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Abstract. We provide intrinsic sufficient conditions on a multifunction F and

endpoint data ϕ so that the value function associated to the Mayer problem is
semiconcave.

1. Introduction. This paper studies the Mayer problem

minϕ
(
x(T )

)
, (1)

where the minimization is over all absolutely continuous arcs x(·) that satisfy the
differential inclusion

ẋ(s) ∈ F
(
x(s)

)
a.e. s ∈ [t, T ] (2)

and the initial condition
x(t) = x. (3)

Here ϕ : Rn → R is the endpoint cost, F : Rn ⇒ Rn is a multifunction that describes
the dynamics, and x ∈ Rn is the initial state. We denote this optimization problem
by P(t, x), and the value function associated to P(t, x) is denoted by V (t, x). An
optimal solution x̄(·) of P(t, x) is thus an arc satisfying (2) and (3) with ϕ

(
x̄(T )

)
=

V (t, x). Assuming ϕ is semiconcave, the main goal of this paper is to provide new
sufficient conditions on F so that (t, x) 7→ V (t, x) is semiconcave.

The fact that V is locally Lipschitz is well-known (see e.g. [6, Exercise 4.3.12]).
The sought-after semiconcavity conclusion has been obtained previously (see [2] or
[3, Chapter 7]) in the case where F is given with a C1+ parameterization, which
means that F has the form

F (x) =
{
f(x, u) : u ∈ U

}
(4)

with U ⊆ Rm compact and f : Rn × U → Rn satisfying

• f is continuous in (x, u), and
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• ∇xf(x, u) exists and is locally Lipschitz in x independent of u ∈ U : for each
r > 0, there exists k > 0 so that |x0|, |x1| ≤ r implies∣∣∇xf(x0, u)−∇xf(x1, u)

∣∣ ≤ k|x0 − x1|

for all u ∈ U .

The well-known Filippov lemma (cf. [3], Theorem 7.1.5) says a multifunction F of
the form (4) has (under minimal hypotheses that are in force here) the property
that the trajectories of the differential inclusion (2) coincide with the trajectories
of the associated control system. That is, an arc x(·) is a solution of (2) if and
only if there exists a measurable function u(·) : [t, T ]→ U so that x(·) satisfies the
ODE ẋ(s) = f

(
x(s), u(s)

)
for almost all s ∈ [t, T ]. Since the cost function ϕ(·)

in the Mayer problem (1) depends only on the endpoints of the trajectories of (2)
and not on how F may have been parameterized as in (4), it is natural to look
for assumptions directly on F (or, equivalently, its associated Hamiltonian) that
imply the semiconcavity of V rather than rely on a particular parameterization. To
further illustrate this point, with n = 1, the multifunction F (x) = [−|x|, |x|] can be
parameterized as

F (x) = {xu : |u| ≤ 1}
or as

F (x) = {|x|u : |u| ≤ 1} ,
the former having the C1+ parameterization property while the latter does not.
Of course the trajectories of the two systems coincide, but the heretofore known
theorems asserting semiconcavity of the value function only apply to the former
system.

We point out that although Lipschitz multifunctions with convex values always
admit parameterizations by Lipschitz functions (see [1] and [7]), it is a much more
challenging problem and still an open issue to determine which multifunctions ad-
mit parameterizations with smooth functions. If F (x) is originally presented as
in (4) by a smooth parameterization, and then the multifunction F (·) is given a
reparameterization by one of the known parameterization theorems, the resulting
reparameterization would generally not coincide with the original parameterization
and would not be smooth (except in the trivial case where F (x) is a singleton for
all x). Even worse is that it is not known in general which multifunctions admit a
smooth selection - see [8] for the case n = 1 - let alone be smoothly parameterized.

Our approach then is not based on finding a smooth parameterization, but rather
relies on assumptions stated directly in terms of the multifunction F . Recall the
Hamiltonian H : Rn × Rn → R associated to F is defined by

H(x, p) = sup
v∈F (x)

〈v, p〉, (5)

and that there is a one-to-one correspondence between Hamiltonian functions that
are convex and positively homogeneous in p and multifunctions F with closed and
convex values. The relationship is

v ∈ F (x) ⇐⇒ 〈v, p〉 ≤ H(x, p) ∀p ∈ Rn.

Hence assumptions given in terms of H are intrinsic to the trajectories generated by
F and are not influenced by any particular parameterization. Moreover, our proof
will rely heavily on the maximum principle instead of using a priori estimates on
trajectories that ensue from a known smooth parameterization, as is done in [2, 3].
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Precise and complete definitions and statements are given in the next two sec-
tions, but to give a flavor of our main result, it suffices to say here that in addition
to the usual Standing Hypotheses (SH) that are stated precisely in Section 3 below,
the new Hypotheses (H) are the following properties which are to hold for each
compact convex subset K ⊆ Rn and p 6= 0:

(H)



1) There exists a constant c ≥ 0 (depending on K) so that x 7→ H(x, p)

is semiconvex on K with constant c|p|,
and

2) The gradient ∇pH(x, p) exists and is locally Lipschitz in x, and

uniformly so over p in compact subsets of Rn \ {0}.

Some consequences and equivalent statements of the assumptions (H) are given in
Section 3. Somewhat stronger assumptions were introduced by Plís [9] for another
purpose, and we shall compare these later.

We next present examples that generate multifunctions satisfying (H) but do not
admit a C1 parameterization. Observe first that if F has the form (4) with f being
C1 in x, then H necessarily has the property

H(x, p) = −H(x,−p) ⇒ ∂xH(x, p) = −∂xH(x,−p), (6)

where ∂x denotes the Clarke partial subgradient in x. The proof of (6) consists
of noting that H(x, p) = −H(x,−p) implies every u ∈ U both maximizes and
minimizes the function u 7→ 〈f(x, u), p〉 over U . For such p 6= 0, it follows from
Theorem 2.8.2 of [4] that

∂xH(x, p) = co {〈∇xf(x, u), p〉 : u ∈ U} .
Similar reasoning gives

∂xH(x,−p) = co {〈∇xf(x, u),−p〉 : u ∈ U} .
Thus the necessary condition (6) holds if F has the form (4) with f being C1 in x.

A simple example of such an F : R1 ⇒ R1 that satisfies (H) but does not admit
a C1 parameterization is F (x) = [0, |x|]. Note then that

H(x, p) =

{
|x|p if p ≥ 0

0 if p < 0,

which clearly satisfies (H). (All one-dimensional examples that satisfy (H1) auto-
matically satisfy (H2)). It does not admit a C1 parameterization since at x = 0,
one has that

∂xH(0, 1) = [−1, 1] and ∂xH(0,−1) = {0} ,
and so (6) is violated. General one-dimensional examples can be generated by
writing F (x) in the form of an interval [h(x), H(x)]. If both −h(·) and H(·) are
semiconvex, then F satisfies (H), but in view of (6), a C1 parameterization could
exist only if the additional property that ∂H(x) = −∂h(x) holds whenever h(x) =
H(x). Simple higher dimensional examples can also be given by considering

F (x) = f(x) + r(x)IB

where f : Rn → Rn is C2, r : Rn → [0,∞) is semiconvex, and IB ⊂ Rn is the closed
unit ball. Then

H(x, p) = 〈f(x), p〉+ r(x)|p|
satisfies (H), but can only satisfy (6) if ∂r(x) = −∂r(x) whenever r(x) = 0.
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The rest of the paper is organized as follows. Basic concepts are reviewed in
Section 2, the rest of the hypotheses are precisely stated with some consequences
drawn in Section 3, and the main result and its proof form the content of Section 4.

2. Preliminaries. We quickly review in this section some basic concepts from
nonsmooth analysis. Standard references are [3, 6, 10, 4].

We denote by IB the unit ball of Rn centered at 0 and by IB its closure.
Let S ⊆ Rn be a closed set and x ∈ S. A vector ζ ∈ Rn is a proximal normal to

S at x provided there exists σ > 0 so that 〈ζ, y− x〉 ≤ σ‖y− x‖2 for all y ∈ S. The
proximal normal cone to S at x consists of all the proximal normals to S at x and
is denoted by NP

S (x). The Clarke normal cone NS(x) is defined as

co
{
ζ : ∃xi → x, ζi → ζ, ζi ∈ NP

S (xi)
}
,

where co denotes taking the closed convex hull.
Now suppose f : Rn → (−∞,+∞] is lower semicontinuous and

epi f = {(x, α) : α ≥ f(x)}
is its (closed) epigraph. For x ∈ dom f := {x : f(x) < ∞}, the set of proximal
subgradients of f at x is denoted by ∂P f(x) and equals{

ζ ∈ Rn : (ζ,−1) ∈ NP
epi f (x, f(x))

}
.

With f locally Lipschitz (i.e. for all compact sets K ⊂ Rn, there exists a constant
k so that x, y ∈ K implies |f(x)− f(y)| < k|x− y|), the Clarke subgradient ∂f(x)
equals

co
{
ζ : ∃xi → x, ζi → ζ, ζi ∈ ∂P f(xi)

}
,

or equivalently, consists of ζ ∈ Rn with (ζ,−1) ∈ Nepi f (x, f(x)). Another charac-
terization is that ζ ∈ ∂f(x) if and only if

〈ζ, v〉 ≤ f◦(x; v) := lim sup
y→x,h↓0

f(y + hv)− f(y)

h

for all v ∈ Rn.
The property of semiconcavity has several characterizations for both sets and

functions, and the following proposition lists some of the functional properties that
will be used in the sequel.

Proposition 1. For a convex set K ⊆ Rn, a function f : K → R, and a constant
c ≥ 0, the following properties are equivalent:

(1) for all x0, x1 ∈ K and 0 ≤ λ ≤ 1, one has

(1− λ)f(x0) + λf(x1)− f(xλ) ≤ cλ(1− λ)|x1 − x0|2,
where xλ = (1− λ)x0 + λx1,

(2) f is continuous and, for all x ∈ K and z ∈ Rn with x± z ∈ K, one has

f(x+ z) + f(x− z)− 2f(x) ≤ 2c|z|2 ,
(3) the map x 7→ f(x)− c|x|2 is concave.

Moreover, if K is open and f is locally Lipschitz, then any of the above properties
holds true if and only if

(4) for each x ∈ K and ζ ∈ ∂f(x), one has

f(y) ≤ f(x) + 〈ζ, y − x〉+ c|y − x|2

for all y ∈ K.
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We give the proof for the reader’s convenience.

Proof. For the proof of the fact that (1), (2) and (3) are equivalent see [3, Proposi-
tion 1.1.3].

Suppose that K is open and f is locally Lipschitz. Then the fact that (1) implies
(4) follows from [3, Proposition 3.3.1], since in this case the generalized gradient
coincides with the Fréchet superdifferential (see [3, Theorem 3.3.6]). Conversely, if
(4) holds true, then for all x0, x1 ∈ K and 0 ≤ λ ≤ 1, one has

(1− λ)f(x0) + λf(x1)− f(xλ) = (1− λ)[f(x0)− f(xλ)] + λ[f(x1)− f(xλ)]

≤ (1− λ)
[
〈ζ, x0 − xλ〉+ c|x0 − xλ|2

]
+ λ
[
〈ζ, x1 − xλ〉+ c|x1 − xλ|2

]
where ζ is any fixed element of the nonempty set ∂f(xλ). Since the above right-hand
side equals to cλ(1− λ)|x1 − x0|2, the conclusion follows.

A Lipschitz function f satisfying property (1) of Proposition 1 is called (linearly)
semiconcave on K with constant c. The above “concave” concepts have “convex”
counterparts by reversing the inequalities and the signs in the quadratic terms. In
other words, f is semiconvex on K if and only if −f is semiconcave on K.

The Hausdorff distance between two compact subsets S1 and S2 of Rn is defined
as

distH(S1, S2) = max
{

dist+
H(S1, S2),dist+

H(S2, S1)
}
,

where dist+
H(S, S′) = inf

{
ε : S ⊆ S′ + εIB

}
.

A multifunction F : Rm ⇒ Rn with compact values is Lipschitz on K ⊆
Rm provided there exists a constant k (called a Lipschitz rank of F ) so that
distH

(
F (x), F (y)

)
≤ k|x − y| for all x, y ∈ K. This holds if and only if for each

p ∈ Rn, x 7→ H(x, p) is a Lipschitz function on K with constant k|p|. The mid-point
property for a multifunction F on a convex subset K is that

dist+
H

(
2F (x), F (x+ z) + F (x− z)

)
≤ c|z|2 (7)

holds whenever x, x± z ∈ K. This is equivalent to x 7→ H(x, p) being semiconvex
on K for each p ∈ Rn with constant c|p|, which is the new assumption (H1) we shall
impose in proving our main result. Plís [9] assumed (7) but with dist+

H replaced by
distH, which is equivalent to x 7→ H(x, p) being C1+ for all p ∈ Rn.

It should be noted that (7) holds for any F parameterized as in (4) with f being
C1+ in x. Indeed, every v ∈ F (x) has the form v = f(x, u) for some u ∈ U . For
z ∈ Rn with x± z ∈ K, then v± := f(x± z, u) ∈ F (x± z) satisfies∣∣v+ + v− − 2v

∣∣ =
∣∣f(x+ z, u) + f(x− z, u)− 2f(x, u)

∣∣
=

∣∣∣∣∇xf(x+, u)z +∇xf(x−, u)(−z)
∣∣∣∣

≤
∣∣∇xf(x+, u)−∇xf(x−, u)

∣∣ |z|
≤ k|x+ − x−| |z|,

where x± is a point between x± z and k is a Lipschitz constant for x 7→ ∇xf(x, u)
on K. Since |x+ − x−| ≤ 2|z|, the property (7) follows with c := 2k.

If the above function or multifunction is defined on all of Rn, then all of the above
function and multifunction concepts can be quantified as being local, by which is
meant that the said property holds in every convex compact neighborhood K of
each point in Rn with the constant depending on K.
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We close this section with a lemma concerning partial subgradients under a
semiconvexity assumption. Recall that if a Lipschitz function of two variables is
convex in one of the variables, then [4, Proposition 2.5.3] says that the component
of a subgradient associated to the convex component is contained in the usual
convex subgradient of that component. The following result extends this “partial
inclusion” by allowing for the weaker semiconvex dependence.

Lemma 2.1. Suppose f : Rn ×Rm → R is Lipschitz in (x, y) on a boxed neighbor-
hood Ux × Uy = {(x, y) : max{|x − x̄|, |y − ȳ|} < δ}, and that for each y ∈ Uy, the
function x→ f(x, y) is semiconvex on Ux with constant independent of y. Then for
ζ = (ζx, ζy) ∈ ∂f(x̄, ȳ), one has ζx ∈ ∂xf(x̄, ȳ).

Proof. Let ζ = (ζx, ζy) ∈ ∂f(x̄, ȳ). We need to show

ζx ∈ ∂xf(x̄, ȳ),

which is equivalent to saying

〈ζx, u〉 ≤ lim sup
x→x̄,h↓0

f(x+ hu, ȳ)− f(x, ȳ)

h
(8)

for all u ∈ Rn. Since ζ ∈ ∂f(x̄, ȳ), we have

〈ζx, u〉+ 〈ζy, v〉 ≤ lim sup
x→x̄,y→ȳ,h↓0

f(x+ hu, y + hv)− f(x, y)

h

for all (u, v) ∈ Rn × Rn. Now fix u ∈ Rn and set v = 0, and so the previous line
reduces to

〈ζx, u〉 ≤ lim sup
x→x̄,y→ȳ,h↓0

f(x+ hu, y)− f(x, y)

h
. (9)

The semiconvexity assumption in x says there exists c > 0 so that x 7→ f(x, y) +
c |x− x̄|2 is convex (Proposition 1(3)), and so the quotients

1

h

{
f(x+ hu, y) + c |x− x̄+ hu|2 − f(x, y)− c |x− x̄|2

}
=

1

h

{
f(x+ hu, y)− f(x, y)

}
+ 2c 〈x− x̄, u〉+ ch|u|2 (10)

are nondecreasing as functions of h. Now fix λ > 0, and note that the last two
terms in (10) can be added to the limsup in (9) without changing the value. Hence
the right hand side of (9) is given by

lim
ε↓0

sup
|x−x̄|<λε, |y−ȳ|<λε

f(x+ εu, y)− f(x, y)

ε
(11)

This almost gives (8), but we need to replace y by ȳ. To this end, note that

f(x+ εu, y)− f(x, y)

ε
=
f(x+ εu, ȳ)− f(x, ȳ)

ε

+
f(x+ εu, y)− f(x+ εu, ȳ)

ε
+
f(x, ȳ)− f(x, y)

ε
(12)

With k the Lipschitz constant of f , and assuming the bound |y− ȳ| < λε contained
in (11), the last two terms in (12) are bounded by λk. Hence the limit in (11) can
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be bounded above as follows

lim
ε↓0

sup
|x−x̄|<λε, |y−ȳ|<λε

f(x+ εu, y)− f(x, y)

ε

≤ lim
ε↓0

sup
|x−x̄|<λε

f(x+ εu, ȳ)− f(x, ȳ)

ε
+ 2λk

= lim sup
x→x̄, h↓0

f(x+ hu, ȳ)− f(x, ȳ)

h
+ 2λk .

Finally, since u and λ are arbitrary, one concludes that (8) holds to complete the
proof.

Corollary 1. Suppose H is as in (5) and x 7→ H(x, p) is locally semiconvex. Then
∂H(x, p) ⊆ ∂xH(x, p)× ∂pH(x, p).

Proof. The result follows immediately from Lemma 2.1 applied to each
component.

3. Hypotheses and some consequences. Suppose F : Rn ⇒ Rn is a multifunc-
tion. A well-developed theory for differential inclusions exists under a collection of
so-called (strengthened) Standing Hypotheses :

(SH)


1)F (x) is nonempty, convex, and compact for each x ∈ Rn,
2)F is locally Lipschitz with respect to the Hausdorff metric,

3) there exists r > 0 so that max{|v| : v ∈ F (x)} ≤ r(1 + |x|).

The adjective strengthened refers to the Lipschitz assertion in the second assumption
(SH2) over the merely closedness of the graph

gr F = {(x, v) : v ∈ F (x)}

as given in [6].
Consider the differential inclusion (2) with the initial condition (3). Gronwall’s

inequality and (SH3) imply that every solution x(·) satisfies

|x(s)− x| ≤ r(s− t)er(s−t)(1 + |x|) ∀s ∈ [t, T ].

It is well-known that under (SH) and with ϕ locally Lipschitz, every problem of
type P(t, x) has at least one optimal solution. There are recent and significantly
refined necessary conditions for optimality in problem P(t, x) (cf. [5]), however we
only require a somewhat older one.

Theorem 3.1 ([4] Theorem 3.2.6). Assume that (SH) holds and ϕ : Rn → R is
locally Lipschitz. Suppose x̄(·) is an optimal solution of P(t, x). Then there exists
an arc p̄ : [t, T ]→ Rn so that(

− ˙̄p(s), ˙̄x(s)
)
∈ ∂H

(
x̄(s), p̄(s)

)
a.e. s ∈ [t, T ], (13)

−p̄(T ) ∈ ∂ϕ
(
x̄(T )

)
. (14)

Recall the assumption (H1), which says that the Hamiltonian is locally semicon-
vex in x with constant c|p|. This extra property implies that the inclusion in (13)
splits component-wise.
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Corollary 2. Under the assumptions and setup of the previous theorem, if assump-
tion (H1) also holds, then the arcs x̄(·) and p̄(·) satisfy

− ˙̄p(s) ∈ ∂xH
(
x̄(s), p̄(s)

)
and (15)

˙̄x(s) ∈ ∂pH
(
x̄(s), p̄(s)

)
(16)

for almost all s ∈ [t, T ].

Proof. The result follows immediately from (13) and Corollary 1.

Remark 1. We note that the (dual) arc p̄(·) has the following property:

• either p̄(s) 6= 0 for all s ∈ [t, T ],
• or p̄(s) = 0 for all s ∈ [t, T ].

Indeed, let K ⊂ Rn be a compact set containing x̄(s) for all s ∈ [t, T ] and let cK be
a Lipschitz constant for F on K, so that cK |p| turns out to be a Lipschitz constant
for H(·, p) on the same set. Then,

|ζ| ≤ cK |p| ∀ζ ∈ ∂xH(x, p) , ∀x ∈ K , ∀p ∈ Rn.

Hence, in view of (15),

| ˙̄p(s)| ≤ cK |p̄(s)| for a.e. s ∈ [t, T ].

Thus, the above alternative follows from the last inequality and Gronwall’s lemma.

Two other consequences of (H1) are contained in the following proposition.

Proposition 2. Suppose F satisfies (SH) and (H1), and let K ⊂ Rn be a bounded
open convex set. Then there exists a constant c > 0 so that

(1) for each x ∈ K and z ∈ Rn with x± = x± z ∈ K, we have

H(x+, p) +H(x−, p)− 2H(x, p) ≥ −c |p| |z|2; and

(2) for each x, y ∈ K, p ∈ Rn, and ζ ∈ ∂xH(x, p), we have

H(y, p) ≥ H(x, p) + 〈ζ, y − x〉 − c |p| |y − x|2.

Proof. These follow immediately from the semiconvex versions of Proposition 1(2)
and (4), respectively.

Now recall the assumption (H2), which was stated in terms of H being differ-
entiable in p with the derivative exhibiting Lipschitz dependence in x. The differ-
entiability statement is equivalent to the argmax set of v 7→ 〈v, p〉 over v ∈ F (x)
being a singleton v̄, which we denote by Fp(x) = v̄, and which equals ∇pH(x, p).
Note that p 7→ Fp(x) is thus continuous. The Lipschitz statement in (H2) says that
x 7→ Fp(x) is locally Lipschitz. The major utility and impact of (H2) is contained
in the following result.

Proposition 3. Assume that (SH) and (H) hold, and p(·) is an absolutely contin-
uous arc defined on [t, T ] with p(s) 6= 0 for all s ∈ [t, T ]. Then for each x ∈ Rn, the
initial value problem

(IVP)

{
ẋ(s) = Fp(s)

(
x(s)

)
a.e. s ∈ [t, T ]

x(t) = x

has a unique solution y(·; t, x). Moreover, x 7→ y(s; t, x) is locally Lipschitz on Rn
with constant independent of s ∈ [t, T ].
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Proof. Let
g(s, x) = Fp(s)(x) = ∇pH

(
x, p(s)

)
.

Then g : [t, T ] × Rn → Rn is continuous in s (since p 7→ Fp(x) is continuous),
locally Lipschitz in x (by (H2)), and has linear growth in x (by (SH3)). Hence by
standard ODE theory, (IVP) has a unique solution x(·) = y(·; t, x) defined on [t, T ]
with locally Lipschitz dependence on initial data.

We conclude this section with a result connecting regularity properties of H with
geometric properties of the multifunction F . Related results are contained in [10,
Proposition 12.60].

Proposition 4. Suppose F : Rn ⇒ Rn is a multifunction satisfying (SH), K ⊆ Rn
is compact and convex, and F satisfies (7) on K with constant c.

(1) Then H satisfies the property (H1) for the same constant c.
(2) Suppose in addition there exists a constant θ ≥ 1 such that for all x ∈ K and

p ∈ Rn, we have

vp ∈ Fp(x) =⇒ 〈v − vp, p〉 ≤ −c′ |p| |v − vp|θ ∀v ∈ F (x), (17)

where c′ > 0 is a constant dependent on K. Then ∇pH(x, p) exists for all
x ∈ K and p ∈ Rn \ {0}, and is Hölder continuous in x on K with exponent
1/θ, and unformly so over p in a compact subset of Rn \ {0}.

Proof. Let x ∈ K and z ∈ Rn be such that x± = x± z ∈ K, and select v ∈ F (x) so
that H(x, p) = 〈v, p〉. Then, in view of (7), there are vectors v± ∈ F (x±) such that
|v+ + v− − 2v| ≤ c|z|2, and therefore

H(x+, p) +H(x−, p)− 2H(x, p) ≥ 〈v+ + v− − 2v, p〉 ≥ −c |p| |z|2

whence the conclusion of part (1) follows.
As for part (2), observe (17) yields that Fp(x) is a singleton for all x ∈ K and

p 6= 0. As is well-known, this implies ∇pH(x, p) exists and Fp(x) = {∇pH(x, p)}.
To prove the continuity assertion, let x, x′ ∈ K and p ∈ Rn \ {0}, and set

vp = ∇pH(x, p) and v′p = ∇pH(x′, p).

Denote by v̄p and v̄′p, respectively, the projections of vp and v′p onto the convex sets
F (x′) and F (x). Then, owing to (SH2),

|vp − v̄p|+ |v′p − v̄′p| ≤ 2k |x− x′| , (18)

where k is the Lipschitz constant of F on K. Moreover, in view of (17)

〈v̄′p − vp, p〉 ≤ −c′ |p| |v̄′p − vp|θ

〈v̄p − v′p, p〉 ≤ −c′ |p| |v̄p − v′p|θ,
whence

|v̄′p − vp|θ + |v̄p − v′p|θ ≤ − 1

c′|p|

[
〈v̄′p − v′p, p〉+ 〈v̄p − vp, p〉

]
≤ 1

c′

[
|vp − v̄p|+ |v′p − v̄′p|

]
≤ 2k

c′
|x− x′|

where the last inequality comes from (18). Therefore

|v̄′p − vp|+ |v̄p − v′p| ≤ k′ |x− x′|1/θ (19)
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for k′ =
(

2k
c′

)1/θ
, and since |vp − v′p| ≤ |vp − v̄p| + |v̄p − v′p|, the conclusion follows

from (18) and (19).

4. The main result. We are now able to state and prove our main result.

Theorem 4.1. Assume F satisfies (SH) and (H), and ϕ(·) is locally semiconcave.
Then V is locally semiconcave on (−∞, T ]× Rn.

Proof. The fact that V (·, ·) is locally Lipschitz on (−∞, T ]×Rn is contained in Ex-
ercise 3.12(b) in Chapter 4 of [6]. Alternatively, it can be verified by combining the
Lipschitz parametrization theorem for multifunctions (see, either [1, Theorem 9.6.2]
or [7, Theorem 1]) with the Lipschitz regularity result for the value function of a
Mayer problem in the parametrized case ([3, Theorem 7.2.3]).

So, it suffices to show V (·, ·) is semiconcave on every bounded subset of (−∞, T ]×
Rn. Let t ≤ T and M > 0. We will show V is semiconcave on [t, T ] ×MIB by
verifying the mid-point property stated in Proposition 1(2). Let

K := {y ∈ Rn : |y| < er(T−t)(1 +M)− 1} ,
and note that |x| < M implies that any solution x(·) of (2),(3) satisfies x(s) ∈ K for
all s ∈ [t, T ]. Let c′ denote the semiconvexity constant of ϕ, and k1 the Lipschitz
rank of F , both on K.

With t fixed, we first consider the semiconcavity of x 7→ V (t, x). Let |x̄| < M ,
and suppose z ∈ Rn satisfies |x±| < M where x± := x̄± z. Let x̄(·) be an optimal
solution to P(t, x̄), and let p̄(·) be an associated adjoint arc. Thus

(
x̄(·), p̄(·)

)
satisfies the transversality condition (14), and by Corollary 2, also satisfies the
inclusions (15) and (16). Moreover, on account of Remark 1, only two cases may
occur: either p̄(s) 6= 0 for every s ∈ [t, T ], or p̄(s) = 0 for all such s.

Suppose p̄(s) 6= 0 for all s ∈ [t, T ]. With p(·) = p̄(·) in Proposition 3, let k2 be
the Lipschitz constant of x 7→ y(s; t, x) on {x : |x| ≤ M}, which is independent
of s ∈ [t, T ]. Now let x±(·) = y(·; t, x±) be the solutions of (IVP) with the initial
data x±. Then the Lipschitz assertion in Proposition 3 says that x±(s) ∈ K for all
s ∈ [t, T ], and so x±(·) satisfy

|x+(s)− x−(s)| ≤ k2|x+ − x−| = 2k2|z| ∀s ∈ [t, T ]. (20)

Recall from (16) and (H2) that ˙̄x(s) ∈ ∂pH
(
x̄(s), p̄(s)

)
=
{
Fp̄(s)

(
x̄(s)

)}
, which

implies x̄(·) = y(·; t, x) is the unique solution of (IVP). Again by the Lipschitz
assertion in Proposition 3, for all s ∈ [t, T ] we have

|x±(s)− x̄(s)| =
∣∣y(s; t, x±)− y(s; t, x̄)

∣∣
≤ k2|x± − x̄| = k2|z|. (21)

Next, suppose p̄(s) = 0 for all s ∈ [t, T ], denote by E the subset of [t, T ] at which
˙̄x exists, and define f : [t, T ]× Rn → Rn by

f(s, x) =

{
projF (x)( ˙̄x(s)) s ∈ E
projF (x)(0) s ∈ [t, T ] \ E,

where projF (x)(y) stands for the orthogonal projection of y onto F (x). Recalling

(SH), it is easy to see that

• x 7→ f(s, x) is continuous for all s ∈ [t, T ],
• s 7→ f(s, x) is measurable for all x ∈ Rn,
• |f(s, x)| ≤ r(1 + |x|) for all (s, x) ∈ [t, T ]× Rn.
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This time, let x±(·) be the solutions of the initial value problems{
ẋ(s) = f(s, x(s)) a.e. s ∈ [t, T ]

x(t) = x±.

Notice that x±(·) are, in particular, solutions of (2). Since E has full Lebesgue
measure in [t, T ], for a. e. s ∈ [t, T ] we have

|ẋ±(s)− ˙̄x(s)| = | ˙̄x(s)− projF (x±(s))( ˙̄x(s))| ≤ k1|x±(s)− x̄(s)|.
Therefore, applying Gronwall’s lemma we obtain once again Lipschitz estimates of
the form (20) and (21) for suitable Lipschitz constants. Hereafter, we will denote by
x±(·) the trajectories provided by either one of the above constructions, assuming
that estimates (20) and (21) hold true.

We are now prepared to estimate the value function. One notes that

V (t, x̄+ z) + V (t, x̄− z)− 2V (t, x̄)

= V (t, x+) + V (t, x−)− 2V (t, x̄)

≤ ϕ
(
x+(T )

)
+ ϕ

(
x−(T )

)
− 2ϕ

(
x̄(T )

)
= ϕ

(
x+(T )

)
+ ϕ

(
x−(T )

)
− 2ϕ

(
x+(T ) + x−(T )

2

)
+ 2

[
ϕ

(
x+(T ) + x−(T )

2

)
− ϕ

(
x̄(T )

)]
.

Since x±(T ) ∈ K, the semiconcavity of ϕ(·) implies that

ϕ
(
x+(T )

)
+ ϕ

(
x−(T )

)
− 2ϕ

(
x+(T ) + x−(T )

2

)
≤ c′

∣∣x+(T )− x−(T )
∣∣2

≤ 4c′k2
2|z|2, (22)

where the last inequality holds by (20).
The transversality condition (14) says that −p̄(T ) ∈ ∂ϕ

(
x̄(T )

)
, and since ϕ is

semiconcave, one has −∂ϕ(x) = ∂P (−ϕ)(x). Therefore p̄(T ) ∈ ∂P (−ϕ)
(
x̄(T )

)
, and

by Proposition 1(4) we have

ϕ

(
x+(T ) + x−(T )

2

)
− ϕ

(
x̄(T )

)
≤
〈
−p̄(T ),

x+(T ) + x−(T )

2
− x̄(T )

〉
+ c

∣∣∣∣x+(T ) + x−(T )

2
− x̄(T )

∣∣∣∣2 . (23)

Now (21) implies the second term on the right hand side in (23) is bounded above
by ck2

2|z|2. We still need to treat the first term in (23), which is the most difficult
to estimate. It can be rewritten as〈

−p̄(T ),
x+(T ) + x−(T )

2
− x̄(T )

〉
=

1

2

∫ T

t

d

ds

〈
−p̄(s), x+(s) + x−(s)− 2x̄(s)

〉
ds

=
1

2

∫ T

t

[〈
− ˙̄p(s), x+(s) + x−(s)− 2x̄(s)

〉
(24)

+
〈
p̄(s), 2 ˙̄x(s)− ẋ+(s)− ẋ−(s)

〉]
ds. (25)
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Now, each of x̄(·), x±(·) are solutions to (IVP) with p(t) = p̄(t), and so, for almost
all s ∈ [t, T ], one has 〈p̄(s), ẋ(s)〉 = H

(
x(s), p̄(s)

)
for x(·) = x̄(·), x±(·). Therefore

the last term (25) can be rewritten as

1

2

∫ T

t

〈
p̄(s), 2 ˙̄x(s)− ẋ+(s)− ẋ−(s)

〉
ds

=

∫ T

t

{
H
(
x̄(s), p̄(s)

)
−
H
(
x+(s), p̄(s)

)
+H

(
x−(s), p̄(s)

)
2

}
ds

=

∫ T

t

{
H
(
x̄(s), p̄(s)

)
−H

(
x+(s) + x−(s)

2
, p̄(s)

)}
ds (26)

+

∫ T

t

{
H

(
x+(s) + x−(s)

2
, p̄(s)

)
−
H
(
x+(s), p̄(s)

)
+H

(
x−(s), p̄(s)

)
2

}
ds

We now use Proposition 2 to bound the two integrals in (26). The second integrand
is bounded above for each s ∈ [t, T ] by

c |p̄(s)| |x+(s)− x−(s)|2 ,
which is a consequence of Proposition 2(1), and this in turn is bounded by (20) by
4 c k2

2 ‖p̄(·)‖∞|z|2. As for the first one, recall that

− ˙̄p(s) ∈ ∂xH
(
x̄(s), p̄(s)

)
by (15), and so by Proposition 2(2), the first integrand in (26) is bounded above by〈

˙̄p(s),
x+(s) + x−(s)

2
− x̄(s)

〉
+ c |p̄(s)|

∣∣∣∣x+(s) + x−(s)

2
− x̄(s)

∣∣∣∣2 (27)

As we integrate (27) from t to T , the result of the first term in (27) is precisely the
negative of (24), and so these terms cancel. The integral of the second term in (27)
is bounded above by (T − t)c‖p̄(·)‖∞k2

2|z|2.
We now collect all the bounds together, and conclude

V (t, x̄+ z) + V (t, x̄− z)− 2V (t, x̄) ≤ c̄|z|2

where c̄ = 4c′k2
2 + 2ck2

2 + 8ck2
2‖p̄(·)‖∞ + 2(T − t)c‖p̄(·)‖∞k2

2.
Next, we consider the joint semiconvexity of V (·, ·) in (t, x). Suppose τ > 0 is

such that t+ τ ≤ T , and let x̄, z ∈ Rn with |x±| < M where x± = x̄± z. We need
to show there exists a constant c so that

V (t+ τ, x+) + V (t− τ, x−)− 2V (t, x̄) ≤ c
(
|τ |2 + |z|2

)
. (28)

Let x̄(·) be an optimal solution to P(t, x̄), let p̄(·) be an associated adjoint arc, and
suppose p̄(s) 6= 0 for every s ∈ [t, T ]. Let x−(·) be the solution to (IVP) as in
Proposition 3 that is defined on the interval [t− τ, t+ τ ] with

p(s) = p̄

(
t+ τ + s

2

)
(29)

and initial condition x−(t− τ) = x̄− z. By the Principle of Optimality, we have

V (t− τ, x̄− z) ≤ V
(
t+ τ, x−(t+ τ)

)
and

V (t, x̄) = V
(
t+ τ, x̄(t+ τ)

)
.
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Therefore

V (t+ τ, x+) + V (t− τ, x−)− 2V (t, x̄)

≤ V
(
t+ τ, x+

)
+ V

(
t+ τ, x−(t+ τ)

)
− 2V

(
t+ τ, x̄(t+ τ)

)
= V

(
t+ τ, x+

)
+ V

(
t+ τ, x−(t+ τ)

)
− 2V

(
t+ τ,

x+ + x−(t+ τ)

2

)
+2V

(
t+ τ,

x+ + x−(t+ τ)

2

)
− 2V

(
t+ τ, x̄(t+ τ)

)
≤ c

∣∣x+ − x−(t+ τ)
∣∣2

+2

[
V

(
t+ τ,

x+ + x−(t+ τ)

2

)
− V

(
t+ τ, x̄(t+ τ)

)]
,

where in the last inequality we used the semiconcavity property of x 7→ V (t+ τ, x)
that was proven above. Observe that∣∣x+ − x−(t+ τ)

∣∣ =
∣∣2z − ∫ t+τ

t−τ
ẋ−(s) ds

∣∣ ≤ c1(|z|+ τ
)

(30)

for some constant c1. Moreover,

x+ + x−(t+ τ)− 2x̄(t+ τ) =

∫ t+τ

t−τ
ẋ−(s′) ds′ − 2

∫ t+τ

t

˙̄x(s) ds

= 2

∫ t+τ

t

[
ẋ−(2s− t− τ)− ˙̄x(s)

]
ds,

where in the first integral term we used the change of variables

t+ τ + s′

2
= s .

Now,
ẋ−(2s− t− τ) ∈ Fp̄(s)

(
x−(2s− t− τ)

)
owing to (29), and

˙̄x(s) ∈ Fp̄(s)
(
x̄(s)

)
.

Since x 7→ Fp̄(s)(x) is locally Lipschitz by (H2), there exists a constant c2 so that
for every s ∈ [t, t+ τ ]∣∣ẋ−(2s− t− τ)− ˙̄x(s)

∣∣ ≤ c2
∣∣x−(2s− t− τ)− x̄(s)

∣∣
≤ c3

(
|z|+ τ

)
.

Therefore, ∣∣x+ + x−(t+ τ)− 2x̄(t+ τ)
∣∣ ≤ c3τ(|z|+ τ) ≤ 2c3

(
|z|2 + τ2

)
. (31)

At this point, let us observe that estimates (30) and (31) remain true when
p̄(s) = 0 for all s ∈ [t, T ]. Indeed, one can proceed as above defining x−(·) by{

ẋ(s) = f−(s, x(s)) a.e. s ∈ [t− τ, t+ τ ]

x(t) = x−.

where

f−(s, x) := f
( t+ τ + s

2
, x
)

(s, x) ∈ [t− τ, t+ τ ]× Rn.

Finally, using the Lipschitz property of x 7→ V (t, x), we have by (30) and (31)
that

V (t+ τ, x+) + V (t− τ, x−)− 2V (t, x̄) ≤
(
cc21 + 2c3

)
(|z|2 + τ2

)
,
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which finishes the proof.
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