Probability Theory - Stochastic Viability for regular closed sets in Hilbert spaces, by Piermarco Cannarsa and Giuseppe da Prato, communicated on 13 May 2011.

Dedicated to Giovanni Prodi.

Abstract. - We present necessary and sufficient conditions to guarantee that at least one solution of an infinite dimensional stochastic differential equation, which starts from a regular closed subset K of an Hilbert space, remains in K for all times.

Key words: Stochastic viability, stochastic differential equations in infinite dimensions, distance function.

2000 Mathematics Subiect Classification: $60 \mathrm{H} 15,60 \mathrm{~J} 70$.

1. Introduction and setting of the problem

Let H be a separable Hilbert space with scalar product $\langle\cdot, \cdot\rangle$ and norm $|\cdot|$. We are concerned with a stochastic differential equation of the form

$$
\left\{\begin{array}{l}
d X=b(X) d t+\sigma(X) d W(t) \tag{1}\\
X(0)=x \in H
\end{array}\right.
$$

We shall assume the following:
Hypothesis 1. (i) $b: H \rightarrow H$ is continuous.
(ii) $\sigma: H \rightarrow L_{2}(H)$ is continuous, where $L_{2}(H)$ is the space of all HilbertSchmidt operators on H.
(iii) $W(t), t \geq 0$, is a H-valued cylindrical Wiener process defined in a filtered probability space $\left(\Omega, \mathscr{F},\left(\mathscr{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$.

We recall that $W(t)$ is formally defined by

$$
\begin{equation*}
W(t):=\sum_{k=1}^{\infty} e_{k} W_{k}(t) \tag{2}
\end{equation*}
$$

where $\left(e_{k}\right)$ is an orthonormal basis of K and $\left(W_{k}\right)$ a sequence of one-dimensional Brownian motions in $\left(\Omega, \mathscr{F},\left(\mathscr{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$, mutually independent and adapted to the filtration $\left(\mathscr{F}_{t}\right)_{t \geq 0}$. Notice that, although the series in (2) is not convergent in $L^{2}(\Omega, \mathscr{F}, \mathbb{P}), S W(t):=\sum_{k=1}^{\infty} S e_{k} W_{k}(t)$ (where $\left.S \in L_{2}(H)\right)$ is.

We say that an adapted continuous stochastic process $X(t), t \in[0, T]$, is a solution of (1) if

$$
\begin{equation*}
X(t)=x+\int_{0}^{t} b(X(s)) d s+\int_{0}^{t} \sigma(X(s)) d W(s), \quad t \geq 0, \mathbb{P} \text {-a.s.. } \tag{3}
\end{equation*}
$$

Existence and uniqueness results for equation (1) are easily found in the literature, see, e.g., [5].

In this paper, we are interested in viability for equation (1) with respect to a regular closed set K. We recall that K is viable if, for any $x \in K$, there exists a solution $X(\cdot, x)$ of (1) which remains in K for all times.

When H is finite dimensional, stochastic viability for closed sets has been extensively studied. In connection with this paper, let us quote [3], [4], where a characterization of viability of K is given in terms of the distance function

$$
d_{K}(x):=\inf \{|x-y|: y \in K\}
$$

and several references on related works can be found.
Recently, strong interest in viability for stochastic partial differential equations was motivated by mathematical finance problems, see e.g. [1] and [6]. In that case, it is important to see if there exist viable finite dimensional subspaces for the stochastic flow. A new approach to viability for SPDEs was developed in [7], [11] and [8]. Such an approach is based on an infinite dimensional generalization of the support theorem, proved in the finite dimensional case in [10]. The avantage of this method is that it reduces the problem to the well known Nagumo condition for deterministic systems. The price to pay is that one has to assume the coefficient σ to be at least C^{1}.

When trying to extend finite dimensional results to the Hilbert space setting, one has to confront the major difficulty that, in euclidean space, the distance function $d_{K}^{2}(x)$ is twice differentiable almost everywhere (with respect to Lebesgue measure), which allows to apply Itô's formula to some power of d_{K}. In infinite dimensional Hilbert spaces, on the contrary, one only has that $d_{K}^{2}(x)$ is twice differentiable on a dense set in general (except for very special K), see [9]. Therefore, suitable regularity assumptions have to be imposed on ∂K to be able to use Itô's formula (that holds true for functions of class C^{2} in Hilbert spaces, see, e.g., [5]). We do so as follows:

Hypothesis 2. $d_{K}^{4} \in C^{2}(U)$ for some open neighborhood U of K with bounded first and second derivatives.

Observe that Hypothesis 2 allows for closed sets K with empty interior.
As in [3] and [4], our analysis relies on the use of the Kolmogorov operator restricted to K, that is,

$$
\begin{equation*}
L_{K} \varphi(x):=\frac{1}{2} \operatorname{tr}\left[a\left(\Pi_{K}(x)\right) D^{2} \varphi(x)\right]+\left\langle b\left(\Pi_{K}(x), D \varphi(x)\right\rangle\right. \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
a(x):=\sigma(x) \sigma^{*}(x) \quad \forall x \in H \tag{5}
\end{equation*}
$$

and $\Pi_{K}(x)$ denotes the projection of x onto K, defined for each $x \in U$ as the unique element $\bar{x} \in K$ such that $|x-\bar{x}|=d_{K}(x)$. We observe that the fact $\Pi_{K}(x)$ is nonempty and reduces to a singleton is a (nontrivial) consequence of the C^{1}-smoothness of d_{K} in $U \backslash K$. Indeed, in view of Hypothesis 2, d_{K} is of class C^{1} on $U \backslash K$. Then, the Density Theorem (see e.g., [2]) yields the existence and uniqueness of the projection onto K for a dense subset of $U \backslash K$, hence for all points of $U \backslash K$ by an approximation argument.

Before stating our main results, let us introduce further notation. Recall that, under Hypothesis 2 , $d_{K}^{2} \in C^{1}(U), d_{K} \in C^{1}(U \backslash K)$, and so

$$
\begin{equation*}
D d_{K}^{2}(x)=2\left(x-\Pi_{K}(x)\right), \quad \forall x \in U \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
n(x):=D d_{K}(x)=\frac{x-\Pi_{K}(x)}{d_{K}(x)} \quad \forall x \in U \backslash K \tag{7}
\end{equation*}
$$

Now, define

$$
\begin{equation*}
V(x):=\frac{1}{4} d_{K}^{4}(x) \quad \forall x \in U \tag{8}
\end{equation*}
$$

Then

$$
\begin{equation*}
D V(x)=\left(x-\Pi_{K}(x)\right) d_{K}^{2}(x)=d_{K}^{3}(x) n(x), \quad \forall x \in U \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
D^{2} V(x)=3 d_{K}^{2}(x) n(x) \otimes n(x)+d_{K}^{3}(x) \operatorname{Dn}(x), \quad \forall x \in U \tag{10}
\end{equation*}
$$

where $D^{2} V(x)$ is a bounded linear operator on H in view of Hypothesis 2. So,

$$
D^{2} V(x)=\left\{\begin{array}{l}
3 d_{K}^{2}(x) n(x) \otimes n(x)+d_{K}^{3}(x) D n(x) \quad \forall x \in U \backslash K \tag{11}\\
0 \quad \forall x \in K
\end{array}\right.
$$

Finally, let us point out, for future use, the useful inequality

$$
\begin{equation*}
d_{K}\left(x-\Pi_{K}(x)+y\right) \leq d_{K}(x), \quad \forall x \in U, \forall y \in K \tag{12}
\end{equation*}
$$

which is derived as follows:

$$
d_{K}\left(x-\Pi_{K}(x)+y\right)=\inf _{z \in K}\left|x-\Pi_{K}(x)+y-z\right| \leq\left|x-\Pi_{K}(x)\right|=d_{K}(x)
$$

It is convenient to introduce the following modified system,

$$
\left\{\begin{array}{l}
d X(t)=b\left(\Pi_{K}(X(t))\right) d t+\sigma\left(\Pi_{K}(X(t))\right) d W(t) \tag{13}\\
X(0)=x \in K
\end{array}\right.
$$

It is obvious that K is viable for system (1) if and only if it is viable for system (13). So, we shall restrict our considerations from now on to system (13), a generic solution of which will be denoted by $X_{K}(t, x)$. Recall that the corresponding Kolmogorov operator is L_{K} defined by (4).

We can now state the main results of the paper. Hypothesis 1 will be assumed hereafter, without further notice.

Theorem 3. Let Hypothesis 2 be fulfilled. Then K is viable if and only if

$$
\begin{equation*}
L_{K} V(x) \leq 0, \quad \forall x \in U \tag{14}
\end{equation*}
$$

Under a stronger regularity assumption on K we can characterize viability imposing a simpler set of conditions just on ∂K. We shall express such conditions in terms of the signed distance from ∂K, that is,

$$
\bar{d}_{K}(x):=d_{K}(x)-d_{H \backslash \stackrel{K}{\circ}}(x) \quad \forall x \in H
$$

where $\stackrel{\circ}{K}$ denotes the interior of K. Notice that the smoothness of \bar{d}_{K} requires K to be the closure of its interior. Also, if \bar{d}_{K} is differentiable, then the exterior normal at every point $x \in \partial K$ is given by $D \bar{d}_{K}(x)$.

THEOREM 4. Let \bar{d}_{K} be of class C^{2} with bounded first and second derivatives on some neighborhood of ∂K. Then, K is viable if and only if

$$
\begin{equation*}
\frac{1}{2} \operatorname{tr}\left[a(y) D^{2} \bar{d}_{K}(y)\right]+\left\langle b(y), D \bar{d}_{K}(y)\right\rangle \leq 0 \quad \forall y \in \partial K \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle a(y) D \bar{d}_{K}(y), D \bar{d}_{K}(y)\right\rangle=0 \quad \forall y \in \partial K \tag{16}
\end{equation*}
$$

2. Proofs and examples

2.1. Proof of Theorem 3

Necessity. Suppose K is viable. Let $x \in U$ and let $X_{K}\left(t, \Pi_{K}(x)\right)$ be a solution of (13) which remains in K for all $t>0$. Then, owing to (12),

$$
\begin{equation*}
V\left(x-\Pi_{K}(x)+X_{K}\left(t, \Pi_{K}(x)\right)\right) \leq V(x), \quad \forall t \geq 0 \tag{17}
\end{equation*}
$$

Now, by Itô's formula we have, for any $t \geq 0$,

$$
\begin{aligned}
d V(x- & \left.\Pi_{K}(x)+X_{K}\left(t, \Pi_{K}(x)\right)\right) \\
= & \left\langle D V\left(x-\Pi_{K}(x)+X_{K}\left(t, \Pi_{K}(x)\right)\right), d X_{K}\left(t, \Pi_{K}(x)\right)\right\rangle \\
& +\frac{1}{2} \operatorname{tr}\left[a \left(X_{K}\left(t, \Pi_{K}(x)\right) D^{2} V\left(x-\Pi_{K}(x)+X_{K}\left(t, \Pi_{K}(x)\right)\right] d t\right.\right. \\
= & L_{K} V\left(x-\Pi_{K}(x)+X_{K}\left(t, \Pi_{K}(x)\right)\right) d t \\
& +\left\langle D V\left(x-\Pi_{K}(x)+X_{K}\left(t, \Pi_{K}(x)\right)\right), \sigma\left(X_{K}\left(t, \Pi_{K}(x)\right)\right) d W(t)\right\rangle .
\end{aligned}
$$

Hence, integrating between 0 and t and taking expectation,

$$
\begin{aligned}
& \mathbb{E}\left[V\left(x-\Pi_{K}(x)+X_{K}\left(t, \Pi_{K}(x)\right)\right)-V(x)\right] \\
& \quad=\mathbb{E}\left[\int_{0}^{t} L_{K} V\left(x-\Pi_{K}(x)+X_{K}\left(s, \Pi_{K}(x)\right)\right) d s\right] \leq 0 .
\end{aligned}
$$

Consequently,

$$
\frac{1}{t} \mathbb{E}\left[\int_{0}^{t} L_{K} V\left(x-\Pi_{K}(x)+X_{K}\left(s, \Pi_{K}(x)\right)\right) d s\right] \leq 0
$$

which, letting $t \rightarrow 0$, yields (14).
Sufficiency. Assume that (14) holds and let $x \in K$. Consider the exit time from U

$$
\tau_{U}(x):=\inf \left\{t \geq 0: X_{K}(t, x) \in \partial U\right\}
$$

We claim that $\tau_{U}(x)=\infty$ almost surely. Indeed, applying Itô's formula with a stopping time, for every $t \geq 0$ we have

$$
\begin{aligned}
V\left(X_{K}\left(t \wedge \tau_{U}(x), x\right)\right)= & \int_{0}^{t \wedge \tau_{U}(x)} L_{K} V\left(X_{K}(s, x)\right) d s \\
& +\int_{0}^{t \wedge \tau_{U}(x)}\left\langle D V\left(X_{K}(s, x)\right), \sigma\left(X_{K}(s, x)\right) d W(s)\right\rangle
\end{aligned}
$$

or

$$
\begin{aligned}
V\left(X_{K}\left(t \wedge \tau_{U}(x), x\right)\right)= & \int_{0}^{t} \mathbb{1}_{\left\{\tau_{U}(x) \geq s\right\}} L_{K} V\left(X_{K}(s, x)\right) d s \\
& +\int_{0}^{t} \mathbb{1}_{\left\{\tau_{U}(x) \geq s\right\}}\left\langle D V\left(X_{K}(s, x)\right), \sigma\left(X_{K}(s, x)\right) d W(s)\right\rangle
\end{aligned}
$$

Hence, taking expectation,

$$
\mathbb{E}\left[V\left(X_{K}\left(t \wedge \tau_{U}(x), x\right)\right)\right]=\mathbb{E}\left[\int_{0}^{t} \mathbb{1}_{\left\{\tau_{U}(x) \geq s\right\}} L_{K} V\left(X_{K}\left(s, \Pi_{K}(x)\right)\right) d s\right] \leq 0
$$

for every $t \geq 0$ on account of (14). This implies $X_{K}\left(t \wedge \tau_{U}(x), x\right) \in K$ a.s. for every $t \geq 0$, so that

$$
\mathbb{P}\left(\tau_{U}(x)<\infty\right)=\lim _{i \rightarrow \infty} \mathbb{P}\left(\tau_{U}(x) \leq i\right)=0
$$

The proof is thus complete.

2.2. Proof of Theorem 4

To begin with, we observe that our assumption on \bar{d}_{K} implies that d_{K}^{4} is of class C^{2} with bounded first and second derivatives on some neighborhood of K, say U. So, Theorem 3 can be applied. Denoting by n the gradient $D \bar{d}_{K}$, in light of (9) and (11) we have

$$
\begin{align*}
L_{K} V(x)= & \frac{1}{2} d_{K}^{3}(x) \operatorname{tr}\left[a\left(\Pi_{K}(x)\right) \operatorname{Dn}(x)\right]+d_{K}^{3}(x)\left\langle b\left(\Pi_{K}(x), n(x)\right\rangle\right. \tag{18}\\
& +\frac{3}{2} d_{K}^{2}(x)\left\langle a\left(\Pi_{K}(x)\right) n(x), n(x)\right\rangle, \quad \forall x \in U
\end{align*}
$$

Suppose K is viable. Then, by Theorem 3,

$$
\begin{align*}
& \frac{1}{2} d_{K}^{3}(x) \operatorname{tr}\left[a\left(\Pi_{K}(x)\right) \operatorname{Dn}(x)\right]+d_{K}^{3}(x)\left\langle b\left(\Pi_{K}(x)\right), n(x)\right\rangle \tag{19}\\
& \quad+\frac{3}{2} d_{K}^{2}(x)\left\langle a\left(\Pi_{K}(x)\right) n(x), n(x)\right\rangle \leq 0, \quad \forall x \in U \backslash K
\end{align*}
$$

Hence, dividing both sides of (19) by $d_{K}^{2}(x)$ to obtain (16) as $x \rightarrow \partial K$, i.e.,

$$
\begin{equation*}
\langle a(y) n(y), n(y)\rangle=0, \quad \forall y \in \partial K \tag{20}
\end{equation*}
$$

Moreover, since $n\left(\Pi_{K}(x)\right)=n(x)$, the above equality yields

$$
\begin{equation*}
\left\langle a\left(\Pi_{K}(x)\right) n(x), n(x)\right\rangle=0, \quad \forall x \in U \backslash K \tag{21}
\end{equation*}
$$

Therefore, (19) reduces to

$$
\frac{1}{2} d^{3}(x) \operatorname{tr}\left[a\left(\Pi_{K}(x)\right) D n(x)\right]+d^{3}(x)\left\langle b\left(\Pi_{K}(x)\right), n(x)\right\rangle \leq 0, \quad \forall x \in U \backslash K
$$

Consequently, as $x \rightarrow \partial K$, we obtain (15).

Next, assume (15) and (16). Then, (21) also holds true. So, by (15),

$$
\begin{aligned}
L_{K} V(x) & =\frac{1}{2} d_{K}^{3}(x) \operatorname{tr}\left[a\left(\Pi_{K}(x)\right) \operatorname{Dn}(x)\right]+d_{K}^{3}(x)\left\langle b\left(\Pi_{K}(x), n(x)\right\rangle\right. \\
& =d_{K}^{3}(x)\left\{\frac{1}{2} \operatorname{tr}\left[a\left(\Pi_{K}(x)\right) \operatorname{Dn}\left(\Pi_{K}(x)\right)\right]+\left\langle b\left(\Pi_{K}(x), n\left(\Pi_{K}(x)\right)\right\rangle\right\} \leq 0\right.
\end{aligned}
$$

for all $x \in U$. Hence, Theorem 3 ensures that K is viable.

2.3. Examples

In this section, we apply the above theory to three examples characterizing viability for a ball, a half-space, and a subspace of H.

Example 5 (The ball B_{1}). Let $K=B_{1}:=\{x \in H:|x| \leq 1\}$. Then,

$$
n(x)=\frac{x}{|x|}, \quad \forall x \in B_{1}^{c}
$$

Therefore,

$$
\operatorname{Dn}(x)=\frac{1}{|x|}-\frac{x \otimes x}{|x|^{3}}, \quad \forall x \in B_{1}^{c}
$$

Thus, (15) and (16) become, respectively,

$$
\frac{1}{2} \operatorname{tr}[a(y)]+\langle b(y), y\rangle-\frac{1}{2}\langle a(y) y, y\rangle \leq 0 \quad \forall y \in \partial B_{1},
$$

and

$$
\langle a(y) y, y\rangle=0 \quad \forall y \in \partial B_{1}
$$

So,

$$
\frac{1}{2} \operatorname{tr}[a(y)]+\langle b(y), y\rangle \leq 0 \quad \text { and } \quad\langle a(y) y, y\rangle=0 \quad \forall y \in \partial B_{1}
$$

are necessary and sufficient conditions for B_{1} to be viable.
Example 6 (Half-space). Let $\left\{e_{k}\right\}$ be an orthonormal basis of H, let $x_{k}=$ $\left\langle x, e_{k}\right\rangle, k \in \mathbb{N}$, and define

$$
K=\left\{x \in H: x_{1} \geq 0\right\}
$$

Then, $\partial K=\left\{x \in H: x_{1}=0\right\}$ and $d_{K}(x)=x_{1}^{-}=-\min \left\{x_{1}, 0\right\}$. So,

$$
n(x)=-e_{1} \rrbracket_{x_{1} \leq 0}, \quad x \in(\stackrel{\circ}{K})^{c}
$$

and

$$
\operatorname{Dn}(x)=0, \quad x \in(\stackrel{\circ}{K})^{c}
$$

Therefore, the two conditions

$$
b_{1}(y) \leq 0, \quad \text { and } \quad a_{1,1}(y)=0, \quad \forall y \in \partial K
$$

where $b_{1}(y)=\left\langle b(y), e_{1}\right\rangle$ and $a_{1,1}(y)=\left\langle a(y) e_{1}, e_{1}\right\rangle$, are necessary and sufficient for the viability of K.

Example 7 (Subspace). Let Z be a closed subspace of H and let P be the orthogonal projector onto Z. Then, $\Pi_{Z}(x)=P x$,

$$
n(x)=\frac{x-P x}{|x-P x|}
$$

and

$$
\operatorname{Dn}(x)=\frac{I-P}{|x-P x|}-\frac{(x-P x) \otimes(x-P x)}{|x-P x|^{3}}
$$

for all $x \in V$. Thus, Z is viable if and only if

$$
\begin{aligned}
& \frac{1}{2} d_{Z}^{2}(x) \operatorname{tr}[a(P x)(I-P)]+d_{Z}^{2}(x)\langle b(P x), x-P x\rangle \\
& \quad+\langle a(P x)(x-P x), x-P x\rangle \leq 0 \quad \forall x \in H
\end{aligned}
$$

3. EQUATIONS IN MILD FORM

Let us consider the stochastic differential equation

$$
\left\{\begin{array}{l}
d X=(A X+b(X)) d t+\sigma(X) d W(t) \tag{22}\\
X(0)=x \in H
\end{array}\right.
$$

where $A: D(A) \subset H \rightarrow H$ is the infinitesimal generator of a strongly continuous semigroup $e^{t A}$, and b, σ and W are assumed to satisfy Hypothesis 1 . Let K be a closed convex set in H such that d_{K}^{4} is of class C^{2}.

A mild solution of equation (22) is a stochastic process X which solves the integral equation

$$
\begin{equation*}
X(t)=e^{t A} x+\int_{0}^{t} e^{(t-s) A} b(X(s)) d s+\int_{0}^{t} e^{(t-s) A} \sigma(X(s)) d W(s) \tag{23}
\end{equation*}
$$

It is useful to consider the approximate equation

$$
\left\{\begin{array}{l}
d X_{n}=\left(A_{n} X_{n}+b\left(X_{n}\right)\right) d t+\sigma\left(X_{n}\right) d W(t), \tag{24}\\
X_{n}(0)=x \in H,
\end{array}\right.
$$

where for each $n \in \mathbb{N}, A_{n}=n A(n I-A)^{-1}$ is the Yosida approximation of A.
The following result follows from Theorem 3.
Proposition 8. Let Hypothesis 2 be fulfilled. Then K is viable for problem (24) if and only if

$$
\begin{equation*}
\frac{1}{2} \operatorname{tr}\left[a\left(\Pi_{K} x\right) D^{2} V(x)\right]+\left\langle A_{n} \Pi_{K} x+b\left(\Pi_{K} x\right), D V(x)\right\rangle \leq 0, \quad \forall x \in U . \tag{25}
\end{equation*}
$$

Moreover, if (25) holds for any $n \in \mathbb{N}$, then K is viable for problem (22).
Applying Theorem 4 we obtain the following.
Proposition 9. Let \bar{d}_{K} be of class C^{2} with bounded first and second derivatives on some neighborhood of ∂K. Then K is viable for problem (24) if and only if, for every $y \in \partial K$,

$$
\begin{equation*}
\frac{1}{2} \operatorname{tr}[a(y) \operatorname{Dn}(y)]+\left\langle A_{n} y+b(y), n(y)\right\rangle \leq 0 \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle a(y) n(y), n(y)\rangle=0 . \tag{27}
\end{equation*}
$$

Moreover, if (26) holds for any $n \in \mathbb{N}$, then K is viable for problem (22).

References

[1] T. Byörk - B. G. Christensen, Interest rate dynamics and consistent forward rate curves, Mathematical Finance, 9, 323-348, 1999.
[2] F. H. Clarke - Yu. S. Ledyaev - R. J. Stern - P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer, New York, 1998.
[3] G. Da Prato - H. Frankowska, Stochastic Viability for compact sets in terms of the distance function, Dynamic Systems and Applications, vol. 10, 177-184, 2000.
[4] G. Da Prato - H. Frankowska, Stochastic viability of convex sets, J. Math. Anal. Appl. 333, no. 1, 151-163, 2007.
[5] G. Da Prato - J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge University Press, 1992.
[6] D. Filipović, Consistency problems for Heath-Jarrow-Morton interest rate models, Springer, 2001.
[7] W. Jakimiak, A note on invariance for semilinear differential equations, Bull. Pol. Sci., 179-183, 1996.
[8] T. Nakayama, Viability Theeorem for SPDE's Including HJM Framework, J. Math. Sci. Univ. Tokyo, 11, 313-324, 2004.
[9] D. Preiss, Differentiability of Lipschitz functions on Banach spaces. J. Funct. Anal. 91, no. 2, 312-345, 1990.
[10] D. V. Stroock - S. R. S. Varhadan, Multidimensional Diffusion Processes, Springer-Verlag, 1979.
[11] J. Zabczyk, Stochastic invariance and consistency of financial models, Rend. Math. Acc. Lincei, s 9, 11, 67-80, 2000.

Received 26 April 2011, and in revised form 12 May 2011.
P. Cannarsa

Dipartimento di Matematica Università di Roma "Tor Vergata"

Via della Ricerca Scientifica 1
00133 Roma (Italy)
cannarsa@mat.uniroma2.it
G. Da Prato

Scuola Normale Superiore di Pisa
Piazza dei Cavalieri 7
I-56125 Pisa (Italy)
daprato@sns.it

