)| ≤ ηR+1 +
ρR+1

2
and L(x, ux) ≤ ηR+1 +

ρR+1

2
.

Setting ρ̃R = ρR+1
2 and η̃R = ηR+1 + ρR+1

2 , (64) follows.

Lemma A.2. Assume (H) i), iii). Let R > 1 be fixed, δ̃R, ρ̃R, η̃R > 0 be as in Lemma A.1 and
(x, u) be a trajectory/control pair of (2) satisfying x([0, T ]) ⊂ K ∩ B(0, R − 1). Then for some
σ > 0 the following property holds true:

for every ε > 0 and t0 ∈ [0, T ), one can find r > 0 such that ∀ x0 ∈ Int(K) ∩ B(x(t0), r) there
exists a trajectory/control pair (xε, uε) of x′ε(t) = f(xε(t), uε(t)), uε(t) ∈ U a.e. in [t0, t1]

xε(t) ∈ Int (K) for all t ∈ [t0, t1]
xε(t0) = x0,

(65)

where t1 = (t0 + σ) ∧ T , which satisfies

max
t∈[t0,t1]

|xε(t)− x(t)| ≤ ε,

∫ t1

t0

L(xε(t), uε(t)) dt ≤
∫ t1

t0

L(x(t), u(t)) dt+ ε. (66)

Proof. We shall abbreviate δ = δ̃R, ρ = ρ̃R, η = η̃R. Without loss of generality, we may assume
that 0 < δ < 1, 0 < ρ < 1, CR ≥ 1 and that dK is C1,1 on ∂K ∩B(0, R) +B(0, δ). Define

Φ(t) = CR

(
1 + |f(x(t), u(t))|+ L(x(t), u(t))1/α

)
, ∀ t ∈ I, (67)

CΦ = e
∫ T
0 Φ(t) dt, Cη = CR(1 + η + η1/α)

and let ld be a Lipschitz constant of ∇dK on ∂K ∩ B(0, R) + B(0, δ). Take 0 < σ < 1 satisfying,
for all t ∈ I, ∫ (t+σ)∧T

t

Φ(s) ds ≤ δ

4
∧ ρ

8CΦ(ηCΦ + 1)(ld + 1)
. (68)

Fix ε > 0 and let 0 < τ < σ
2 be so that for every t ∈ I

∫ (t+τ)∧T

t
L(x(s), u(s)) ds ≤ ε

8 , τC2
Φ(ηCΦ + 1) +

∫ (t+τ)∧T

t
Φ(s)ds ≤ ε

4

τη(ηld + Cη)CΦ < ρ, τη(1 + CR(1 + η)CΦ) ≤ ε
2 .

(69)
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Fix any t0 ∈ [0, T ).
Case 1. dK(x(t0)) < −δ/2. Then, by (68), for all t ∈ [t0, (t0 +σ)∧T ], dK(x(t)) < −δ/4. Define

r = (ε∧ δ
8 )/CΦ and pick any x0 ∈ Int(K)∩B(x(t0), r). Set uε(·) = u(·) and let xε be the trajectory

of {
y′ = f(y, uε(t)) a.e. in [t0, t1]
y(t0) = x0

Then, for all t ∈ [t0, t1], |xε(t)−x(t)| ≤ |x0−x(t0)|+
∫ t

t0
Φ(s)|xε(s)−x(s)| ds. Hence, by Gronwall’s

lemma, |xε(t)−x(t)| ≤ CΦ|x0−x(t0)| ≤ ε∧ δ
8 for all t ∈ [t0, t1] implying that dK(xε(t)) < − δ

4+ δ
8 < 0.

Furthermore∫ t1

t0

L(xε(s), uε(s)) ds−
∫ t1

t0

L(x(s), u(s)) ds ≤
∫ t1

t0

Φ(s)|xε(s)− x(s)| ds < ε

∫ t1

t0

Φ(s) ds < ε.

Case 2. dK(x(t0)) ≥ −δ/2. Set r = ρτ/8 < τ and pick any x0 ∈ Int(K) ∩ B(x(t0), r). Let
u0 := ux0 be given by Lemma A.1 and define

uε(t) =
{
u0 if t ∈ [t0, (t0 + τ) ∧ T ]
u(t− τ) if t ∈ [(t0 + τ) ∧ T, (t0 + σ) ∧ T ].

Then for all t ∈ [t0, (t0 + τ) ∧ T ], |xε(t) − x0| ≤
∫ t

t0
|f(x0, u0)| ds +

∫ t

t0
Φ(s)|xε(s) − x0| ds. So

|xε(t)− x0| ≤ ηCΦ(t− t0) and, using (69), we obtain

|xε(t)− x(t)| ≤ |xε(t)− x0|+ |x0 − x(t0)|+ |x(t)− x(t0)|

≤ η CΦ(t− t0) + r +
∫ t

t0

Φ(s) ds ≤ ε

2
.

Furthermore, for all t ∈ [t0, (t0 + τ) ∧ T ],

dK(xε(t)) = dK(x0) +
∫ t

t0

〈∇dK(xε(s)), x′ε(s)〉 ds (70)

≤ dK(x0) +
∫ t

t0

〈∇dK(x0), f(x0, u0)〉 ds+
(
ldη + Cη

) ∫ t

t0

|xε(s)− x0| ds

≤ dK(x0)− ρ(t− t0) +
(
ldη + Cη

)
η CΦ

(t− t0)2

2
≤ dK(x0)−

ρ

2
(t− t0) < 0.

Consider, next, any t ∈ ((t0 + τ) ∧ T, (t0 + σ) ∧ T ]. Then

|xε(t)− x(t− τ)| ≤ |xε(t0 + τ)− x(t0)|+
∫ t

t0+τ

|xε(s)− x(s− τ)|Φ(s− τ) ds

≤ η CΦτ + τ +
∫ t

t0+τ

|xε(s)− x(s− τ)|Φ(s− τ) ds.

So, applying Gronwall’s Lemma,

|xε(t)− x(t− τ)| ≤ τ(η CΦ + 1) exp
( ∫ t

t0+τ

Φ(s− τ) dr
)
. (71)
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Moreover, by (69), for all t ∈ ((t0 + τ) ∧ T, (t0 + σ) ∧ T ],

|xε(t)− x(t)| ≤ |xε(t)− x(t− τ)|+ |x(t− τ)− x(t)| ≤ τCΦ(η CΦ + 1) +
∫ t

t−τ

Φ(s) ds ≤ ε

2
.

We estimate next dK(xε(t)). For this aim observe that

〈∇dK(xε(t)), x′ε(t)〉 = 〈∇dK(xε(t)), f(xε(t), u(t− τ))〉

≤ 〈∇dK(x(t− τ)), f(x(t− τ), u(t− τ))〉+ (ld + 1)Φ(t− τ)|xε(t)− x(t− τ)| .

=
d

dt
dK(x(t− τ)) + (ld + 1)Φ(t− τ)|xε(t)− x(t− τ)|.

Therefore, by (70) and (68), for all t ∈ ((t0 + τ) ∧ T, (t0 + σ) ∧ T ],

dK(xε(t)) = dK(xε(t0 + τ)) +
∫ t

t0+τ

〈∇dK(xε(s)), x′ε(s)〉 ds

≤ dK(x0)−
ρ

2
τ + dK(x(t− τ))− dK(x(t0)) + (ld + 1)

∫ t

t0+τ

Φ(s− τ)|xε(s)− x(s− τ)|ds

≤ |dK(x0)− dK(x(t0))| −
ρ

2
τ + τCΦ(ld + 1)(ηCΦ + 1)

∫ t

t0+τ

Φ(s− τ) ds ≤ −ρ
2
τ +

ρ

4
τ < 0.

Hence (xε, uε) is as in (65) and ‖xε − x‖∞ < ε.
To prove the last statement it is not restrictive to assume that

∫ t1
t0
L(x(s), u(s)) ds is finite.

Then, by (69) and (71),∫ (t0+τ)∧T

t0

(L(xε(s), uε(s))− L(x(s), u(s))) ds ≤
∫ (t0+τ)∧T

t0

L(xε(s), u0) ds

=
∫ (t0+τ)∧T

t0

L(x0, u0)ds+
∫ (t0+τ)∧T

t0

(L(xε(s), u0)− L(x0, u0)) ds

≤ ητ + CR(1 + L(x0, u0))
∫ (t0+τ)∧T

t0

|xε(s)− x0| ds ≤ τη(1 + CR(1 + η)CΦ) ≤ ε

2

and whenever t0 + τ < T∫ (t0+σ)∧T

t0+τ

(L(xε(s), uε(s))− L(x(s), u(s))) ds =∫ (t0+σ)∧T

t0+τ

(L(xε(s), u(s− τ))− L(x(s− τ), u(s− τ))) ds+∫ (t0+σ)∧T

t0+τ

(L(x(s− τ), u(s− τ))− L(x(s), u(s))) ds ≤
∫ (t0+σ)∧T

t0+τ

Φ(s− τ)|xε(s)− x(s− τ)| ds

+
∫ (t0+σ)∧T−τ

t0+τ

L(x(s), u(s)) ds+
∫ t0+τ

t0

L(x(s), u(s)) ds−
∫ (t0+σ)∧T−τ

t0+τ

L(x(s), u(s)) ds−∫ (t0+σ)∧T

(t0+σ)∧T−τ

L(x(s), u(s)) ds ≤ τ(ηCΦ + 1)C2
Φ +

ε

4
≤ ε

2
.
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Therefore,∫ (t0+σ)∧T

t0

(L(xε(s), uε(s))− L(x(s), u(s))) ds =
∫ t0+τ

t0

(L(xε(s), uε(s))− L(x(s), u(s))) ds+∫ (t0+σ)∧T

t0+τ

(L(xε(s), uε(s))− L(x(s), u(s))) ds ≤ ε.

The proof is complete.

Proof of Theorem 3.2. First of all, thanks to the local Lipschitz continuity of `, it suffices to prove
that for every ε > 0 there is a trajectory/control pair (xε, uε) of (2) such that

xε(I) ⊂ Int (K) ; ‖xε − x‖∞ ≤ ε ;
∫ T

0

L(xε(s), uε(s)) ds ≤
∫ T

0

L(x(s), u(s)) ds+ ε .

Now, let σ > 0 be as in Lemma A.2. If σ ≥ T , then the conclusion follows from Lemma A.2
and assumption (H) iv). Indeed, let v ∈ Int

(
CK(x(0))

)
∩ Int

(
CQ0(x(0))

)
. Then, for h > 0

sufficiently small, x(0) + hv ∈ Int (K) ∩ Q0 (see, for instance, [2]). So, we can apply Lemma A.2
with x0 = x(0) + hv and h > 0 small enough to obtain the conclusion.

Next, suppose 0 < σ < T and let n ∈ N be such that (n− 1)σ < T ≤ nσ. We claim that for any
integer k ∈ {1, . . . , n} there is a trajectory/control pair (xε, uε) of (65) with t0 = 0 , t1 = (kσ)∧ T
and x0 ∈ Int (K) such that (66) holds true. Let us show our claim by an induction argument: for
k = 1 the claim is guaranteed by Lemma A.2. Suppose now it holds true for some k < n. Let ε > 0
be fixed and set t0 = kσ, t1 =

(
(k+ 1)σ

)
∧ T . By Lemma A.2 for some positive number r < ε and

∀ x0 ∈ Int(K) ∩ B(x(kσ), r) there exists a trajectory/control pair (xε, uε) of (65) satisfying (66).
We already know, by the induction hypothesis, that there is a trajectory/control pair (x̃ε, ũε) of
(65) with t0 = 0 , t1 = kσ satisfying

max
t∈[0,kσ]

|x̃ε(t)− x(t)| ≤ r ;
∫ kσ

0

L(x̃ε(s), ũε(s)) ds ≤
∫ kσ

0

L(x(s), u(s)) ds+
ε

2
.

Applying Lemma A.2 with t0 = kσ , t1 =
(
(k + 1)σ

)
∧ T and x0 = x̃ε(kσ) we obtain (xε, uε) as in

(65) satisfying
max

t∈[kσ,((k+1)σ)∧T ]
|xε(t)− x(t)| ≤ ε∫ ((k+1)σ)∧T

kσ

L(xε(s), uε(s)) ds ≤
∫ ((k+1)σ)∧T

kσ

L(x(s), u(s)) ds+
ε

2
.

Finally, extend (xε, uε) to
[
0,

(
(k + 1)σ

)
∧ T

]
by setting xε(s) = x̃ε(s) and uε(s) = ũε(s) for all

s ∈ [0, kσ) to complete the proof of our claim.
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