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CONTROLLABILITY OF 1-D COUPLED DEGENERATE
PARABOLIC EQUATIONS

PIERMARCO CANNARSA, LUZ DE TERESA

Abstract. This paper is devoted to the study of null controllability proper-

ties for two systems of coupled one dimensional degenerate parabolic equations.

The first system consists of two forward equations, while the second one con-
sists of one forward equation and one backward equation. Both systems are in

cascade, that is, the solution of the first equation acts as a control for the sec-
ond equation and the control function only acts directly in the first equation.

We prove positive null controllability results when the control and coupling

sets have nonempty intersection and 0 does not belong to the coupling set.

1. Statement of the problem

In this paper we are concerned with the controllability properties of systems of
coupled degenerate parabolic equations. We are going to consider two different
kind of systems: the first one consists of two forward equations and the second one,
consists of one forward equation and one backward equation. More precisely, given
two non empty open sets ω ⊂ (0, 1) and O ⊂ (0, 1) and a number α ∈ [0, 2), we
consider the system of equations

yt − (xαyx)x + c(t, x)y = ξ + hIω in Q = (0, T )× (0, 1) ,

y(t, 1) = 0 t ∈ (0, T ) ,

y(t, 0) = 0 if 0 ≤ α < 1, t ∈ (0, T ) ,

(xαyx)(t, 0) = 0 if 1 ≤ α < 2, t ∈ (0, T ) ,

y(0, ·) = y0 in (0, 1) ,

(1.1) eq:1

and
ut − (xαux)x + d(t, x)u = yIO in Q ,

u(t, 1) = 0 t ∈ (0, T ) ,

u(t, 0) = 0 if 0 ≤ α < 1, t ∈ (0, T ) ,

(xαux)(t, 0) = 0 if 1 ≤ α < 2, t ∈ (0, T ) ,

u(0, ·) = u0 in (0, 1) ,

(1.2) eq:2
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or the system
yt − (xαyx)x + c(t, x)y = ξ + hIω in Q ,

y(t, 1) = 0 t ∈ (0, T ) ,

y(t, 0) = 0 if 0 ≤ α < 1, t ∈ (0, T ) ,

(xαyx)(t, 0) = 0 if 1 ≤ α < 2, t ∈ (0, T ) ,

y(0, ·) = y0 in (0, 1) ,

(1.3) eq:3

and
−qt − (xαqx)x + d(t, x)q = yIO in Q ,

q(t, 1) = 0 t ∈ (0, T ) ,

q(t, 0) = 0 if 0 ≤ α < 1, t ∈ (0, T ) ,

(xαqx)(t, 0) = 0 if 1 ≤ α < 2, t ∈ (0, T ) ,

q(T, ·) = 0 in (0, 1) ,

(1.4) eq:4

where y0 ∈ L2(0, 1), ξ ∈ L2(Q), c(t, x), d(t, x) ∈ L∞(Q) are given, h denotes a
control function to be determined, and IA denotes the characteristic function of the
set A.

Models of type (1.1)-(1.2) are the linear version of more complex models that
appear in mathematical biology and in a wide variety of physical situations (see
e.g. [17, 20, 9]). The controllability properties of nondegenerate parabolic cascade
systems have been studied in different contexts in the last fifteen years or so (see
[2, 22, 3, 4, 14, 16, 18]). However, as far as we know, the degenerate case has not
been analyzed in the literature.

On the other hand, coupled systems like (1.3)-(1.4) arise in a natural way when
treating “insensitizing problems” (see [19] for the original formulation). To be more
specific, consider the system of equations

ȳt − (xαȳx)x + c(t, x)ȳ = ξ + hIω in Q ,

ȳ(t, 1) = 0 t ∈ (0, T ) ,

ȳ(t, 0) = 0 if 0 ≤ α < 1, t ∈ (0, T ) ,

(xαȳx)(t, 0) = 0 if 1 ≤ α < 2, t ∈ (0, T ) ,

ȳ(0, ·) = y0 + τ ȳ0 in (0, 1) .

(1.5) eq:6

In this system, ξ ∈ L2(Q) and y0 ∈ L2(Ω) are given, h ∈ L2(ω× (0, T )) is a control
to be determined and ȳ0 ∈ L2(Ω) is unknown but τ is small and ‖ȳ0‖2 = 1. Let
O ⊂ Ω be a nonempty set, and consider the functional

Φ(h, τ) =
1
2

∫ T

0

∫
O
|ȳ|2 dx dt.

We will say that h insensitizes Φ if
∂Φ
∂τ

∣∣
τ=0

= 0. (1.6) eq:ins

It is not difficult to see (e.g.[2]) that condition (1.6) is equivalent to obtain a control
h such that system (1.3)-(1.4) satisfies q(0, ·) = 0.

In this paper we extend the Carleman estimates obtained in one dimensional
domains by the first author and collaborators [6, 1] to the case of cascade systems
as specified before, and recover controllability results similar to those obtained in
[22] and [15].
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We introduce the weight eM (t) = exp(Mt−4), and define the Hilbert space

L2(eM (t)) =
{
f :
∫ T

0

∫
Ω

f2(t, x)eM (t) dx dt <∞
}
.

The main results in this paper are as follows.

thm1 Theorem 1.1. Assume that 0 6∈ O and that ω ∩ O 6= ∅. There exists a positive
constant M = M(ω, T ) such that, if ξ ∈ L2(eM (T − t)) and y0, u0 ∈ L2(Ω), then
there exists h ∈ L2(Q) such that the corresponding solution to (1.1)-(1.2) satisfies
y(T, ·) = u(T, ·) = 0.

thm2 Theorem 1.2. Assume that 0 6∈ O and that ω ∩ O 6= ∅. There exists a positive
constant M = M(ω, T ) such that, if ξ ∈ L2(eM (t)) and y0 = 0, then there exists
h ∈ L2(Q) such that the corresponding solution to (1.3)-(1.4) satisfies q(0, ·) = 0.

Remark 1.3. Observe that in Theorem 1.2, we require y0 to be equal to zero. In
[22], for the non degenerate case, it is proved that there exists initial data y0 ∈ L2(Ω)
such that the solution q to (1.4) does not vanish at t = 0 for any h ∈ L2(ω×(0, T )).
In other words, system (1.3)-(1.4) is not null controllable for general initial data
in L2. This situation is due to the fact that equation (1.3) is forward in time and
equation (1.4) is backward. A more complete analysis of this phenomenon (in the
non degenerate case) can be found in [22] and in [23].

It is by now well understood that the null controllability of systems is equivalent
to the validity of an observability inequality for the adjoint system. To be more
specific, instead of proving Theorems 1.1 and 1.2 directly, we will prove equivalent
results. That is, we consider the adjoint system to (1.1)-(1.2),

zt + (xαzx)x − c(t, x)z = vIO in Q ,

z(t, 1) = 0 t ∈ (0, T ) ,

z(t, 0) = 0 if 0 ≤ α < 1, t ∈ (0, T ) ,

(xαzx)(t, 0) = 0 if 1 ≤ α < 2, t ∈ (0, T ) ,

z(T, ·) = z0 in (0, 1)

(1.7) eq:28M

and
vt + (xαvx)x − d(t, x)v = 0 in Q ,

v(t, 1) = 0 t ∈ (0, T ) ,

v(t, 0) = 0 if 0 ≤ α < 1, t ∈ (0, T ) ,

(xαvx)(t, 0) = 0 if 1 ≤ α < 2, t ∈ (0, T ),

v(T, ·) = v0 in (0, 1) ,

(1.8) eq:27M

and the adjoint system to (1.3)-(1.4):

zt + (xαzx)x − c(t, x)z = pIO in Q ,

z(t, 1) = 0 t ∈ (0, T ) ,

z(t, 0) = 0 if 0 ≤ α < 1, t ∈ (0, T ) ,

(xαzx)(t, 0) = 0 if 1 ≤ α < 2, t ∈ (0, T ),

z(T, ·) = 0 in (0, 1).

(1.9) eq:28
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and
pt − (xαpx)x + d(t, x)p = 0 in Q ,

p(t, 1) = 0 t ∈ (0, T ), t ∈ (0, T ) ,

p(t, 0) = 0 if 0 ≤ α < 1, t ∈ (0, T ),

(xαpx)(t, 0) = 0 if 1 ≤ α < 2, t ∈ (0, T ),

p(0, ·) = p0 in (0, 1) .

(1.10) eq:27

Then we have the following observability inequalities.

prop:main3 Proposition 1.4. Suppose O ∩ ω 6= ∅ and suppose that 0 6∈ O. Then, there exist
constants M > 0 large enough and C > 0 such that for every solution to (1.7)-
(1.8)the following holds∫

Ω

(v2(0) + z2(0))dx+
∫∫

Q

e−M/(T−t)4z2 dx dt ≤ C
∫ T

0

∫
ω

z2 dx dt . (1.11) eq:36

Moreover, there exist positive constants M and C such that for every solution to
(1.9)-(1.10) the following holds∫∫

Q

e−M/t4z2 dx dt ≤ C
∫ T

0

∫
ω

z2 dx dt. (1.12) eq:37

The rest of the paper is structured in the following way. In the next section we
prove a Carleman inequality for a single parabolic degenerate heat equation. This
inequality will be used in Section 3 to prove Carleman inequalities for the cascade
systems (1.7)-(1.8) and (1.9)-(1.10). In the last section we prove (1.11) and (1.12),
and sketch a proof of Theorem 1.1, the proof of Theorem 1.2 being similar.

2. Degenerate parabolic equations

In this section we are concerned with the solutions of a degenerate parabolic
equation of the form

vt + (xαvx)x + c(t, x)v = F in Q ,

v(t, 1) = 0 t ∈ (0, T ) ,

v(t, 0) = 0 if 0 ≤ α < 1, t ∈ (0, T ) ,

(xαvx)(t, 0) = 0 if 1 ≤ α < 2, t ∈ (0, T ) ,

v(0, ·) = v0 in (0, 1) .

(2.1) eq:7

In the first part of this chapter we prove existence and uniqueness and, in the second
part, we prove the Carleman inequality for (2.1) that we will use in Chapter 3.

2.1. Well-posedness. First, we briefly describe the weighted spaces where the
above problem is well-posed. Let us set a(x) = xα. For 0 ≤ α < 1, define the
Hilbert space

H1
a(0, 1) :=

{
u ∈ L2(0, 1) : u is absolutely continuous in [0, 1],
√
aux ∈ L2(0, 1) and u(0) = u(1) = 0

}
,

and the unbounded operator A : D(A) ⊂ L2(0, 1)→ L2(0, 1) by

∀u ∈ D(A), Au := (aux)x,

D(A) := {u ∈ H1
a(0, 1) : aux ∈ H1(0, 1)}.
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Notice that, if u ∈ D(A) (or even u ∈ H1
a(0, 1)), then u satisfies the Dirichlet

boundary conditions u(0) = u(1) = 0.
For 1 ≤ α < 2, let us change the definition of H1

a(0, 1) to

H1
a(0, 1) := {u ∈ L2(0, 1) : u is locally absolutely continuous in (0, 1],

√
aux ∈ L2(0, 1) and u(1) = 0} .

Then, the operator A : D(A) ⊂ L2(0, 1)→ L2(0, 1) will be defined by

∀u ∈ D(A), Au := (aux)x,

D(A) :=
{
u ∈ L2(0, 1) : u is locally absolutely continuous in (0, 1],

au ∈ H1
0 (0, 1), aux ∈ H1(0, 1) and (aux)(0) = 0

}
.

In fact, it can be proved (see, e.g., [7]) that

D(A) = {u ∈ H1
a(0, 1) : aux ∈ H1(0, 1)} .

Notice that when u ∈ D(A), then u satisfies the Neumann boundary condition
(aux)(0) = 0 and the Dirichlet boundary condition u(1) = 0.

In both cases 0 ≤ α < 1 and 1 ≤ α < 2, the following results hold, (see, e.g., [5]
and [6]).

prop-A Proposition 2.1. The operator A : D(A) ⊂ L2(0, 1) → L2(0, 1) is closed self-
adjoint negative, with dense domain.

Hence, A is the infinitesimal generator of a strongly continuous semigroup etA

on L2(0, 1). Consequently, we have the following well-posedness result.

thm-wp Theorem 2.2. Let F be given in L2(QT ). For all v0 ∈ L2(0, 1), problem (2.1) has
a unique solution

v ∈ U := C0([0, T ];L2(0, 1)) ∩ L2(0, T ;H1
a(0, 1)). (2.2) reg1

Moreover, if v0 ∈ D(A), then

v ∈ C0([0, T ];H1
a(0, 1)) ∩ L2(0, T ;D(A)) ∩H1(0, T ;L2(0, 1)). (2.3) reg2

Remark 2.3. Most of the results of this paper hold (and will be stated) for solu-
tions in the above class (2.2). However, in the proofs, we will assume–often without
further notice–that solutions belong to the stronger class (2.3). This can yields no
loss of generality, since the general result can always be recovered by a standard
density argument.

2.2. Carleman inequalities. For ω = (a, b) let us call κ = 2a+b
3 , λ = a+2b

3 , and
let ξ ∈ C2(R) be such that 0 ≤ ξ ≤ 1 and

ξ(x) =

{
1 if x ∈ (0, κ)
0 if x ∈ (λ, 1).

Let us define

θ(t) =
1

(t(T − t))4
∀t ∈ (0, T ),

ψ(x) =

{
(x2−α − c1), 0 ≤ α < 2, α 6= 1, ∀x ∈ [0, 1]
(ex − c1), α = 1, ∀x ∈ [0, 1]
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where c1 is such that ψ(x) < 0 for every x ∈ [0, 1]. Now, let us set

ζ(x) =
1− xα/2

1− α/2
,

Ψ(x) = e2rζ(0) − erζ(x)

Φ(t, x) = θ(t)[ξ(x)ψ(x)− (1− ξ(x))Ψ(x)].

The main result of this section is as follows.

teor:main1I Theorem 2.4. Let 0 ≤ α < 2 and T > 0 be given. Then there exists two positive
constants C, s0 such that for all s ≥ s0 and for every solution v ∈ U to (2.1),∫∫

Q

(sθxαv2
x + s3θ3x2−αv2)e2sΦ dx dt

≤ C
(∫∫

Q

e2sΦF 2 dx dt+
∫ T

0

∫
ω

e2sΦv2 dx dt
) (2.4) eq:8I

Remark 2.5. This inequality was basically proved in [6, 1, 8]. The reason why we
provide the proof is that, here, we need the locally distributed term in the right-
hand side of (2.4) to appear with the same exponential weight as in the left-hand
side of the inequality. In [6, 1, 8] such a term was replaced by a boundary term
involving the normal derivative of the solution.

The proof of Theorem 2.4 will be given at the end of this section as a consequence
of the following result. Let us consider any solution v to the system

vt + (xαvx)x = F in Q ,

v(t, 1) = 0 t ∈ (0, T ) ,

v(t, 0) = 0 if 0 ≤ α < 1, t ∈ (0, T ) ,

(xαvx)(t, 0) = 0 if 1 ≤ α < 2, t ∈ (0, T ) ,

v(0, ·) = v0 in (0, 1) .

(2.5) eq:10

teor:main2I Theorem 2.6. Let 0 ≤ α < 2 and T > 0 be given. Then there exists two positive
constants C, s0 such that for all s ≥ s0 and for every solution v ∈ U to (2.5),∫∫

Q

(sθxαv2
x + s3θ3x2−αv2)e2sΦ dx dt

≤ C
(∫∫

Q

e2sΦF 2 dx dt+
∫ T

0

∫
ω

e2sΦv2
) (2.6) eq:11I

The proof of Theorem 2.6 follows the ideas of [1]. That is, we prove first a
Carleman inequality for the degenerate part and combine it with a classical Car-
leman inequality for the non degenerate part. We will see that the appropriate
combination of both inequalities drives to (2.6).

Let ϕ(t, x) = ψ(x)θ(t). Then we will prove the following result.

teor:main1 Theorem 2.7. Let 0 ≤ α < 2 and T > 0 be given. Then there exists two positive
constants C, s0 such that for all s ≥ s0 and for every solution v ∈ U to (2.5),∫∫

Q

( |(xαvx)x|2

sθ
+
|vt|2

sθ
+ s3θ3xαv2

x + s3θ3x2−αv2
)
e2sϕ dx dt

≤ C
(∫∫

Q

e2sϕF 2 dx dt+
∫ T

0

sθe2sϕv2
x|x=1

)
.

(2.7) eq:8
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For the proof of Theorem 2.7 we follow the ideas in [6, 1], that is we use an
appropriate change of variables and the following Hardy type inequality.

Lemma 2.8. (1) Let 0 ≤ α∗ < 1. Then, for all locally absolutely continuous
function u ∈ (0, 1) satisfying

u(x)→ 0 as x→ 0+ and
∫ 1

0

xα
∗
u2
xdx <∞,

the following inequality holds∫ 1

0

xα
∗−2u2dx ≤ 4

(1− α∗)2

∫ 1

0

xα
∗
u2
xdx. (2.8) eq:9

(2) Let 1 < α∗ < 2, then the above inequality (2.8) still holds for all locally
absolutely continuous function u in (0, 1) satisfying

u(x)→ 0 as x→ 1− and
∫ 1

0

xα
∗
u2
xdx <∞.

Remark 2.9. Observe that (2.8) is false for α∗ = 1.

Sketch of the proof of Theorem 2.7. Let us define w(t, x) = esϕ(t,x)v(t, x)
where v satisfies (2.5). Then w solves

(e−sϕw)t + (xα(e−sϕw)x)x = F in Q ,

w(t, 1) = 0 t ∈ (0, T ) ,

w(t, 0) = 0 if 0 ≤ α < 1, t ∈ (0, T ) ,

(xαwx)(t, 0) = 0 if 1 ≤ α < 2, t ∈ (0, T ) ,

w(0, ·) = w(T, ·) = 0 in (0, 1) ,

(2.9) eq:12

We can rewrite the above system as

Psw = P+
s w + P−s w = Fesϕ

where

P+
s w = −sϕtw + s2xαϕ2

xw + (xαwx)x,

P−s = wt − s(xαϕx)xw − 2sxαϕxwx.

We observe that, for α 6= 1,

(xαwx)x = P+
s w + sθt(x2−α − c1)w − s2c2x

2−αθ2w (2.10) eq:13

with c2 a generic constant, whereas, for α = 1,

(xαwx)x = P+
s w + sθt(ex − c1)w − s2xe2xθ2w. (2.11) eq:13.1

Observe that

‖Fesϕ‖2 ≥ ‖P+
s w‖2 + ‖P−s w‖2 + 2〈P+

s w,P
−
s w〉.

Following [6], we conclude that, for every 0 ≤ α < 2,

‖Fesϕ‖2 ≥ ‖P+
s w‖2 + ‖P−s w‖2 + 2〈P+

s w,P
−
s w〉

≥ ‖P+
s w‖2 + ‖P−s w‖2 + Cs3

∫∫
Q

θ3x2−αw2 + Cs

∫∫
θxαw2

x

− C ′
∫ T

0

{sθw2
x}
∣∣∣
x=1

.

(2.12) eq:des
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Now, we consider the case α 6= 1. From (2.10) and the fact that |θt| ≤ Cθ5/4 ≤
Cθ2 we obtain∫∫

Q

|(xαwx)x|2

θs
dx dt

≤ C
(∫∫

Q

|P+
s |2

θs
+ s

θ2
t

θ
w2 + s

θ2
t

θ
x2(2−α)w2 + s3θ3x2(2−α)w2 dx dt

)
.

(2.13) eq:14

Observe that∫∫
Q

s
θ2
t

θ
w2 ≤ C

∫∫
Q

sθ3/2w2 dx dt

= C

∫∫
s1/2θ1/2wx

α−2
2 θwx−(α−2

2 )s1/2 dx dt

≤ C
[ ∫∫

Q

sθw2xα−2 +
∫∫

sθ2w2x2−α dx dt
]

and, since x ≤ 1 and θ3/2 ≤ C(T )θ2,∫∫
Q

s
θ2
t

θ
x2(2−α)w2 ≤ C

∫∫
Q

sθ3/2x2(2−α)w2 dx dt

= C

∫∫
sθ2w2x2−α dx dt.

In conclusion,∫∫
Q

|(xαwx)x|2

θs
dx dt ≤ C

(∫∫
Q

|P+
s |2

θs
+s3θ3w2x2−α dx dt+

∫∫
Q

sθw2xα−2 dx dt
)
.

Applying Hardy’s inequality, we obtain∫∫
Q

|(xαwx)x|2

θs
dx dt

≤ C
(∫∫

Q

|P+
s |2

θs
dx dt+

∫∫
Q

s3θ
3
w2x2−α dx dt+

∫∫
Q

sθw2
xx

α dx dt
)
.

(2.14) eq:15

Proceeding as before, it is not difficult to prove that∫∫
Q

|wt|2

θs
dx dt

≤ C
(∫∫

Q

|P−s |2

θs
dx dt+

∫∫
Q

s3θ3w2x2−α dx dt+
∫∫

Q

sθw2
xx

α dx dt
)
.

(2.15) eq:16

Combining (2.12), (2.14) and (2.15) we conclude that, for s large enough,

C‖Fesϕ‖2 ≥
∫∫

Q

|wt|2

θs
dx dt+

∫∫
Q

|(xαwx)x|2

θs
dx dt

+ s3

∫∫
Q

θ3x2−αw2 + s

∫∫
θxαw2

x − C ′
∫ T

0

{sθw2
x}
∣∣∣
x=1

.

(2.16) eq:17

For α 6= 1 recall that ϕ = θ(t)ψ(x) with

ψx = c1(2− α)x1−α and ψxx = c1(2− α)(1− α)x−α.
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Then x2αψ4
x = Cx2(2−α) and xαψ2

x = Cx2−α. Moreover, v(t, x) = e−sϕw(t, x),
vt = −sθtψe−sϕw + e−sϕwt and vx(t, x) = −sθψxe−sϕw + e−sϕw. Therefore,∫∫

Q

(
s3θ3x2−αv2 + sθxαv2

x +
v2
t

θs
+

(xαvx)2
x

θs

)
dx dt

≤
∫∫

Q

(
s3θ3x2−αe−2sϕw2 + sθxα(2s2θ2ψ2

xe
−2sϕw2) + 2e−2sϕw2

x

)
dx dt

+
∫∫

Q

(
2
e−2sϕw2

t

θs
+ 2

s2θ2
tψ

2e−2sϕw2

θs
+

2
θs

(xαwx)2
xe
−2sϕ

)
dx dt

+
∫∫

Q

(
2
s2θ2

θs
αx2(α−1)ψ2

xe
−2sϕw2 + 2

s2θ2

sθ
x2αψ2

xxe
−2sϕw2

)
dx dt

+
∫∫

Q

(
2
s4θ4

sθ
x2αψ2

xe
−2sϕw2 + 4

s2θ2

sθ
x2αψ2

xe
−2sϕw2

x

)
dx dt.

Using several times the Hardy type estimate and the bounds on ϕ and on its
derivatives, it is not difficult to conclude that∫∫

Q

e2sϕ
(
s3θ3x2−αv2 + sθxαv2

x +
v2
t

θs
+

(xαvx)2
x

θs

)
≤ C

∫∫
Q

(
s3θ3x2−αw2 + sθxαw2

x +
w2
t

θs
+

(xαwx)2
x

θs

)
.

(2.17) eq:20

Observe that v|x=1 = 0 and then vx|x=1 = esϕwx|x=1. The latter combined with
(2.16) and (2.17) leads to (2.7).

We now consider the case α = 1. From (2.11) we have∫∫
Q

|(xαwx)x|2

θs
dx dt

≤ C
(∫∫

Q

|P+
s |2

θs
+ s

θ2
t

θ
w2 + s

θ2
t

θ
xe2xw2 + s3θ3x2e4xw2 dx dt

)
.

(2.18) eq:14bis

Observe that∣∣ ∫ 1

0

s
θ2
t

θ
w2dx

∣∣ ≤ C ∫ 1

0

sθ3/2
(
x−1/4w3/2)(x1/4w1/2

)
dx

≤ C
∫ 1

0

s
(
θx−1/3w2

)3/4 (
θ3xw2

)1/4
dx

≤ C
(∫ 1

0

sθx−1/3w2dx

)3/4(∫ 1

0

θ3xw2dx

)1/4

.

We now use Hardy’s inequality with α = 5/3 to obtain∣∣ ∫ 1

0

s
θ2
t

θ
w2dx

∣∣ ≤ C(∫ 1

0

sθx5/3w2
xdx

)3/4(∫ 1

0

θ3xw2dx
)1/4

. (2.19) eq:haruno

Since 5/3 > 1, using Young’s inequality we get, by integrating in time,∣∣ ∫∫
Q

s
θ2
t

θ
xe2xw2dxdt

∣∣ ≤ C(∫∫
Q

sθxw2
x dx dt+

∫∫
Q

s3θ3xw2 dx dt
)
.
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Proceeding as before it is not difficult to see that∫∫
Q

|(xwx)x|2

θs
dx dt ≤ C

(∫∫
Q

|P+
s |2

θs
+
∫∫

Q

sθxw2
x dx dt+

∫∫
Q

s3θ3xw2 dx dt
)
.

In a similar way the following inequality can be proved∫∫
Q

|wt|2

θs
dx dt ≤ C

(∫∫
Q

|P−s |2

θs
+
∫∫

Q

sθxw2
x dx dt+

∫∫
Q

s3θ3xw2 dx dt
)
.

The last part of the proof is similar to the case α 6= 1, the only difference being the
use of Hardy’s inequality (false if α = 1) with the same exponent as in (2.19).

We will also need the following Carleman estimates, valid in the nondegenerate
case.

Proposition 2.10 (Classical Carleman Estimates). Let z be solution of

zt + (a(x)zx)x − c(t, x)z = h in Q ,

z(t, 1) = 0, z(t, 0) = 0 t ∈ (0, T ) ,
(2.20) eq:21

where a ∈ C1([0, 1]) is a strictly positive function. Let us define %(t, x) = θ(t)Ψ(x).
Then there exist two positive constants r and s0 such that for any s > s0, the
solution of (2.20) satisfies∫∫

Q

(
|(a(x)zx)x|2

sθ
+
|zt|2

sθ
+ serζ(x)θz2

x + s3θ3e3rζ(x)z2)e−2s% dx dt

≤ C
(∫∫

Q

e−2s%h2 dx dt+
∫ T

0

∫
ω

e−2s%z2 dx dt
) (2.21) eq:22

for some positive constant C.

The proof of the above result is by now classical and can be found, e.g., in [12].
We are now almost ready to prove Theorem 2.6. First, we recall Caccioppoli’s
inequality. For completeness, we give a sketch of its proof in the appendix at the
end of the paper. A complete proof can be found in [1].

le:caccioppoli Lemma 2.11 (Caccioppoli’s inequality). Suppose ω′ ⊂⊂ ω, then there exists a
constant C > 0 such that, for every solution of (2.5), the following inequality holds∫ T

0

∫
ω′
v2
xe

2sΦ dx dt ≤ C
(∫ T

0

∫
ω

v2e2sΦ dx dt+
∫∫

Q

F 2 dx dt
)
.

Proof of Theorem 2.6. Observe that v = ξv+ (1− ξ)v. Define w = ξv, clearly w is
solution of equation (2.5) with second member G = ξF + (xαξxv)x + ξxx

αvx. We
can then apply inequality (2.6) to w. Observe that, by construction, wx|x=1 = 0.
Then ∫∫

Q

( |(xαwx)x|2

sθ
+
|wt|2

sθ
+ s3θ3xαw2

x + s3θ3x2−αw2
)
e2sϕ dx dt

≤ C
(∫∫

Q

e2sϕF 2 dx dt+
∫ T

0

∫
ω′
e2sϕ(v2

x + v2) dx dt
)
.
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Since, for x ∈ (0, κ), ϕ(x) = Φ(x) and w = v, we have∫ T

0

∫ κ

0

( |(xαvx)x|2

sθ
+
|vt|2

sθ
+ s3θ3xαv2

x + s3θ3x2−αv2
)
e2sΦ dx dt

≤ C
(∫∫

Q

e2sϕF 2 dx dt+
∫ T

0

∫ λ

κ

e2sϕ(v2
x + v2) dx dt

)
.

(2.22) eq:24

Define z = (1 − ξ)v, then z is solution to (2.20) (in fact in an smaller set Qδ =
(δ, 1)× (0, T )) with h = (1− ξ)F − (xαξxv)x − ξxxαvx and inequality∫∫

Qδ

( |(a(x)zx)x|2

sθ
+
|zt|2

sθ
+ serζ(x)θz2

x + s3θ3e3rζ(x)z2
)
e−2s% dx dt

≤ C
∫∫

Q

e−2s%F 2 dx dt+ C

∫ T

0

∫ λ

κ

e−2s%(v2 + v2
x) dx dt

+ C

∫ T

0

∫
ω

e−2s%z2 dx dt.

(2.23) eq:25

Again, since −%(t, x) = Ψ(t, x) and z = v for x ∈ (λ, 1), we obtain∫ T

0

∫ 1

λ

(
|(xαvx)x|2

sθ
+
|vt|2

sθ
+ serζ(x)θv2

x + s3θ3e3rζ(x)v2

)
e2sΦ dx dt

≤ C
(∫∫

Q

e−2s%F 2 dx dt+
∫ T

0

∫ λ

κ

e−2s%(v2 + v2
x) dx dt

)
.

(2.24) eq:26

Observe that, for x ∈ (κ, 1), xα ≤ Cerζ(x) and x2−α ≤ Ce3rζ(x). So, combining
inequalities (2.24) and (2.23), and adding to both sides of the inequality the term∫ T

0

∫ λ

κ

e2sΦ
(
s3θ3x2−αv2 + sθxαv2

x

)
dx dt

we obtain∫∫
Q

( |(xαvx)x|2

sθ
+
|vt|2

sθ
+ sxαθv2

x + s3θ3x2−αv2
)
e2sΦ dx dt

≤ C
(∫∫

Q

(e−2s% + e2sϕ)F 2 dx dt+
∫ T

0

∫ λ

κ

(e−2s% + e2sϕ + e2sΦ)(v2 + v2
x) dx dt

)
Observe that −% , ϕ and Φ are equivalent for x ∈ (κ, λ), which means that, for
some C > 0,∫∫

Q

( |(xαvx)x|2

sθ
+
|vt|2

sθ
+ sxαθv2

x + s3θ3x2−αv2
)
e2sΦ dx dt

≤ C
(∫∫

Q

e2sΦF 2 dx dt+
∫ T

0

∫ λ

κ

e2sΦ(v2 + v2
x) dx dt

)
.

We conclude the proof of Theorem 2.6 combining this last inequality with Cac-
ciopoli’s inequality. �
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Proof of Theorem 2.4. Apply Theorem 2.7 to (2.5) for F = F − c(t, x)v. Then,
clearly v the solution to (2.1) satisfies∫∫

Q

(sθxαv2
x + s3θ3x2−αv2)e2sΦ dx dt

≤ C
(∫∫

Q

e2sΦ(F 2 + c2(t, x)v2) dx dt+
∫ T

0

∫
ω

e2sΦv2
)
.

(2.25) eq:ref1

Observe that xα−2 is a decreasing function in (0, 1) and limx→0+ xα−2 =∞. That
means that

c2(t, x) ≤ ‖c‖2∞xα−2 ∀(t, x) ∈ Q,
so ∫∫

Q

e2sΦc2(t, x)v2 dx dt ≤ C‖c‖2∞
∫∫

Q

e2sΦxα−2v2 dx dt . (2.26) eq:ref2

For α 6= 1 we apply Hardy inequality to w = esΦv. Then,∫∫
Q

e2sΦxα−2v2 dx dt ≤ C
(∫∫

Q

xαs2Φ2
xv

2e2sΦ + xαv2
xe

2sΦ dx dt
)
.

Observe that for x ∈ (0, κ), Φx = (2 − α)x1−αθ(t) and for 1 ≥ x ≥ κ there exists
C such that Φx ≤ C(2− α)x1−αθ(t). Then, the last inequality with (2.26) implies
that there exists C > 0 such that∫∫

Q

(sθxαv2
x + s3θ3x2−αv2)e2sΦ dx dt

≤ C
(∫∫

Q

e2sΦF 2 dx dt+
∫∫

Q

(x2−αs2θ2v2 + xαv2
x)e2sΦ dx dt+

∫ T

0

∫
ω

e2sΦv2
)
.

Observe that in the right hand side we have smaller exponents of s so for s large
enough we obtain (2.4).

The proof for α = 1 is similar but, instead of (2.26), observe that∫∫
Q

e2sΦc2(t, x)v2 dx dt ≤ C‖c‖2∞
∫∫

Q

e2sΦx−1/3v2 dx dt (2.27) eq:ref4

to obtain∫∫
Q

(sθxv2
x + s3θ3xv2)e2sΦ dx dt

≤ C
(∫∫

Q

e2sΦF 2 dx dt+
∫∫

Q

(x5/3s2θ2v2 + x5/3v2
x)e2sΦ dx dt+

∫ T

0

∫
ω

e2sΦv2
)
.

The conclusion is then straightforward. �

3. Carleman inequality for cascade systems

In this section we will prove a Carleman inequality that is valid for both: the
adjoint system to (1.1)-(1.2), i.e.,

zt + (xαzx)x − c(t, x)z = vIO in Q ,

z(t, 1) = 0 t ∈ (0, T ) ,

z(t, 0) = 0 if 0 ≤ α < 1, t ∈ (0, T ) ,

(xαzx)(t, 0) = 0 if 1 ≤ α < 2, t ∈ (0, T ) ,

z(T, ·) = z0 in (0, 1) ,

and (3.1) eq:28M’
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vt + (xαvx)x − d(t, x)v = 0 in Q ,

v(t, 1) = 0 t ∈ (0, T ) ,

v(t, 0) = 0 if 0 ≤ α < 1, t ∈ (0, T ) ,

(xαvx)(t, 0) = 0 if 1 ≤ α < 2, t ∈ (0, T ) ,

v(T, ·) = v0 in (0, 1) ,

(3.2) eq:27M’

and the adjoint system to (1.3)-(1.4), i.e.,

zt + (xαzx)x − c(t, x)z = pIO in Q ,

z(t, 1) = 0 t ∈ (0, T ) ,

z(t, 0) = 0 if 0 ≤ α < 1, t ∈ (0, T ) ,

(xαzx)(t, 0) = 0 if 1 ≤ α < 2, t ∈ (0, T ) ,

z(T, ·) = z0 in (0, 1) .

(3.3) eq:28’

and
pt − (xαpx)x + d(t, x)p = 0 in Q ,

p(t, 1) = 0 t ∈ (0, T ) ,

p(t, 0) = 0 if 0 ≤ α < 1, t ∈ (0, T ) ,

(xαpx)(t, 0) = 0 if 1 ≤ α < 2, t ∈ (0, T ) ,

p(0, ·) = p0 in (0, 1) .

(3.4) eq:27’

Remark 3.1. Observe that in (3.3) we have allowed for z(T ) any value z0 in
L2(0, 1). This can be so since the Carleman inequality is valid for general data.
However, in the next section, where the observability inequality is proved, it is
necessary to consider z(T ) = 0.

We have the following result.

teor:main3p Theorem 3.2. Assume O ∩ ω 6= ∅ and suppose that 0 6∈ O. Then there exist two
positive constants C, s0 such that, for all s ≥ s0 and every solution to (3.1)-(3.2),
the following holds∫∫

Q

(
sθxαv2

x + s3θ3x2−αv2 + sθxαz2
x + s3θ3x2−αz2

)
e2sΦ dx dt

≤ C
∫ T

0

∫
ω

e2sΦz2 dx dt.

(3.5) eq:29M

Moreover, there exist two positive constants C, s0 such that, for all s ≥ s0 and every
solution to (3.3)-(3.4), the following holds∫∫

Q

(
sθxαp2

x + s3θ3x2−αp2 + sθxαz2
x + s3θ3x2−αz2

)
e2sΦ dx dt

≤ C
∫ T

0

∫
ω

e2sΦz2 dx dt.

(3.6) eq:29

Proof. We will prove only (3.6). Indeed, the proof of (3.5) is similar because the
boundary conditions at t = 0, T are made irrelevant by the fact that the weight
θje2sΦ, with j = 1, 3, vanishes as t → 0 and t → T . Let us define p(t) = v(T − t),
with v solution to (3.2), and observe that p solves (3.4) (with an appropriate choice
of d̃).
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The proof is to be completed in several steps.
Step 1. Take O′ ⊂⊂ ω ∩ O. Observe that w(t, x) := p(T − t, x) solves (2.1) and
apply Theorem 2.4 to p, which is a solution of (3.4). Then, for s > s1, we get∫∫

Q

(
sθxαp2

x + s3θ3x2−αp2
)
e2sΦ dx dt ≤ C

∫ T

0

∫
O′
e2sΦp2 dx dt. (3.7) eq:30

Theorem 2.4 can also be applied to z yielding∫∫
Q

(
sθxαp2

x + s3θ3x2−αp2
)
e2sΦ dx dt+

∫∫
Q

(
sθxαz2

x + s3θ3x2−αz2
)
e2sΦ dx dt

≤ C
[ ∫ T

0

∫
O
e2sΦp2 dx dt+

∫ T

0

∫
O′
e2sΦ(p2 + z2) dx dt

]
.

Now, observe that, since 0 6∈ O,∫ T

0

∫
O
e2sΦp2 dx dt ≤ C

∫∫
Q

s3θ3x2−αp2e2sΦ dx dt ≤ C
∫ T

0

∫
O′
e2sΦp2 dx dt . (3.8) eq:cero

All together, we obtain∫∫
Q

(sθxαp2
x + s3θ3x2−αp2)e2sΦ dx dt+

∫∫
Q

(sθxαz2
x + s3θ3x2−αz2)e2sΦ dx dt

≤ C
[ ∫ T

0

∫
O′
e2sΦ(p2 + z2) dx dt

]
.

(3.9) eq:31

Step 2. Take O′ ⊂⊂ ω′ ⊂⊂ ω ∩ O. Let ξ1 ∈ C∞0 (Ω) be such that

1 ≥ ξ1 ≥ 0, ξ1(x) = 1 if x ∈ O′, ξ1(x) = 0 if x ∈ Ω\ω′. (3.10) eq:32

Furthermore, we shall require ξ1 to satisfy

∆ξ1
ξ

1/2
1

∈ L∞(Ω),
∇ξ1
ξ

1/2
1

∈ L∞(Ω). (3.11) eq:33

Observe that condition (3.11) is easy to obtain: it suffices to take ξ ∈ C∞0 (Ω)
satisfying (3.10), and define ξ1 = ξ4. Then ξ1 will satisfy both (3.10) and (3.11).

Let us multiply (1.9) by ξ1pe2sΦ. To simplify notation, set u = e2sΦ. Then∫∫
Q

ztξ1up dx dt

∫∫
Q

(xαzx)xξ1up dx dt−
∫∫

Q

c(t, x)zξ1up dx dt

=
∫ T

0

∫
O
ξ1p

2u dx dt .

(3.12) eq:34

We observe that u(T ) = u(0) = 0. Integrating by parts in (3.12), we obtain∫∫
Q

zuξ1 [pt − (xαpx)x + d(t, x)p] dx dt−
∫∫

Q

(c+ d)zξ1up dx dt

+
∫∫

Q

z [p(xαuξ1)x + 2pxxα(uξ1)x] dx dt+
∫∫

Q

zpξ1ut dx dt

=
∫ T

0

∫
O
ξ1p

2u dx dt.

(3.13) eq:35
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Let us rewrite (3.13) as I1 + I2 + I3 + I4 =
∫ T

0

∫
O ξ1p

2u. We observe that I1 = 0
since p satisfies (3.4). By Hölder’s and Young’s inequalities, we get

I2 ≤
δ1
2

∫∫
Q

ξ1p
2u dx dt+

1
δ1

(‖c‖2∞ + ‖d‖2∞)
∫ T

0

∫
Ω

ξ1z
2u dx dt

with δ1 to be chosen later.
Let us estimate I3. First, we have

I1
3 :=

∫∫
Q

zp(xαuξ1)x dx dt

=
∫∫

Q

z
[
pαxα−1uξ1 + pxαuξ1,x + pxαuxξ1

]
dx dt

≤ δ2
2

∫∫
Q

ξ1p
2u dx dt

+
1

2δ2

∫∫
Q

z2
(
x2(α−1)uξ1 + x2α |ξ1,x|2

ξ1
u+ x2α |ux|2

u
ξ1

)
dx dt .

Observe that |ux|
2

u = 4s2uΦ2
x. Then∫∫

Q

z2
(
x2(α−1)uξ1 + x2α |ξ1,x|2

ξ1
u+ x2α |ux|2

u
ξ1

)
dx dt ≤ C

∫ T

0

∫
ω′
uz2 dx dt .

So, for I1
3 we conclude that

|I1
3 | ≤

δ2
2

∫∫
Q

ξ1p
2u dx dt+ C

∫ T

0

∫
ω′
uz2 dx dt .

We now proceed to estimate the other term in I3:

I2
3 := 2

∫∫
Q

zpxx
α(uξ1,x + uxξ1) dx dt

≤ δ3
2

∫∫
Q

sθxαp2
xu dx dt+

1
2δ3

∫∫
Q

z2xα
(u2

xξ
2
1

uθ
+
uξ2

1,x

θ

)
dx dt .

Observe that the term in p2
x can be estimated using Carleman’s inequality for p,

while the coefficient of z2 in the other integral is bounded above. Thus,

I2
3 ≤

δ3
2

∫ T

0

∫
O′
p2u dx dt+ C

∫ T

0

∫
ω′
z2e2sΦ dx dt .

Finally, we get for I4,

I4 =
∫∫

Q

zpξ1ut dx dt ≤
δ4
2

∫∫
Q

ξ1p
2u dx dt+

1
2δ4

∫∫
Q

z2ξ1
|ut|2

u
dx dt .

Observe that |ut|
2

u = 4s2Φ2
t e

2sΦ to conclude that

I4 ≤
δ4
2

∫∫
Q

ξ1p
2u+ C

∫ T

0

∫
ω′
z2e2sΦ dx dt .

Putting the above estimates together and choosing convenient δi’s, we obtain, since
the support of ξ1 is contained in O,∫ T

0

∫
O′
e2sΦp2 dx dt ≤ C

∫ T

0

∫
ω′
z2e2sΦ dx dt.
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The last inequality together with (3.9) completes the proof. �

4. Proof of the main results

Proof of Proposition 1.4. Multiplying equation (1.8) by vt and integrating on
(0, 1), we obtain∫ 1

0

v2
t (t, x)dx− 1

2
d

dt

∫ 1

0

xαv2
x(t, x)dx

≤ ‖d‖
2
∞

2

∫ 1

0

v2(t, x)dx+
1
2

∫ 1

0

v2
t (t, x)dx ∀t ∈ [0, T ] .

(4.1) eq:38

By Hardy’s inequality,∫ 1

0

v2(t, x)dx ≤
∫ 1

0

xα−2v2(t, x)dx ≤ C
∫ 1

0

xαv2
x(t, x)dx . (4.2) eq:39

Then, combining (4.1) and (4.2), we get

0 ≤ d

dt

(
eCt

∫ 1

0

xαv2
x(t, x)dx

)
∀t ∈ [0, t] .

The above estimate implies that, for all 0 ≤ t ≤ T/2,

T

4

∫ 1

0

xαv2
x(t, x)dx ≤ C

∫ 3T/4

T/2

∫ 1

0

xαv2
x(τ, x)dxdτ .

The latter inequality, combined with Hardy’s inequality and (3.5), yields∫ 1

0

v2(t, x)dx ≤ C(T )
∫ 3T/4

T/2

∫ 1

0

xαv2
x(τ, x)dxdτ

≤ C
∫∫

Q

sθxαv2
x(τ, x)e2sΦdxdτ

≤ C
∫ T

0

∫
ω

z2(τ, x)dxdτ

(4.3) eq:40

for all 0 ≤ t ≤ T/2. Now, multiplying (1.7) by zt we get∫ 1

0

z2
t (t, x)dx− d

dt

∫ 1

0

xαz2
x(t, x)dx

≤ 2‖c‖2∞
∫ 1

0

z2(t, x)dx+ 2
∫ 1

0

v2(t, x)dx ∀t ∈ [0, T ] .
(4.4) eq:ceroprim

Combining the latter with (4.3) and Hardy’s inequality, we obtain∫ 1

0

z2
t (t, x)dx− d

dt

∫ 1

0

xαz2
x(t, x)dx

≤ C
∫ 1

0

xαz2
x(t, x)dx+ C

∫ T

0

∫
ω

z2(t, x) dx dt ∀t ∈ [0, T/2] .

Hence,

− d

dt

(
eCt

∫ 1

0

xαz2
x(t, x)dx

)
≤ CeCt

∫ T

0

∫
ω

z2(t, x) dx dt ∀t ∈ [0, T/2] .



EJDE-2009/?? CONTROLLABILITY OF PARABOLIC EQUATIONS 17

Thus, for every 0 ≤ s ≤ t ≤ T/2,∫ 1

0

xαz2
x(s, x)dx ≤ C

∫ 1

0

xαz2
x(t, x)dx+ C

∫ T

0

∫
ω

z2(t, x) dx dt .

So, integrating in t over [T/4, T/2] we get, for every s ≤ T/4,

T

4

∫ 1

0

xαz2
x(s, x)dx ≤ C

∫ T/2

T/4

∫ 1

0

xαz2
x(t, x) dx dt+ C

∫ T

0

∫
ω

z2(t, x) dx dt

≤ C
∫∫

Q

sθxαz2
x(t, x)e2sΦ dx dt+ C

∫ T

0

∫
ω

z2(t, x) dx dt

≤ C
∫ T

0

∫
ω

z2(t, x) dx dt .

By Hardy’s inequality we conclude that, for every s ≤ T/4,∫ 1

0

z2(s, x)dx ≤
∫ 1

0

xα−2z2(s, x)dx

≤ C
∫ 1

0

xαz2
x(s, x)dx

≤ C
∫ T

0

∫
ω

z2(t, x) dx dt .

(4.5) eq:45

Combining this result with (4.3), for s = 0 = t, we obtain∫ 1

0

(v2(x, 0) + z2(x, 0))dx ≤ C
∫ T

0

∫
ω

z2(t, x) dx dt . (4.6) eq:46

On the other hand, (4.5) and Carleman’s inequality also yield∫ T/4

0

∫ 1

0

xαz2
x(t, x) dx dt+

∫∫
Q

θxαz2
x(t, x)e2sΦ dx dt ≤ C

∫ T

0

∫
ω

z2(t, x) dx dt .

Therefore, by Hardy’s inequality and the definition of Φ, we conclude that there
exists M > 0 such that∫∫

Q

e−M/(T−t)4z2(t, x) dx dt ≤ C
∫ T

0

∫
ω

z2(t, x) dx dt .

The above estimate, together with (4.6), implies (1.11).
We now briefly describe how to prove (1.12). Proceeding as in the proof of (1.11)

it is not difficult to see that for all 3T/4 ≤ s ≤ T we have that

T

4

∫ 1

0

xαp2
x(s, x)dx ≤ C

∫ 3T/4

T/2

∫ 1

0

xαp2
x(τ, x)dxdτ .

Then, for all s ∈ [3T/4, T ],∫ 1

0

z2
t (s, x)dx− d

dt

∫ 1

0

xαz2
x(s, x)dx ≤ C

∫ 1

0

xαz2
x(s, x)dx+ C

∫ T

0

∫
ω

z2(t, x) dx dt .

Following the steps of the above proof, since z(T, ·) = 0 we easily get that∫ T

3T
4

∫ 1

0

xα−2z2(t, x) dx dt ≤ C
∫ T

0

∫
ω

z2(t, x) dx dt .
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Combining this result with the Carleman inequality for cascade systems we obtain,
for M large enough,∫∫

Q

e−M/t4z2(t, x) dx dt ≤ CT
∫ T

0

∫
ω

z2(t, x) dx dt .

The proof is thus complete.

Proof of Theorem 1.1. The fact that Proposition 1.4 implies Theorem 1.1 can
be proved in several ways. The most direct argument is the following.

Let H = L2(Ω) × L2(Ω) × L2(eM (T − t)), and let M and L be the following
linear mappings:

L : L2(Q)→ L2(0, 1)× L2(0, 1)

h 7→ (y(T ), u(T ))

where (y(·), u(·)) is the solution corresponding to (1.1)-(1.2) with (y0, u0, ξ) =
(0, 0, 0), and

M : H → L2(0, 1)× L2(0, 1)

(y0, u0, ξ) 7→ (y(T ), u(T ))

where (y(·), u(·)) now solves (1.1)-(1.2) with h = 0. Then Theorem 1.1 is equivalent
to the inclusion

R(M) ⊂ R(L). (4.7) eq:rangos

Both M and L are L2(0, 1) × L2(0, 1)-valued, bounded linear operators. Conse-
quently (4.7) holds if and only, for every (z0, v0) ∈ L2(0, 1)× L2(0, 1),

‖M∗(z0, v0)‖H ≤ C‖L∗(z0, v0)‖L2(0,1)×L2(0,1) (4.8) eq:des2

for some constant C > 0. Now, a simple computation shows that

M∗(z0, v0) = (z(x, 0), v(x, 0), z(t, x)), L∗(z0, v0) = z1ω
where z and v solve the adjoint system (1.8)-(1.7). Hence (4.8) is just (1.11) and
Theorem 1.1 is proved.

Remark 4.1.
• The results of this paper can be generalized to systems with more general

(degenerate) coefficients than a(x) = xα (see for example [1] and [8]).
• The null controllability problem when O ∩ ω = ∅ is open even in the non-

degenerate case. Approximate controllability results for the linear case (c(t, x) =
d(t, x) = 0) can be found in [18].
• Another interesting problem is to dispense with the condition 0 6∈ O. However,

it is not difficult to see that the controllability results of this paper are valid for
any open O such that O ∩ ω 6= ∅ when the coupling term yIO in (1.2) and (1.4) is
replaced by xβ/2yIO with β > 2−α. Observe that the fact that 0 6∈ O is used only
in (3.8). Under the conditions given for β, such an estimate reduces to∫ T

0

∫
O
e2sΦxβp2 dx dt ≤ C

∫∫
Q

s3θ3x2−αp2e2sΦ dx dt.

The rest of the proof of the Carleman inequality remains the same. The energy
estimates are easily checked just noting that the term∫ 1

0

xβv2 dx dt ,
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that now replaces
∫ 1

0
v2 dx dt in (4.4), can be easily bounded as follows∫ 1

0

xβv2 dx dt ≤ C
∫ 1

0

xα−2v2dx ≤ C
∫ 1

0

xαv2
xdx.

5. Appendix

In this appendix we give a sketch of the proof of Lemma 2.11 (Caccioppoli’s
inequality). Let us set ω = (a, b) and ω′ = (a′, b′) with a < a′ < b′ < b. We
can suppose, without loss of generality, that a 6= 0. Let η : R → R be a smooth
function satisfying η2

x/η ∈ L∞(R) such that 0 ≤ η ≤ 1, η ≡ 1 on (a′, b′), and η ≡ 0
on [0, a) ∪ (b, 1]. Then, in view of (2.5),

0 =
∫ T

0

d

dt

∫ 1

0

η v2e2sΦ dx dt

= 2
∫∫

Q

η vvte
2sΦ dx dt+ 2s

∫∫
Q

Φtηv2e2sΦ dx dt

= 2
∫∫

Q

(
η xαv2

x + ηxx
αvxv + 2sΦxη xαvxv

)
e2sΦ dx dt

+ 2
∫∫

Q

F η ve2sΦ dx dt+ 2s
∫∫

Q

Φtη v2e2sΦ dx dt .

Now, observe that, for every ε > 0,∫∫
Q

ηxx
αvxve

2sΦ dx dt ≤ ε

2

∫∫
Q

η xαv2
xe

2sΦ dx dt+
1
2ε

∫∫
Q

η2
x

η
xαv2e2sΦ dx dt ,

and∫∫
Q

Φxη xαvxve2sΦ dx dt ≤ ε

2

∫∫
Q

η xαv2
xe

2sΦ dx dt+
1
2ε

∫∫
Q

Φ2
xη x

αv2e2sΦ dx dt .

Proceeding in the same way with the other terms, and choosing ε small enough, we
obtain that∫∫

Q

η xαv2
xe

2sΦ dx dt ≤ C
(∫∫

Q

ληv
2e2sΦ dx dt+

∫∫
Q

η F 2 dx dt
)
,

where λη is a bounded function with support in ω = (a, b), defined in terms of η.
Since a 6= 0 and a′ 6= 0, Caccioppoli’s inequality follows.

Acknowledgments. Piermarco Cannarsa wass partially supported by the Ital-
ian PRIN 2005 Program “Metodi di viscosità, metrici e di teoria del controllo in
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