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Abstract. Semiconcave functions are a well-known class of nonsmooth functions that possess deep
connections with optimization theory and nonlinear pde’s. Their singular sets exhibit interesting
structures that we investigate in this paper. First, by an energy method, we analyze the curves along
which the singularities of semiconcave solutions to Hamilton–Jacobi equations propagate—the so-
called generalized characteristics. This part of the paper improves the main result in [P. Albano,
P. Cannarsa, Propagation of singularities for solutions of nonlinear first order partial differential
equations, Arch. Ration. Mech. Anal. 162 (2002), 1–23] and simplifies the construction therein.
As applications, we recover some known results for gradient flows and conservation laws. Then
we derive a simple dynamics for the propagation of singularities of general semiconcave functions.
This part of the work is also used to study the singularities of generalized solutions to Monge–
Ampère equations. We conclude with a global propagation result for the singularities of solutions
in weak KAM theory.

Keywords. Semiconcave functions, singularities, Hamilton–Jacobi equations, Monge–Ampère
equations, weak KAM theory

1. Introduction

Semiconcave functions are nonsmooth functions that play an important role in optimal
control and partial differential equations. Indeed, the value functions of many optimal
control problems, as well as the viscosity solutions of several classes of fully nonlin-
ear pde’s, often happen to be either semiconcave or semiconvex (see, for instance, [8]).
Therefore, it is interesting to investigate, on the one hand, the structure of the singular set
of a general semiconcave function u—where a singularity is a point at which u fails to
be differentiable. On the other hand, one would rightfully expect extra properties of such
a set to hold when u is also a solution to a specific problem, for instance some partial
differential equation.

The main purpose of this paper is to construct and study the dynamics that governs
the propagation of singularities of a general semiconcave function, as well as to obtain
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new regularity results for singular sets. Major contributions to this analysis were obtained
by Albano and the first author in [1], where lower bounds for the Hausdorff dimension
of the singular sets of a general semiconcave function were derived. Those results were
used, later on, by Rifford [19] and Yu [21] to study the regularity of singular sets. One
of the main results in [1] is that, under suitable conditions, singularities propagate along
Lipschitz arcs. But does such an arc have any chance of being more regular than just
Lipschitz?

In Section 4 of this paper, building on previous work by the second author [20], we
use an energy method to select a singular arc which is, in fact, a generalized gradient flow
of a semiconcave function. This property is related to classical results by Crandall and
Pazy [10] on generalized flows of maximal monotone operators in Hilbert spaces, which
have recently been extended to a metric set-up by Ambrosio, Gigli and Savaré [4]. In the
much simpler context of Euclidean space, we will reprove such a result in Section 3 by a
new method, which is technically very simple and useful to get uniform estimates.

Another interesting result in [1] describes the propagation of singularities along higher
dimensional sets. Here, we contribute to the analysis deriving an evolution equation for
singular manifolds. We hope that, in the future, this result may help to recover better
regularity properties of such sets.

An application of our propagation results to generalized solutions of Monge–Ampère
equations is presented in Section 5. This part of the paper is related to previous work [21]
by the second author who proved that, when n = 2, the singularities of a generalized
solution propagate along C1 curves under some geometrical assumptions which—though
necessary in some sense—are in general hard to verify. Theorem 5.1 of this paper, which
holds under milder and more natural assumptions than the ones considered in [21], en-
sures the propagation of singularities along C1 curves with the possible exception of a
countable set.

When the semiconcave function of interest is a viscosity solutions of a Hamilton–
Jacobi equation, Albano and the first author proved in [2] that singular arcs can be se-
lected as generalized characteristics. In Section 3 of this paper, we use an energy method
to study the regularity of a generalized characteristic, and discuss three applications of
such a result. The first one is a refined version of the main theorem in [2] (a proof in a
similar spirit is given in [20]). The second one, already mentioned above, is that we re-
cover regularity for generalized gradient flows. The third application is that we reprove
a result by Dafermos [11] for generalized solutions to 1-d conservation laws. In this last
application, our method might not be much simpler than the one in [11], but it shows, in
addition, that singularities choose to travel along a path which minimizes some energy.

In the last section, we derive a propagation result for the singularities of solutions
in weak KAM theory (see the monograph by Fathi [15] for an introduction to this sub-
ject). Although this is no direct application of the theory of Sections 3 and 4, we think it
adds nicely to the paper since it establishes new connections between the propagation of
singularities and the global behaviour of Hamiltonian systems.
Outline of the paper. In Section 2, we go over some preliminaries about semiconcave
functions and prove a useful approximation lemma. In Section 3, we discuss some prop-
erties of generalized characteristics and several applications. In Section 4, we derive the
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dynamics of the propagation of singularities of a general semiconcave function. In Sec-
tion 5, we give an application to generalized solutions of Monge–Ampère equations. Last,
in Section 6 we discuss the propagation of singularities in weak KAM theory.

2. Preliminaries and approximation lemma

Throughout this paper, In is the n× n identity matrix, and balls are denoted by

Br(x) = {y ∈ Rn | |y − x| < r} and Br(x) = {y ∈ Rn | |y − x| ≤ r}.

Moreover, t → s+ is the abbreviation of the fact that t approaches s from the right. Also,
C will denote a constant only depending on known quantities.

For any nonempty closed set S ⊂ Rn we set

dist(x, S) = min
y∈S
|x − y| ∀x ∈ Rn.

It is well-known that dist(·, S) is continuous and

|dist(x, S)− dist(y, S)| ≤ |x − y| ∀x, y ∈ Rn. (2.1)

Moreover, recalling the definition of the Hausdorff distance of two compact sets R, S ⊂
Rn, that is,

dH(R, S) = max{max
x∈R

dist(x, S),max
y∈S

dist(y, R)}, (2.2)

we see that dist(x, ·) has the following continuity property: for all compact setsR, S⊂Rn,

|dist(x, R)− dist(x, S)| ≤ dH(R, S) ∀x ∈ Rn. (2.3)

Let � be a bounded domain (i.e., a connected open subset) of Rn. For any function
u : �→ R, Du(x0) = (ux1(x0), . . . , uxn(x0)) denotes the gradient vector of u at x0 ∈ �

(if u is differentiable at x0), and D2u(x0) = [uxixj (x0)] the Hessian matrix of u at x0 (if
u is twice differentiable at x0).

In the following, u will stand for a (linearly) semiconcave function on �, for which
we assume that there are constants Li > 0, i = 0, 1, 2, such that

(a) |u(x)| ≤ L0 for all x ∈ �,
(b) |Du(x)| ≤ L1 for a.e. x ∈ �,
(c) x 7→ u(x)−

L2
2 |x|

2 is concave in �.
(2.4)

We recall that property (c) above, which is one of the possible definitions of linear semi-
concavity, implies that

D2u ≤ L2In (2.5)

whenever u happens to be twice differentiable in � (see, e.g., [8, Proposition 1.1.3]).1

1 As a matter of fact, one can show that any linearly semiconcave function is twice differentiable
a.e. and (2.5) is satisfied for a.e. x ∈ � (see, e.g., [8, Theorem 2.3.1]) and [14, Chapter 6.3]).
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The superdifferential of u at x0 is defined by

D+u(x0) = {p ∈ Rn | u(x) ≤ u(x0)+ p · (x − x0)+ o(|x − x0|)},

whereas

D∗u(x0) = {p ∈ Rn | there exists a sequence xm→ x0 as m→∞
such that Du(xm) exists and p = lim

m→∞
Du(xm)}

is the set of all limiting (or achievable) gradients of u at x0.
It is well known that, for a semiconcave function u,D+u(x0) is a compact convex set

and
D+u(x0) = coD∗u(x0), (2.6)

where, for each subsetK ⊂ Rn, coK stands for the convex hull ofK , i.e., the least closed
convex set which contains K . Consequently, the superdifferential is nonempty at every
point of � and coincides with all the main notions of generalized differentials, such as
the proximal superdifferential or Clarke’s generalized gradient (see, e.g., [8, Proposition
3.3.6 and 3.6.2]). Moreover, for any x ∈ �, a vector p ∈ Rn belongs to D+u(x) if and
only if

u(y)− u(x)− p · (y − x) ≤
L2

2
|y − x|2 (2.7)

for any points x, y ∈ � such that the line segment [x, y] := {λx + (1− λ)y | λ ∈ [0, 1]}
is contained in �, where L2 is the constant in (2.4) (see, e.g., [8, Proposition 3.3.1]).
Furthermore, we have, for every p ∈ D+u(x) and q ∈ D+u(y),

(q − p) · (y − x) ≤ L2|y − x|
2 (2.8)

(see, e.g., [8, Proposition 3.3.10]).
The singular set of u is defined to be

6(u) = {x ∈ � | u is not differentiable at x0}

= {x ∈ � | D+u(x0) contains more than one point}.

Also, for 1 ≤ i ≤ n we set

6i(u) = {x ∈ 6(u) | dim(D+u(x0)) = i}.

We prepare below a simple approximation lemma which will be frequently used in
this work. It is a refinement of Lemma 2.1 in [20].

Lemma 2.1. Let x0 ∈ � and let V be an open subset of � such that

x0 ∈ V ⊂ V ⊂ �.

Then for any p ∈ D+u(x0) there is a sequence {um}m≥1 ⊂ C
∞(V ) satisfying

(a) |um(x)| ≤ L0, |Dum(x)| ≤ L1, D2um(x) ≤ L2In for all x ∈ V ,
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(b) limm→∞ um = u uniformly in V and limm→∞Dum(x0) = p,

where Li are the constants in (2.4).

Proof. Since D+u(x0) = coD∗u(x0), owing to Carathéodory’s theorem for all integers
i = 1, . . . , n+ 1 there are sequences {xmi }m≥1 ⊂ V and {λmi }m≥1 ⊂ [0, 1] such that, for
every m ≥ 1,

(i) xmi ∈ B1/m(x0) for every i = 1, . . . , n+ 1 and
∑n+1
i=1 λ

m
i = 1,

(ii) Du(xmi ) exists for every i = 1, . . . , n+ 1,
(iii) |

∑n+1
i=1 λ

m
i Du(x

m
i )− p| ≤ 1/m.

Since the set-valued map x ; D+u(x) is upper semicontinuous (see, e.g., [8, Proposition
3.3.4]), there are positive numbers εm < 1/m such that

ess sup
x∈Bεm (x

m
i )

dist(Du(xmi ),D
+u(x)) ≤ m−1 for 1 ≤ i ≤ n+ 1. (2.9)

Now, fix a function η ∈ C∞0 (B1(0)) satisfying
∫
Rn η dx = 1, and define

ηm(x) :=
n+1∑
i=1

λmi

εnm
η

(
x0 − x

m
i − x

εm

)
∀x ∈ Rn.

It is easy to see that

spt(ηm) ⊂
n+1⋃
i=1

Bεm(x0 − x
m
i ) ⊂ B2/m(0) (2.10)

where “spt” stands for support, and∫
Rn
ηm(y) dy = 1. (2.11)

Let us define, for m sufficiently large,

um(x) :=
∫

Rn
u(x − y)ηm(y) dy ∀x ∈ V .

It is then immediate to realize that um satisfies (2.4) and (2.5) with the same constants Li
as u. Hence, point (a) of the conclusion holds and limm→∞ um = u uniformly in V . So,
we only need to verify that limm→∞Dum(x0) = p. Since

Dum(x0) =

∫
Rn
Du(x0 − y)ηm(y) dy

=

n+1∑
i=1

λmi

εnm

∫
Bεm (x0−x

m
i )

Du(x0 − y)η

(
x0 − x

m
i − y

εm

)
dy,
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(2.9) yields ∣∣∣Dum(x0)−

n+1∑
i=1

λmi Du(x
m
i )

∣∣∣ ≤ 1
m
.

So, on account of (iii), we conclude that

|Dum(x0)− p| ≤

∣∣∣Dum(x0)−

n+1∑
i=1

λmi Du(x
m
i )

∣∣∣+ ∣∣∣ n+1∑
i=1

λniDu(x
m
i )− p

∣∣∣ ≤ 2
m
. 2

Remark 2.2. It is worth noting that the conclusion of Lemma 2.1 entails that, for every
x ∈ V , any cluster point of {Dum(x)} belongs to D+u(x). Indeed, let {Dumk (x)} be
a subsequence of {Dum(x)} such that Dumk (x) converges to some vector px ∈ Rn as
k→∞. Owing to the bounds in (a),

umk (y)− umk (x)−Dumk (x) · (y − x) ≤
L2

2
|y − x|2

for all y ∈ V sufficiently close to x. Hence, in the limit as k→∞,

u(y)− u(x)− px · (y − x) ≤
L2

2
|y − x|2.

This ensures that px ∈ D+u(x) on account of (2.7). ut

3. Generalized characteristics

Throughout this section we assume that the following conditions hold:

(A1) u is a semiconcave function satisfying (2.4);
(A2) H = H(p, z, x) is a function of class C1(Rn × R×�) satisfying

(i) H(·, z, x) is convex for each (z, x) ∈ R×�;
(ii) for each (z, x) ∈ R × � and c ∈ R, the c-level set {p | H(p, z, x) = c} does

not contain any line segment.

Observe that u and H have no relation to each other. However, in some of the results
below, u will be supposed to be a viscosity solution of the equation H(Du, u, x) = 0
in �.

We begin with a definition that is central to our analysis.

Definition 3.1. A Lipschitz continuous arc ξ : [0, σ ] → � is said to be a generalized
characteristic for the pair (u,H) if

ξ̇ (s) ∈ coDpH(D+u(ξ(s)), u(ξ(s)), ξ(s)) for a.e. s ∈ [0, σ ]. (3.1)

For a viscosity solution u of H(Du, u, x) = 0 in �, it was proved in [2] that singularities
propagate from a given point x0 ∈ 6(u) along a generalized characteristic provided that

0 /∈ coDpH(D+u(x0), u(x0), x0). (3.2)

We are interested in the following three questions, related to the above result.
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(Q1) Does (3.1) have a unique solution with given initial data?
(Q2) When do we actually have

ξ̇ (s) ∈ DpH(D
+u(ξ(s)), u(ξ(s)), ξ(s)) for a.e. s ∈ [0, σ ]?

(Q3) What kind of regularity can be proved for a generalized characteristic besides Lip-
schitz continuity?

In the following, we will give partial answers to (Q1)–(Q3) and recover several known
interesting results as applications. First, we are going to construct a generalized character-
istic ξ(s) such that the right derivative ξ̇+(0) exists. Our strategy is to approximate u with
proper smooth functions (similar techniques were used in Yu [15]). Then, for solutions
of Hamilton–Jacobi equations, we will show that such an arc consists of singular points
under a milder condition than (3.2).

Theorem 3.2. Assume (A1), (A2), let x0 ∈ � and let p0 ∈ D
+u(x0) be such that

H(p0, u(x0), x0) = min
p∈D+u(x0)

H(p, u(x0), x0). (3.3)

Fix a positive number r < dist(x0, ∂�) and define

σr = min
{

r

|DpH(p, z, x)| + 1

∣∣∣∣ x ∈ Br(x0), |z| ≤ L0, |p| ≤ L1

}
. (3.4)

Then there is a generalized characteristic ξ : [0, σr ]→ � for (u,H) starting at x0 which
satisfies

ξ̇+(0) = lim
s→0+

ξ(s)− x0

s
= DpH(p0, u(x0), x0), (3.5)

lim
t→0+

ess sup
s∈[0,t]

|ξ̇ (s)− ξ̇+(0)| = 0. (3.6)

Observe that, in general, a generalized characteristic may well be a constant arc. However,
for solutions of H(Du, u, x) = 0, it was proved in [2] that singularities propagate along
genuine shocks (one-to-one generalized characteristics) under assumption (3.2). A first
application of Theorem 3.2 ensures that the same conclusion holds under the more natural
condition (3.7) below. Indeed, the set DpH(D+u(x0), u(x0), x0) is, in general, smaller
than coDpH(D+u(x0), u(x0), x0) (see Example 3.5 below).

Corollary 3.3. Let u be a viscosity solution of H(Du, u, x) = 0 in �. If x0 ∈ 6(u) and

0 /∈ DpH(D+u(x0), u(x0), x0), (3.7)

then, for r > 0 small enough, there is a generalized characteristic ξ : [0, σr ] → � for
(u,H) starting from x0 such that ξ̇+(0) 6= 0 and ξ(s) ∈ 6(u) for all s ∈ [0, σr ].2

2 σr is defined in (3.4).
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The proofs of Theorem 3.2 and Corollary 3.3 have a common part consisting of the fol-
lowing approximation argument. Let V = Br(x0). Owing to Lemma 2.1, there is a se-
quence of smooth functions {um} enjoying properties (a) and (b) in the lemma for p = p0.
It is easy to see that, for every m ≥ 1, the Cauchy problem{

ẋ = DpH(Dum(x), um(x), x),

x(0) = x0,
(3.8)

(where we have omitted to specify s-dependence) has a C1 solution ξm : [0, σr ] → �.
Moreover, without loss of generality, we can assume that

lim
m→∞

ξm(s) = ξ(s) uniformly in [0, σr ]. (3.9)

Hence, a standard argument shows that ξ(s) is a generalized characteristic for (u,H) (see,
e.g., [20]).

Proof of Theorem 3.2. Let us prove (3.5) and (3.6). Since D2um ≤ L2In, we obtain by
differentiation

d

ds
H(Dum(ξm(s)), um(ξm(s)), ξm(s)) = HpiHpj um,xixj +HpiHzum,xi +HxiHpi

≤ C|DpH |
2
+ |DpH | |Dum| |Hz| + |DxH | |DpH | ≤ C,

for some constant C depending only on H,Li and r . Hence, for all s ∈ [0, σr ],

H(Dum(ξm(s)), um(ξm(s)), ξm(s)) ≤ H(Dum(x0), um(x0), x0)+ Cs. (3.10)

We claim that
lim

m→∞, t→0+
sup
s∈[0,t]

|Dum(ξm(s))− p0| = 0. (3.11)

Indeed, if this is not the case, then there are sequences mk → ∞ and sk → 0+ (as
k→∞) such that

lim
k→∞

Dumk (ξmk (sk)) = p1 6= p0.

It is clear that p1 ∈ D
+u(x0). Owing to (3.10) and (3.3),

H(p1, u(x0), x0) ≤ H(p0, u(x0), x0) = min
p∈D+u(x0)

H(p, u(x0), x0).

Then we must have

H(p1, u(x0), x0) = H(p0, u(x0), x0) = min
p∈D+u(x0)

H(p, u(x0), x0).

Thus, in view of (A2), p1 = p0, which is a contradiction. Hence (3.11) holds. Moreover,
(3.8) and (3.11) yield

lim
m→∞, t→0+

ess sup
s∈[0,t]

|ξ̇m(s)−DpH(p0, u(x0), x0)| = 0. (3.12)

By (3.9) and (3.12) we obtain (3.5) and (3.6). ut
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Proof of Corollary 3.3. Let {um} and {ξm} be the above approximating sequences, and let
ξ be the generalized characteristic given by Theorem 3.2. Fix s ∈ [0, σr ] and pass to the
limit along a subsequence mk →∞. By (3.10) and Remark 2.2 we deduce that, for some
ps ∈ D

+u(ξ(s)),

H(ps, u(ξ(s)), ξ(s)) ≤ H(p0, u(x0), x0)+ Cs.

Observe that H(p0, u(x0), x0) < 0, since u is a solution of H(Du, u, x) = 0 and x0 is a
singular point of u. Hence, for r > 0 small enough,

min
p∈D+u(ξ(s))

H(p, u(ξ(s)), ξ(s)) ≤
1
2
H(p0, u(x0), x0) < 0

for all s ∈ [0, σr ]. Therefore, ξ([0, σr ]) ⊂ 6(u). Finally, the fact that ξ̇+(0) 6= 0 is an
easy consequence of (3.5) and (3.7). ut

The following corollary of Theorem 3.2 is a direct consequence of the translation invari-
ance of (3.1).

Corollary 3.4. Suppose that for any x ∈ � there exists a unique generalized character-
istic for (u,H) starting from x. Then any generalized characteristic ξ : [0, σ ] → � for
(u,H) has right derivative ξ̇+(s) for all s ∈ [0, σ ) and

ξ̇+(s) = DpH(p(s), u(ξ(s)), ξ(s)),

where p(s) is the unique point of D+u(ξ(s)) such that

H(p(s), u(ξ(s)), ξ(s)) = min
p∈D+u(ξ(s))

H(p, u(ξ(s)), ξ(s)).

Moreover, ξ̇+ is right-continuous.

In general, (3.1) might have more than one solution with given initial data as our next
example shows.

Example 3.5. LetH(p1, p2) =
1
4 (p

4
1+p

4
2)−p1/2−p2/2 and choose a concave function

u ∈ C(R2) such that

D+u(0, 0) = {(t, 1− t) | 0 ≤ t ≤ 1},

e.g., u(x, y) = min{x, y}. It is easy to check that (0, 0) ∈ coDpH(D+u(0, 0)). So, the
constant arc ξ0(s) ≡ (0, 0) is a (trivial) generalized characteristic for (u,H). However,
Theorem 3.2 ensures the existence of another generalized characteristic ξ1 for (u,H),
starting from (0, 0), which satisfies (3.5). Since

(0, 0) /∈ DpH(D+u(0, 0)),

we see that ξ0 6= ξ1. Hence, there is more than one generalized characteristic passing
through (0, 0).
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Next, we give several examples where the above uniqueness property holds true.

Example 3.6. For H(p, x) = 1
2 |p|

2
− 1 the corresponding generalized characteristic is

the so-called generalized gradient flow. As is well-known for maximal monotone opera-
tors (see, e.g., [6] and [5]), the generalized gradient flow with given initial data is unique.
Indeed, if ξ1 and ξ2 are two generalized characteristics for (u,H) starting from x0, then
ξ̇i(s) ∈ D

+u(ξi(s)) for i = 1, 2 and a.e. s ∈ [0, σ ]. So, (2.8) yields

1
2
d

ds
|ξ2(s)− ξ1(s)|

2
= (ξ̇2(s)− ξ̇1(s)) · (ξ2(s)− ξ1(s)) ≤ L2|ξ2(s)− ξ1(s)|

2.

Therefore, ξ1 ≡ ξ2 by Gronwall’s lemma.

An immediate consequence of Corollary 3.4 is the following result.

Corollary 3.7. Let ξ(s) : [0, σ ]→ � be a generalized gradient flow associated with u,
i.e., a Lipschitz arc satisfying

ξ̇ (s) ∈ D+u(ξ(s)) for a.e. s ∈ [0, σ ].

Then, for all s ∈ [0, σ ),

ξ̇+(s) = p(s) ∈ D+u(ξ(s)) where |p(s)| = min
p∈D+u(ξ(s))

|p|.

Moreover, ξ̇+(s) is right-continuous.

As a matter of fact, the above property is true in Hilbert spaces (see, e.g., [5, p. 396]), and
even in metric spaces (see [4, Theorem 2.4.15]). Clearly, there is a price to pay for greater
generality: the more general the set-up, the more technical the proof.

Example 3.8. Let H(p, x) = pn+1 + |p
′
|
2 where p := (p′, pn+1) ∈ Rn × R. This case

corresponds to the Hamilton–Jacobi equation

ut + |Du|
2
= 0

for u(x, t) ∈ C(Rn× [0,∞)). Adapting the argument of Example 3.6, one can show that
the corresponding generalized characteristic is unique with given initial data.

Example 3.9. Let n = 2, p = (p1, p2) ∈ R2 and (x, t) ∈ R × [0,∞). Let us consider
the Hamiltonian

H(p, x, t) = p2 + F(p1, x, t),

where F ∈ C2(R × R × [0,∞)) is a strictly convex function in the p1 variable, i.e.,
Fp1p1 > 0. This case corresponds to the Hamilton–Jacobi equation

ut + F(ux, x, t) = 0, (3.13)

which is, in turn, connected with the conservation law

vt + (F (v, x, t))x = 0. (3.14)
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Indeed, it can be shown (see, e.g., [9]) that u is a viscosity solution of (3.13) if and only if
v = ux is an entropy solution of equation (3.14). In [11], Dafermos made a very detailed
analysis of the discontinuity points of entropy solutions to 1-d conservation laws, where
he proved that the generalized characteristic is unique with given initial data by looking
at something called “genuine characteristics”. As an application of Corollary 3.4, at least
in the homogeneous case, we will recover below Theorem 3.1 of [11] from the point of
view of minimizing the energy.

Since u(·, t) is a semiconcave function of x, we have, for any t > 0,

u−x (x, t) = lim
y→x−

u(y, t)− u(x, t)

y − x
= max{p1 | (p1, p2) ∈ D

+u(x, t)}

= max{p1 | (p1, p2) ∈ D
∗u(x, t)} (3.15)

and

u+x (x, t) = lim
y→x+

u(y, t)− u(x, t)

y − x
= min{p1 | (p1, p2) ∈ D

+u(x, t)}

= min{p1 | (p1, p2) ∈ D
∗u(x, t)} (3.16)

(see [8, Theorem 3.3.6]).

Theorem 3.10. Let n = 2 and

H(p, x, t) = p2 + F(p1, x, t),

where F ∈ C2(R × R × [0,∞)) is a strictly convex function in the p1 variable. Then
(3.1) has a unique solution with given initial data.

Proof. Let ξ : [0, σ ] → R × [0,∞) and η : [0, σ ] → R × [0,∞) be two solutions of
(3.1) such that ξ(0) = η(0) = (x0, t0). Set ξ = (ξ1, ξ2) and η = (η1, η2). Since Fp1 is
increasing with respect to p1, for a.e. s ∈ [0, σ ] we obtain

ξ̇ (s) ∈ [Fp1(u
+
x (ξ(s)), ξ(s)), Fp1(u

−
x (ξ(s)), ξ(s))]× {1},

η̇(s) ∈ [Fp1(u
+
x (η(s)), η(s)), Fp1(u

−
x (η(s)), η(s))]× {1}.

So, ξ2(s) = η2(s) = s + t0. Moreover, recalling that Fp1p1 is positive and F ∈ C2, by
(2.8) we conclude that

d

ds
|ξ1(s)− η1(s)|

2

= (ξ1(s)− η1(s))(Fp1(ux(ξ1(s), s + t0), ξ(s))− Fp1(ux(η1(s), s + t0), η(s)))

= (ξ1(s)− η1(s))((Fp1(ux(ξ1(s), s + t0), ξ(s))− Fp1(ux(η1(s), s + t0), ξ(s)))

+ (ξ1(s)− η1(s))((Fp1(ux(η1(s), s + t0), ξ(s))− Fp1(ux(η1(s), s + t0), η(s)))

≤ C|ξ1(s)− η1(s)|
2

for a.e. s ∈ [0, σ ]. Then Gronwall’s inequality yields ξ1 ≡ η1. Hence, ξ ≡ η. ut
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Now we are going to prove Theorem 3.1 in [11] from the viewpoint of minimizing the
energy. As above, we take n = 2 and

H(p, x, t) = p2 + F(p1, x, t),

where F ∈ C2(R× R× [0,∞)) is a strictly convex function in the p1 variable.

Theorem 3.11. Let u be a semiconcave solution of the Hamilton–Jacobi equation

ut + F(ux, x, t) = 0 in R× [0,∞),

and let ξ : [t0, t0 + σ ]→ R× [0,∞) be a generalized characteristic for (u,H) starting
from a given point (x0, t0) ∈ R × [0,∞). Then ξ(s) = (x(s), s) where ẋ+ is right-
continuous and satisfies, for all s ∈ [t0, t0 + σ),

ẋ+(s) =


Fp1(ux(x(s), s), x(s), s) if (x(s), s) /∈ 6(u),

F (u−x (x(s), s), x(s), s)− F(u
+
x (x(s), s), x(s), s)

u−x (x(s), s)− u
+
x (x(s), s)

if (x(s), s)) ∈ 6(u),

Proof. First, observe that, in view of Corollary 3.4 and Theorem 3.10, ξ̇+(s) exists for
all s ∈ [t0, t0 + σ) and satisfies the characteristic equation{

ξ̇+(s) = DpH(p(s), ξ(s)) = (Fp1(p1(s), ξ(s)), 1),
ξ(t0) = (x0, t0),

where p(s) = (p1(s), p2(s)) ∈ ∂D
+u(ξ(s)) is such that

H(p(s), ξ(s)) = min
p∈D+u(ξ(s))

H(p, ξ(s)), (3.17)

where the fact that p(s) is on the boundary of D+u(ξ(s)) is justified by the absence of
critical points of DpH . The conclusion easily follows if ξ(s) = (x(s), s) /∈ 6(u).

So, suppose (x(s), s) ∈ 6(u) and observe that3, for any (x, t) ∈ R× (0,∞),

D∗u(x, t) ⊂ {(p1, p2) ∈ R2
| p2 + F(p1, x, t) = 0}. (3.18)

Hence, in view of (3.15) and (3.16),{
p+(s) :=

(
u+x (x(s), s),−F(u

+
x (x(s), s), x(s), s)

)
∈ D∗u(x(s), s)

p−(s) :=
(
u−x (x(s), s),−F(u

−
x (x(s), s), x(s), s)

)
∈ D∗u(x(s), s),

(3.19)

where, thanks to (3.18), u+x (x(s), s) < u−x (x(s), s) since (x(s), s) is a singular point.
We claim that, for all s ∈ [t0, t0 + σ),

p(s) ∈ ]p+(s), p−(s)[ ⊂ ∂D+u(x(s), s), (3.20)

3 Actually, D∗u(x, t) = {(p1, p2) ∈ D
+u(x, t) | p2 + F(p1, x, t) = 0} (see [8, Theorem

6.4.12]).



Singular dynamics for semiconcave functions 1011

where ]p, q[ denotes the open line segment {λp + (1− λ)q | λ ∈ (0, 1)}. Indeed, for all
p = (p1, p2) ∈ D

∗u(x(s), s) there exists λ ∈ [0, 1] such that{
p1 = λp

+

1 (s)+ (1− λ)p
−

1 (s),

p2 ≥ λp
+

2 (s)+ (1− λ)p
−

2 (s),
(3.21)

where the equality is true by construction whereas the inequality follows from the con-
vexity of F(·, x, t) and (3.18). Since D+u(x(s), s) = coD∗u(x(s), s), (3.21) also holds
for all p ∈ D+u(x(s), s). This shows that [p+(s), p−(s)] ⊂ ∂D+u(x(s), s). Moreover,
in view of (3.21), for all p = (p1, p2) ∈ D

+u(x(s), s) we have

H(p, x(s), s) = p2 + F(p1, x(s), s)

≥ λp+2 (s)+ (1− λ)p
−

2 (s)+ F(λp
+

1 (s)+ (1− λ)p
−

1 (s))

= H(λp+(s)+ (1− λ)p−(s), x(s), s), (3.22)

which implies, in turn, that p(s) ∈ [p+(s), p−(s)]. Furthermore, p(s) 6= p±(s) on ac-
count of the strict convexity of F with respect to p1, which yields, for all λ ∈ (0, 1),

H(λp+(s)+ (1− λ)p−(s), x(s), s) < λH(p+(s), x(s), s)+ (1− λ)H(p−(s), x(s), s).

Our claim is thus proved.
Finally, use (3.17) to deduce that (ẋ+(s), 1) is a normal vector to the convex set

D+u(x(s), s) at p(s). Thus, in view of (3.20),

(ẋ+(s), 1) ⊥ ]p+(s), p−(s)[ ∀s ∈ [t0, t0 + σ).

The conclusion

[u−x (x(s), s)− u
+
x (x(s), s)]ẋ

+(s) = F(u−x (x(s), s), x(s), s)− F(u
+
x (x(s), s), x(s), s)

follows by recalling (3.19). ut

Remark 3.12. If (x0, t0) ∈ 6(u), then, by Corollary 3.3 and Theorem 3.10, there exist
σ > 0 and a unique Lipschitz arc ξ : [t0, t0 + σ ] → 6(u) (called a shock in [11]) such
that {

ξ̇ (s) ∈ Fp1([u
+
x (ξ(s)), u

−
x (ξ(s))], ξ(s))× {1} for a.e. t ∈ [t0, t0 + σ ],

ξ(t0) = (x0, t0).

Moreover, owing to Theorem 3.11, ξ(s) = (x(s), s) satisfies for all t ∈ [t0, t0 + σ) the
so-called Rankine–Hugoniot condition

ẋ+(s) =
F(u−x (x(s), s), x(s), s)− F(u

+
x (x(s), s), x(s), s)

u−x (x(s), s)− u
+
x (x(s), s)

.

Using the specific structure of two-dimensional topology and the uniqueness of general-
ized characteristics, one can show that σ = ∞ (see [11, Theorem 4.2]).
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4. Singular dynamics for general semiconcave functions

In this section we will be concerned with the propagation of singularities of general semi-
concave functions much in the same spirit as in [1], showing, however, that singularities
propagate according to some dynamics. Our work in this section is also motivated by our
interest in the singularities of generalized solutions of Monge–Ampère equations.

Let u be a semiconcave function in � satisfying (2.4) and let x0 ∈ �. For any p0 ∈

D+u(x0) we define

N(p0) = {q ∈ Rn | q · (p − p0) ≥ 0, ∀p ∈ D+u(x0)} (4.1)

and we denote by Np0 the normalized elements of N(p0), that is,

Np0 = {q ∈ N(p0) | |q| = 1}. (4.2)

Notice that q ∈ N(p0) iff −q belongs to the normal cone to D+u(x0) at p0.
We now prove a lemma which can be viewed as a differential version of Lemma 4.5

in [1].

Lemma 4.1. Let x0 ∈ � and let p0 ∈ D
+u(x0). Define

σ0 =
d(x0, ∂�)

maxq∈Np0
|q − p0| + L1

(4.3)

where L1 is the constant in (2.4). Then for every q ∈ Np0 there is a unique Lipschitz
continuous solution ξq(·) : [0, σ0]→ � of the initial value problem{

ξ̇ (s) ∈ q − p0 +D
+u(ξ(s)) for a.e. s ∈ [0, σ0],

ξ(0) = x0.
(4.4)

Moreover,
ξ̇+q (0) = q and lim

s→0+
sup
q∈Np0

|ξ̇+q (s)− q| = 0. (4.5)

Proof. First, we observe that the existence and uniqueness of the solution ξq of (4.4) is
clear: if we let

w(x) = (q − p0) · x + u(x),

then ξq is the generalized gradient flow of w introduced in Example 3.6.
Second, it is immediate that ξq(s) can be extended up to time σ0 given by (4.3).
Third, owing to Corollary 3.7, ξ̇+q (s) exists for all s ∈ [0, σ0), ξ̇+q is right-continuous,

and
|ξ̇+q (s)| = min

p∈q−p0+D+u(ξq (s))
|p|.

Since q − p0 +D
+u(x0) is a closed convex set containing q, and since

q · (p − p0) ≥ 0 ∀p ∈ D+u(x0),
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we deduce that ξ̇+q (0) = q and

lim
s→0+

|ξ̇+q (s)− q| = 0.

So, what we really need to prove is that the above limit holds uniformly in Np0 , i.e., the
second assertion in (4.5).

Let V be an open set such that x0 ∈ V ⊂ V̄ ⊂ �, and let {um} be a sequence
of smooth functions with properties (a) and (b) of Lemma 2.1 for p = p0. By the same
reasoning we used to construct ξq at the beginning of this proof there is a family of smooth
curves ξm,q(s) : [0, σ1]→ V , with 0 < σ1 ≤ σ0, such that{

ξ̇m,q(s) = q − p0 +Dum(ξm,q(s)), s ∈ [0, σ1],
ξm,q(0) = x0.

Also, by a standard continuous dependence argument,

lim
m→∞

sup
q∈Np0

|ξm,q − ξq | = 0 uniformly in [0, σ1]. (4.6)

Moreover, since |Dum| ≤ L1 in V , {ξ̇m,q} is bounded in L2(0, σ1;Rn). So,

ξ̇m,q ⇀ ξ̇q in L2(0, σ1;Rn). (4.7)

Let us introduce the quadratic Hamiltonian

H(p) := q · (p − p0)+
1
2
|p − p0|

2.

Then ξ̇m,q(s) = DpH(Dum(ξm,q(s))). Since D2um ≤ L2In, for every s ∈ [0, σ1],

d

ds
H(Dum(ξm,q(s))) = DpH(Dum(ξm,q(s))) ·D

2um(ξm,q(s))DpH(Dum(ξm,q(s)))

≤ L2|DpH(Dum(ξm,q(s)))|
2
≤ C,

whence

H(Dum(ξm,q(s))) ≤ H(Dum(x0))+ Cs

= q · (Dum(x0)− p0)+
1
2
|Dum(x0)− p0|

2
+ Cs.

Therefore, for every ε > 0 there is a number 0 < sε ≤ σ1 and an integer mε ≥ 1 such
that

q · [Dum(ξm,q(s))− p0]+
1
2
|Dum(ξm,q(s)))− p0|

2 < ε (4.8)

for all s ∈ [0, sε], all m ≥ mε and all q ∈ Np0 . Now, after possibly reducing sε and
enlarging mε , a compactness argument yields

min
q∈Np0

q · [Dum(ξm,q(s))− p0] ≥ −ε
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for all s ∈ [0, sε] and all m ≥ mε . Thus, by (4.8),

sup
q∈Np0

|ξ̇m,q(s)− q| = sup
q∈Np0

|Dum(ξm,q(s))− p0| ≤ 2
√
ε (4.9)

for all s ∈ [0, sε] and all m ≥ mε . Therefore, for h > 0 sufficiently small,

sup
q∈Np0

1
h

∫ s+h

s

[ξ̇m,q(t)− q] · [ξ̇q(t)− q] dt ≤ C
√
ε

for all s ∈ [0, sε) and all m ≥ mε . Thus, recalling (4.7),

sup
q∈Np0

1
h

∫ s+h

s

|ξ̇q(t)− q|
2 dt ≤ C

√
ε.

Since ξ̇+q (t) is continuous from the right, in the limit as h ↓ 0,

sup
q∈Np0

|ξ̇+q (s)− q|
2
≤ C
√
ε

for a.e. s ∈ [0, sε). So (4.5) holds. ut

We now state the main result of this section.

Theorem 4.2. Suppose x0 ∈ 6(u) and p0 ∈ ∂D
+u(x0) \ D

∗u(x0) 6= ∅. Then there is
a number τ > 0 and a Lipschitz continuous map f : [0, τ ] × Np0 → 6(u) with the
following properties:

(a) for all q ∈ Np0 , f (·, q) solves the generalized characteristic problem{
∂sf (s, q) ∈ q − p0 +D

+u(f (s, q)) for a.e. s ∈ [0, τ ],
f (0, q) = x0;

(b) ∂+s f (0, q) = q and
lim
s→0+

sup
q∈Np0

|∂+s f (s, q)− q| = 0, (4.10)

where, for s ∈ [0, τ ),

∂+s f (s, q) := lim
t→s+

f (t, q)− f (s, q)

t − s
;

(c) we have4

inf
[0,τ ]×Np0

diamD+u(f (s, q)) > 0;

4 Here, for each K ⊂ Rn, we have set diamK = sup{|x − y| | x, y ∈ K}.
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(d) we have
lim inf
r→0+

r−νHν(f ([0, τ ]×Np0) ∩ Br(x0)) > 0 (4.11)

where ν = dimN(p0) and Hν stands for Hausdorff measure.5

The following is a direct consequence of Theorem 4.2. It will be used in Section 5 where
we study the singularities of generalized solutions of Monge–Ampère equations in two
dimensions.

Corollary 4.3. Suppose x0 ∈ 6(u) and p0 ∈ ∂D
+u(x0) \ D

∗u(x0) 6= ∅. Choose q ∈
Rn \ 0 such that

q · (p − p0) ≥ 0. (4.12)

Then there is a number τ > 0 and a Lipschitz continuous curve ξ : [0, τ ]→ 6(u) with
the following properties:

(a) ξ̇ (s) ∈ q − p0 +D
+u(ξ(s)) for a.e. s ∈ [0, τ ];

(b) ξ̇+(0) = q;
(c) lims→0+ |ξ̇

+(s)− q| = 0;
(d) inf[0,τ ] diamD+u(ξ(s)) > 0.

Proof of Theorem 4.2. Let f (s, q) := ξq(s) for (s, q) ∈ [0, σ0] × Np0 , where ξq and σ0
are from Lemma 4.1. To complete the proof, we only need to show that

(i) f is Lipschitz continuous;
(ii) there exists τ ∈ (0, σ0] such that (c) holds;

(iii) property (4.11) holds.

Proof of (i). By construction, for every q ∈ Np0 and a.e. s ∈ [0, σ0] we have

|∂+s f (s, q)| ≤ max
q∈Np0

|q − p0| + L1. (4.13)

So, f is Lipschitz continuous in the s variable, uniformly in q. Thus, we only need to
prove that f is Lipschitz continuous in the q variable, with Lipschitz constant independent
of s. In other terms, setting

w(s) = |f (s, q1)− f (s, q2)|
2
= |ξq1(s)− ξq2(s)|

2 for 0 ≤ s ≤ σ0,

our goal is to show that

w(s) ≤ C|q1 − q2|
2 for 0 ≤ s ≤ σ0. (4.14)

Since w(s) is Lipschitz continuous, a straight calculation shows that for a.e. s ∈ [0, σ0],

d

ds
w(s) = (ξq1(s)− ξq2(s)) · (q1 − q2)+ (p1(s)− p2(s)) · (ξq1(s)− ξq2(s)),

5 Notice that dimN(p0) = 1+ dimHNp0 , where dimH stands for Hausdorff dimension.
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where pi(s) ∈ D+u(ξqi (s)) for i = 1, 2. By Cauchy’s inequality and (2.8),

d

dt
w(s) ≤

√
w(s) |q1 − q2| + L2w(s) for a.e. s ∈ [0, σ0].

Then, v(s) := e−L2sw(s) satisfies

d

ds
v(s) ≤ C

√
v(s) |q1 − q2| for a.e. s ∈ [0, σ0].

Since v(0) = 0, we derive
v(s) ≤ C|q1 − q2|

2.

So (4.14) holds.

Proof of (ii). We will argue by contradiction. If (ii) does not hold, there are sequences of
positive numbers {sm}m≥1 and vectors {qm} ⊂ Np0 such that sm→ 0 as m→∞ and

lim
m→∞

diamD+u(f (sm, qm)) = 0. (4.15)

Since
∂+s f (s, q) ∈ q − p0 +D

+u(f (s, q)),

recalling (4.10) we find that

lim
m→∞

min
p∈D+u(f (sm,qm))

|p − p0| = 0.

Combining this with (4.15), we get

lim
m→∞

max
p∈D+u(f (sm,qm))

|p − p0| = 0.

For each m ∈ N, choose pm ∈ D∗u(f (sm, qm)). Then we have

lim
m→∞

pm = p0.

So, p0 ∈ D
∗u(x0) contrary to the assumption. Note that (c) implies that f ([0, τ ]×Np0) ⊂

6(u).

Proof of (iii). We will refine the proof of [1, Theorem 5.2]. Let us denote by L(p0) the
linear subspace of Rn generated by N(p0), and by πν : Rn → L(p0) the orthogonal
projection. Now, recall the translation invariance of Hausdorff’s measure and observe
that

Hν([f ([0, τ ]×Np0)− x0] ∩ Br(0)) ≥ Hν(πν([f ([0, τ ]×Np0)− x0] ∩ Br(0)))

to conclude that the inequality

lim inf
r→0+

r−νHν(πν([f ([0, τ ]×Np0)− x0] ∩ Br(0))) > 0 (4.16)
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suffices to obtain the conclusion. Then set

F(s, q) := πν(f (s, q)− x0), (s, q) ∈ [0, τ ]×Np0 ,

and use (4.13) once again to derive

F([0, r]×Np0) ⊂ F([0, τ ]×Np0) ∩ BrM(0),

where M = maxq∈Np0
|q − p0| + L1, and eventually deduce that (4.16) follows from

lim inf
r→0+

r−νHν(F ([0, r]×Np0)) > 0. (4.17)

Next, to show (4.17) set, for any r > 0,

N(p0, r) = {q ∈ N(p0) | |q| ≤ r}.

Observe that
F([0, r]×Np0) = φ(N(p0, r)) (4.18)

where φ : N(p0, r)→ Rn is the continuous map defined by

φ(q) =

{
F(|q|, q/|q|) if q 6= 0,
0 if q = 0.

Owing to (b), ρ(r) := maxq∈N(p0,r) |φ(x)− x| satisfies

ρ(r)

r
= max
q∈N(p0,r)

1
r
πν

(∫
|q|

0

[
∂sf

(
s,
q

|q|

)
−

q

|q|

]
ds

)
→ 0 as r → 0+. (4.19)

Hence, by Lemma 4.4 below, φ(N(p0, r)) ⊃ intρ(r)(N(p0, r)). Thus, by (4.18), it suf-
fices to show that

lim inf
r→0+

r−νHν(intρ(r)(N(p0, r))) > 0. (4.20)

On the other hand, for some α > 0 and all r > 0,

Hν(intρ(r)(N(p0, r)))

Hν(N(p0, r))
=

(
1− α

ρ(r)

r

)ν
→ 1 as r → 0+

thanks to (4.19). So, (4.20) holds true and the proof is complete. ut

Lemma 4.4. Let 3 ⊂ Rn be a domain such that 0 ∈ 3, and let φ : 3 → Rn be a
continuous map such that, for some ρ > 0,

|φ(x)− x| ≤ ρ ∀x ∈ 3. (4.21)

Then
φ(3) ⊃ intρ(3) := {x ∈ 3 | dist(x, ∂3) ≥ ρ}.
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Proof. If intρ(3) = ∅, then the conclusion is trivial. Otherwise, let y ∈ intρ(3) and
observe that y = φ(xy) for some xy ∈ Bρ(y) iff xy is a fixed point of the map

ψ : Bρ(y)→ Rn, ψ(x) = y + x − φ(x).

Now, in view of (4.21), |ψ(x) − y| ≤ ρ for every x ∈ Bρ(y), or ψ(Bρ(y)) ⊂ Bρ(y).
Then the conclusion follows from Brouwer’s fixed point theorem. ut

Remark 4.5. Theorem 4.2 says that, under suitable assumptions, the singularities of u
propagate along Lipschitz continuous surfaces {f ({s}×Np0)}s∈[0,τ ]. Obviously, the Haus-
dorff dimension of f ({s}×Np0) is bounded above by dimHNp0 . We are interested in the
following two questions.

Q1. Is it true that, when s > 0 is sufficiently small, the Hausdorff dimension of f ({s} ×
Np0) is equal to dimHNp0?

Q2. What else can we say about the regularity of {f ({s} × Np0)} when s is sufficiently
small?

We will investigate these two questions in the future.

5. Application to Monge–Ampère equations

LetX and Y be two bounded open subsets of Rn with the same Lebesgue measure. In this
section we assume that u : X→ R is a convex function such that

(A1) φu = Du maps X onto Y (in the a.e. sense);
(A2) the Monge–Ampère equation detD2u = 1 is satisfied in the sense that∫

X

η(Du) dx =

∫
Y

η(y) dy (5.1)

for any continuous function η : Y → R.

Then we know that φu is an optimal transfer map from X to Y with quadratic cost, i.e.,
φu minimizes the functional ∫

X

|x − φ(x)|2 dx

among all the volume preserving maps φ from X to Y (see, e.g., [13]). If Y is convex,
then u is smooth by a regularity result due to Caffarelli [7]. If Y is a smooth domain
but not convex, then the singular set 6(u) might be nonempty even if X is a ball (see,
for instance, Example 5.3 below). It is, therefore, an interesting problem to derive more
information about 6(u).

For n = 2, the second author proved in [21] that 6(u) \62(u) is a C1 manifold, pro-
vided that X is convex and Y satisfies suitable geometric assumptions. Consequently, if
62(u) is empty, then6(u) is a C1 manifold, that is, the singularities of u propagate along
C1 curves. However, in general, we cannot expect 62(u) to be empty except for some
very special cases. This is one of our motivations to find the dynamics of the propagation
of singularities for semiconcave functions.
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The following result, which removes part of the geometric assumptions made in [21],
is an application of Corollary 4.3. Let us recall that [p1, p2] denotes the line segment
joining two points p1, p2 ∈ Rn, and, for any x ∈ X, the subdifferential of u at x is the
convex set D−u(x) = −D+(−u)(x). For convex functions—which u is assumed to be
in this section—D−u(x) coincides with the classical subdifferential of convex analysis.

Theorem 5.1. Let X and Y be two bounded domains of R2 with the same Lebesgue
measure, let X be convex, and assume that, for any compact convex set K ⊂ R2,

K ∩ Y = ∅ ⇒ ∂K 6⊂ ∂Y. (5.2)

Let u : X→ R be a convex function with properties (A1), (A2), and let x0 ∈ 6(u).

(i) Then ∂D−u(x0)\Y 6= ∅ and, for any p0 ∈ ∂D
−u(x0)\Y and q ∈ R2

\ {0} such that

q · (p − p0) ≤ 0 ∀p ∈ D−u(x0),

there is a Lipschitz arc ξ : [0, σ ]→ 6(u) satisfying{
ξ̇ (s) ∈ p0 − q −D

−u(ξ(s)) for a.e. s ≥ 0,
ξ(0) = x0,

and
inf

s∈[0,σ ]
diamD−u(ξ(s)) > 0. (5.3)

(ii) If, for any p1, p2 ∈ ∂Y ,

[p1, p2] ∩ Y = ∅ ⇒ [p1, p2] ∩ ∂Y = {p1, p2}, (5.4)

then ξ̇ is continuous in [0, σ ] \ 0, where 0 is the countable set [0, σ ] ∩ ξ−1(62(u)).

Proof. First, let us recall that, according to [7], there is a function v ∈ C∞(Y ) such that
Dv(Y ) is a dense open subset of X. Also, u ∈ C∞(Dv(Y )) and Du(Dv(y)) = y for all
y ∈ Y .

(i) Let x0 ∈ 6(u). From the above considerations it follows that D∗u(x0) ⊂ Y . We
claim that

D−u(x0) ∩ Y = ∅. (5.5)

Indeed, suppose there is a vector p ∈ D−u(x0) ∩ Y . Then x0 6= xp := Dv(p) since u is
differentiable at xp, and p = Du(xp). Hence, being convex, u must be linear along the
line segment connecting x0 and xp. On the other hand, routine arguments based on (5.1)
show that this is impossible when n = 2. We have thus reached a contradiction, which
shows (5.5).

Now, (5.5) and assumption (5.2) imply that ∂D−u(x0) \ Y 6= ∅. Moreover, owing to
the inclusion D∗u(x0) ⊂ Y and (5.5), D∗u(x0) ⊂ ∂Y. Therefore,

p0 ∈ ∂D
−u(x0) \ Y ⇒ p0 ∈ ∂D

−u(x0) \D
∗u(x0).

So, the conclusion of (i) follows from Corollary 4.3 applied to −u.
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(ii) To begin, observe that ξ([0, σ ]) ∩ 62(u) is (at most) countable (see, e.g., Corol-
lary 4.1.13 in [8]). Also, since ξ̇+(0) = q 6= 0, ξ(s) is one-to-one when s is small
enough. Hence, 0 = [0, σ ] ∩ ξ−1(62(u)) is countable. Now, let s0 ∈ [0, σ ] \ 0, so that
ξ(s0) ∈ 6

1(u) \62(u). We claim that

lim
s→s0

(p0 − q −D
−u(ξ(s))) = p0 − q −D

−u(ξ(s0)). (5.6)

Indeed, lim sups→so D
∗u(ξ(s)) ⊂ D∗u(ξ(s0)). So, owing to (5.4),D∗u(ξ(s0)) consists of

exactly two points. Moreover, on account of (5.3), D∗u(ξ(s)) cannot collapse to a point
as s → s0. Therefore, D∗u(ξ(s)) → D∗u(ξ(s0)) as s → s0, and also D−u(ξ(s)) →
D−u(ξ(s0)). Our claim is thus proved.

Recalling that, by Corollary 3.7,

|ξ̇+(s)| = min
p∈D−u(ξ(s))

|p0 − q − p|,

and applying (5.6), we conclude that ξ̇+(s)→ ξ̇+(s0) as s → s0. Since ξ is differentiable
almost everywhere in [0, σ ], this says that ξ̇ (s0) exists. We have thus shown that ξ̇ exists
and is continuous at all points of [0, σ ] \ 0. ut

Remark 5.2. The above constructive proof may give an insight into the role played by
assumption (5.2). Indeed, the analysis of Section 4—in fact, the main result of [1]—
pointed out that the basic property that forces the singularity at x0 to propagate is that
∂D−u(x0) \D

∗u(x0) 6= ∅. SinceDu is an optimal transfer plan from X to Y , it is natural
that the geometry of Y may cause such a property to hold true. On the other hand, simple
examples like the one below show Du may well have isolated singularities when (5.2) is
violated. As for the stronger condition (5.4), again we see from the proof how it essentially
entails the continuity of D−u along the shock.

Example 5.3. Let r > 0 and define the open sets (with the same Lebesgue measure)

X = {x ∈ R2
| |x| < 1}, Y = {x ∈ R2

| r2 < |x|2 < 1+ r2
}.

Then it is easy to check that the convex function u(x) := f (|x|), where

f (t) =

∫ t

0

√
r2 + s2 ds, t ≥ 0,

gives an optimal transfer map from X to Y with an isolated singularity at the origin.

The higher dimensional case is much harder to analyze. The only results we have, for
the moment, hold under very restrictive conditions on the structure of 6(u). This is why,
in this paper, we have only discussed the case of n = 2.
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6. Propagation of singularities in weak KAM theory

In this section, we show that the singularities of solutions in weak KAM theory propagate
in some sense under appropriate conditions. For convenience, we focus on the Hamilto-
nian H(p, x) = 1

2 |p|
2
+ V (x), where V (x) is a smooth Tn-periodic function and Tn

is the n-dimensional flat torus. One of the basic facts of weak KAM theory is that, for
each P ∈ Rn, there is a unique real number, denoted H(P ), such that the so-called cell
problem

1
2
|P +Dv(x)|2 + V (x) = H(P ), x ∈ Rn, (6.1)

has a Tn-periodic, Lipschitz continuous solution v (see, for instance, [18], [12] and [15]).
Here, we assume v to solve (6.1) in the sense of viscosity solutions. The above func-
tion H : Rn → R, called the effective (or averaged) Hamiltonian, is a convex function
satisfying

min
Rn

H = H(0) = max
Tn

V.

Let v be a viscosity solution of (6.1). According to [17, Theorem 3.3], v is semicon-
cave. Since v is a global solution, it is interesting to see how the global dynamics affects
the singular set of v. For this purpose, we give the following result showing that the sin-
gularities of v propagate, in some sense, if H(P ) > maxTn V . We denote by Sn−1 the
(n− 1)-dimensional sphere {x ∈ Rn | |x| = 1}.

Theorem 6.1. Let v be a Tn-periodic semiconcave solution of (6.1) and suppose

H(P ) > max
Tn

V. (6.2)

Let x0 ∈ 6(v) and let � be an arbitrary bounded open set containing x0 such that ∂� is
homeomorphic to Sn−1. Then

∂� ∩6(v) 6= ∅. (6.3)

Proof. We will argue by contradiction and suppose that v is differentiable on ∂�. Let
u(x) := P · x + v(x) and observe that u is also semiconcave and has the same singular
set as v. Then known results in the calculus of variations (see [15, Section 4.5]; see also
[8, Theorem 4.6.9]) ensure that, for any differentiability point x of u, there is a unique
smooth curve ξx : (−∞, 0]→ Rn such that u is differentiable at ξx(t) for all t ≤ 0 and{

ξ̇x(t) = Du(ξ(t)) = P +Dv(ξ(t)) (t ≤ 0),
ξx(0) = x.

(6.4)

Note that ξx is an absolute minimizing curve, i.e., for any T < 0 and any Lipschitz arc
ξ : [T , 0]→ Tn satisfying ξ(0) = x0 and ξ(T ) = ξx(T ), we have

LT (ξx) ≤ LT (ξ),

where

LT (ξ) =
∫ 0

T

[
1
2
|ξ̇ |2 − V (ξ)

]
dt.
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Hence, ξx satisfies the Hamiltonian system{
ξ̇ = η

η̇ = −DV (ξ)
with initial conditions

{
ξ(0) = x
η(0) = Du(x).

(6.5)

Also, since u is semiconcave, x ; D+u(x) is upper semicontinuous. Consequently, for
every x ∈ Tn \6(u), we have

lim
6(u)63y→x

Du(y) = Du(x).

In particular, this holds for every x ∈ ∂�. So, owing to the continuous dependence on x
of the solution of (6.5), we conclude that x 7→ ξx(t) is continuous on ∂� for every t ≤ 0.

Now, for any t < 0 define the map γt : ∂�→ Rn by

γt (x) = ξx(t) ∀x ∈ ∂�.

In view of the above considerations, γt is continuous. Moreover, γt is one-to-one thanks
to the forward uniqueness property of the (generalized) gradient flow recalled in Ex-
ample 3.6. Therefore, γt is a homeomorphism of ∂� onto the set 0t := γt (∂�). Conse-
quently, 0t is homeomorphic to Sn−1.

Moreover, t 7→ 0t is continuous in the sense that, for some constant C ≥ 0,

dH(0s, 0t ) ≤ C|s − t | ∀s, t ≥ 0, (6.6)

where dH denotes the Hausdorff distance. Indeed, let y ∈ 0s . Then y = ξx(s) for some
x ∈ ∂�. So, in view of (6.4),

dist(y, 0t ) ≤ |ξx(s)− ξx(t)| ≤ ‖Du‖∞ |s − t |.

Hence, maxy∈0s dist(y, 0t ) ≤ ‖Du‖∞ |s − t |. This yields (6.6) since the remaining term
of definition (2.2) can be similarly bounded.

Next, owing to (6.4), for every x ∈ ∂� and t ≤ 0 we have

P · (x − ξx(t))+ v(x)− v(ξx(t)) = u(x)− u(ξx(t)) =

∫ 0

t

Du(ξx(s)) · ξ̇x(s) ds

= 2
∫ 0

t

[H(P )− V (ξx(s))] ds

≥ −2t[H(P )−max
Tn

V ].

Since v is bounded (being Tn-periodic) and H(P ) > maxTn V , we must have

P · ξx(T ) < P · x0 − 1 ∀x ∈ ∂�

for all T < 0 sufficiently large in absolute value. Hereafter, T < 0 will be a fixed number
such that

0T ⊂ {y ∈ Rn | P · y < P · x0 − 1}. (6.7)
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Now, the Jordan–Brouwer theorem (see, e.g., [16, Corollary 18.7]) ensures that, for
any t ≤ 0, Rn \0t has two connected components both with boundary 0t , one of which—
labelled �t—is bounded. Observe that, for every t ≥ 0,

dist(x,�t ) ≤ dist(x, 0t ) ∀x ∈ Rn.

Therefore,
max
x∈�s

dist(x,�t ) ≤ max
x∈�s

dist(x, 0t ) = max
x∈0s

dist(x, 0t ).

Hence, owing to (6.6),

dH(�s, �t ) ≤ dH(0s, 0t ) ≤ C|s − t | ∀s, t ≥ 0. (6.8)

The above considerations allow us to use the signed distance from 0t defined by

d0t (x) =

{
dist(x, 0t ) if x ∈ �t ,
−dist(x, 0t ) if x ∈ �ct .

Clearly, x 7→ d0t (x) is continuous. We claim that, for every x ∈ Rn, t 7→ d0t (x) is also
continuous. Indeed, let t̄ ≥ 0 be fixed. If x ∈ 0t̄ , then (6.6) yields

|d0t (x)− d0t̄ (x)| = dist(x, 0t ) ≤ dH(0t , 0t̄ ) ≤ C|t − t̄ | ∀t ≥ 0.

Suppose x ∈ �t̄ and let δ = dist(x, 0t̄ ). Owing to (2.3) and (6.6),

|dist(x, 0t )− dist(x, 0t̄ )| ≤ C|t − t̄ |.

Therefore, dist(x, 0t ) > δ/2 for |t − t̄ | < δ/(2C). Should x belong to �ct for some t
satisfying |t − t̄ | < δ/(2C), we would have dH(�t , �t̄ ) > δ/2 contrary to (6.8). Thus,
x ∈ �t for all |t − t̄ | < δ/(2C). So,

|d0t (x)− d0t̄ (x)| = |dist(x, 0t )− dist(x, 0t̄ )| ≤ C|t − t̄ |. (6.9)

Finally, if x ∈ �c
t̄
, then (6.8) ensures that x ∈ �ct for every t such that |t − t̄ | < δ/(2C).

This yields (6.9) once again and proves the claimed continuity of t 7→ d0t (x).
To complete the proof, define

h(t) = d0t (x0) ∀t ≤ 0.

Then h is a continuous function such that h(0) > 0, since x0 ∈ �, and h(T ) < 0, on
account of (6.7). Therefore, h(t0) = 0 for some t0 ∈ (T , 0). So, x0 ∈ 0t0 , contradicting
the fact that v is differentiable on 0t for all t ≤ 0. ut

Remark 6.2. It is not clear to us whether singularities actually propagate along a contin-
uous curve up to infinity. We will investigate this problem in the future.

Acknowledgments. The authors are grateful to the referees for their useful comments and sugges-
tions.

The first author was supported in part by the Italian PRIN 2005 program “Metodi di viscosità,
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