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Brain Cholinergic Markers and Tau
Phosphorylation are Altered in
Experimental Type 1 Diabetes:
Normalization by Electroacupuncture
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Abstract. Diabetes often correlates with tau phosphorylation and the development of Alzheimer’s disease. Both are associated
with brain cholinergic dysfunction that could benefit from nerve growth factor (NGF)-based therapies. Electroacupuncture (EA)
improves brain NGF availability and action. Here we assessed the variations of NGF and tau phosphorylation in the cortex and
hippocampus, as well as the expression of choline acetyltransferase in the basal forebrain following diabetes induction and EA
in adult rats. We found that EA counteracts diabetes-associated tau hyperphosphorylation and decreases in NGF and choline
acetyltransferase, suggesting a possible beneficial effect of EA on brain cholinergic system in diabetes.
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INTRODUCTION17

A link is emerging between diabetes and brain18

pathologies, such as Alzheimer’s disease (AD), asso-19

ciated with cholinergic dysfunctions [1, 2] and altered20

metabolism of the microtubule-associated protein tau21

[2, 3]. Higher AD incidence in diabetic patients [1] and22

hyperphosphorylation of tau in diabetic animals [4–6]23

have been reported.24

Physical therapies with sensory fibers activation [7],25

such as aerobic exercise, electroacupuncture (EA), and26

transcutaneous electrical nerve stimulation, improve27
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learning-memory [8–10], modulate brain neurotrans- 28

mitters [11] and neurotrophins [12], induce brain 29

neurogenesis [13, 14], and decrease amyloid plaques 30

deposition [15]. 31

The efficacy of EA on central cholinergic deficit 32

could be correlated to its effects on the modulation 33

of nerve growth factor (NGF) [16], a neurotrophin 34

indicated as a possible pharmacological tool in AD 35

[17]. The activation of receptor tyrosine-kinase A 36

(TrkA) by NGF promotes the expression of cholin- 37

ergic markers [18] and regulates tau phosphorylation 38

[19, 20]. However, the clinical use of NGF has been 39

hampered by side-effects [21] that can be avoided by 40

the activation of endogenous NGF activity, like that 41

promoted by EA [16]. 42

We investigated the variations of TrkA and choline 43

acetyltransferase (ChAT) expression in neurons of the 44
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basal forebrain complex (BFC), which receive NGF45

as trophic support from their projection nuclei in the46

cortex and hippocampus, as well as of NGF content47

and tau phosphorylation in the cortex and hippocam-48

pus after induction of type 1 diabetes mellitus and EA49

treatments in adult rats.50

MATERIALS AND METHODS51

Experimental plan52

Type 1 diabetes mellitus was induced in adult female53

Sprague-Dawley rats (Harlan-Nossan, Italy) by an i.p.54

injection of 65 mg/kg streptozotocin (STZ) (Sigma-55

Aldrich, Italy) dissolved in 20 mM citrate buffer pH56

4.5 (vehicle) [22]. One week later, hyperglycemia was57

checked by Accutrend®GC (Roche Diagnostic Gmbh,58

Germany). Rats with blood glucose above 300 mg/dl59

were enrolled in STZ groups. Forty-four rats were60

divided as follows (n = 12 each group): Controls were61

injected once with vehicle; STZ rats received STZ62

as described above; EA and STZ + EA rats received63

low frequency EA for 3 consecutive weeks starting 164

week after STZ. One day after the last EA session, 865

rats for each group were killed by decapitation, tis-66

sues collected, and stored at −80◦C. Four rats for67

each group were trans-cardially perfused with 4%68

paraformaldeyde dissolved in PBS, the brain removed69

and processed for immunohistochemistry. All proce-70

dures were in compliant with European regulations and71

approved by intramural Ethical Committee.72

Electroacupuncture73

Rats of the EA groups received 30 min sessions of74

EA twice a week for 3 weeks as described [23]. Details75

about the EA procedure are given in the Supplementary76

data (available online: http://www.j-alz.com/issues/ 77

33/vol33-3.html#supplementarydata04). 78

NGF assay and western blot 79

Samples were ultra-sonicated in extraction buffer 80

as described [23], centrifuged and supernatants recov- 81

ered. NGF content was assessed by commercial ELISA 82

(R&D Systems DY556, Space ImportExport, Italy) 83

following manufacturer’s instructions. 84

For western blot, 20 �g of total protein were 85

separated by SDS-PAGE and transferred to PVDF 86

membrane. The membranes were incubated 1 h with 87

5% non-fat dry milk in TTBS (10 mM Tris, pH 88

7.5, 100 mM NaCl, and 0.1% Tween-20), then 89

washed in TTBS and incubated with primary anti- 90

bodies (summarized in Table 1) at 4◦C overnight. 91

Horseradish peroxidase-conjugated anti-mouse or 92

anti-rabbit IgG (Cell Signaling Technology, USA) 93

were used as secondary antibodies. Blots were devel- 94

oped with ECL substrate (Millipore Corporation, 95

USA). Gel densitometry was performed as described 96

at http://lukemiller.org/index.php/2010/11/analyzing- 97

gels-and-western-blots-with-image-j/. The density of 98

GAPDH bands was used as normalizing factor. 99

Immunohistochemistry 100

Coronal brain sections (20 �m) were obtained from 101

Control, STZ, and STZ + EA rats. Those correspond- 102

ing to Bregma 1.00 to 0.60, containing BFC nuclei 103

according to Paxinos atlas [24], were processed 104

for immunohistochemistry. Slides were pre-incubated 105

with 10% normal goat serum in PBS + 0.1% Triton X- 106

100 (PBST) for 2 h and then incubated overnight at 4◦C 107

with a mix of antibodies against ChAT (Clone 17, pre- 108

viously described [25]) and TrkA (sc118, SantaCruz 109

Table 1
Summary of antibodies used for western blot and immunofluorescence analysis

Antibody Specificity Type Source

25778 GAPDH Polyclonal Santa Cruz Biotech.
Clone 15 Tau (total) Monoclonal Transduction Lab.
AD2 phosphoSer396/404-Tau Monoclonal Courtesy of Prof. A. Delacourte
AT8 phosphoSer202-Tau Monoclonal Innogenetics
pT262 phosphoSer262-Tau Polyclonal Anaspec
pT231 phosphoThr231-Tau Polyclonal Anaspec
9315 Gsk3� (total) Polyclonal Cell Signaling Technology
9336 phosphoSer9-GSK3� Polyclonal Cell Signaling Technology
9212 p38 (total) Polyclonal Cell Signaling Technology
4631 phosphoThr180-Tyr182-p38 Polyclonal Cell Signaling Technology
Clone 17 Choline acetyltransferase (ChAT) Monoclonal Courtesy of Dr. C. Cozzari
sc-118 TrkA Polyclonal Santa Cruz Biotech

http://www.j-alz.com/issues/33/vol33-3.html#supplementarydata04
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Fig. 1. Nerve growth factor (NGF), choline acetyltransferase (ChAT), and tyrosine-kinase A (TrkA) expression in the brain cholinergic system
of diabetic rats are modulated by electroacupuncture (EA). The NGF levels (A) in the cortex and hippocampus of diabetic rats are decreased
compared to Controls (STZ versus Controls, p < 0.05). Three weeks treatment with low-frequency EA did not exert significant effects on NGF
brain levels in healthy rats (EA versus Controls, p > 0.05). EA treatments in diabetic rats counteracted STZ-induced NGF decrease (STZ versus
STZ + EA, p < 0.05), increasing cortex and hippocampus NGF protein content toward Control levels. Results obtained by ELISA are presented as
pg of NGF/mg of total tissue protein (mean ± S.D., n = 8, ∗p < 0.05). Protein concentrations were determined by Biorad DC Protein assay (Life
Science Group, Italy). (B) The expression of TrkA, ChAT, DAPI (for nuclei visualization), and colocalization of TrkA and ChAT in neurons of the
medial septum (MS) is depicted (scale bar: 50 �m). TrkA immunopositive cells (C) are decreased in the MS of STZ-treated rats when compared
to Controls. EA restores normal TrkA expression in the MS of STZ-treated rats. The same brain sections were also immunostained against ChAT.
ChAT-stained neurons in the MS of STZ-treated rats are greatly reduced, when compared to Controls. The amount of ChAT immunostaining in
the STZ + EA group is not different from Controls. For production of figures, brightness and contrast of images were adjusted by taking care to
leave a light tissue fluorescence background for visual appreciation of the lowest fluorescence intensity features and to help comparison among
the different experimental groups. (Scale bar: 200 �m). Cell count was performed on 2 non-adjacent sections for each brain (n = 8 sections each
group) by NIH ImageJ software equipped with a plugin (NeurphologyJ) specifically developed for automatic quantification of morphological
features (neurite length, neural soma quantification) in neuroscience. Data are expressed as mean immunopositive cell number ± S.D. ∗p < 0.05
versus Control group. #p < 0.05 versus STZ group.
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Biotech, USA) dissolved in PBST + 1% goat serum.110

In control slides, primary antibodies were replaced111

by purified rabbit and mouse IgG. After washing112

with PBST, slides were incubated for 1 h with a mix-113

ture of Alexa Fluor® 488 goat anti-rabbit IgG and114

Alexa Fluor® 594 goat anti-mouse IgG (Invitrogen115

Italy, Italy). Sections were examined under a con-116

focal laser-scanning microscope (Leica SP5, Leica117

Microsystems, Germany). Two non-consecutive sec-118

tions for each animal (8 sections/group) were analyzed119

for automated cell count by ImageJ software (http://120

rsbweb.nih.gov/ij/) and NeurphologyJ plugin [26].121

Data analysis122

Statistics were performed by the GraphPad 5123

software (GraphPad Software Inc., USA) and data124

expressed as mean ± SD. Western blot, NGF-ELISA,125

and computerized image analysis data (n = 8 each126

group) were evaluated by one-way ANOVA and127

Tukey’s HSD test. A p < 0.05 was considered signif-128

icant. A summary of ANOVA results is presented in129

Supplementary Table 1.130

RESULTS131

NGF and BFC cholinergic markers132

STZ decreased NGF in the cortex and hippocampus,133

while EA counteracted this effect (Fig. 1A). TrkA and134

ChAT almost completely co-localized in the medial135

septum (Fig. 1B), a nucleus of the BFC projecting136

to hippocampus and cortex [27]. STZ dramatically137

decreased the number of TrkA and ChAT positive138

cells, while EA significantly counteracted this effect139

(Fig. 1C).140

Tau hyperphosphorylation 141

Western blots for tau and four different phospho- 142

tau epitopes (see Table 1) are shown in Fig. 2A. STZ 143

increased AD2 and AT8 phosphorylation relative to 144

total tau in the cortex, while pT262 and pT231 were 145

unaffected. EA was able to decrease the levels of AD2 146

and AT8 as well as pT262 in the cortex of diabetic 147

animals (STZ versus STZ + EA: p < 0.05). Moreover, 148

AD2, but not AT8, was increased in the hippocampus 149

of STZ-treated rats while EA reduced both AD2/tau 150

and AT8/tau ratios in diabetic rats. 151

Tau kinases phosphorylation 152

Western blots for total and phosphoSer9-GSK3� and 153

total and phosphoThr180-Tyr182-p38 kinases are shown 154

in Fig. 2B. Both the active kinases (de-phosphorylated 155

GSK3� or phosphorylated p38) have been associ- 156

ated with tau phosphorylation in diabetes [4, 28]. We 157

found that phospho-GSK3� decreased and phospho- 158

p38 increased in cortex and hippocampus after STZ, 159

suggesting a connection with observed tau hyperphos- 160

phorylation. EA counteracted this STZ-induced effect 161

in the cortex and hippocampus. Other kinases involved 162

in tau phosphorylation, i.e., ERK1-2, JNKs and Akt, 163

have been found not modulated by STZ or EA, while 164

only ERK1-2 activation was increased in STZ + EA 165

group (data not shown). 166

DISCUSSION 167

We used experimental type 1 diabetes mellitus to 168

investigate the effect of EA on NGF, on NGF-related 169

biomarkers TrkA and ChAT, and on tau phosphoryla- 170

tion in the brain cholinergic system, which is known to 171

degenerate in AD and in diabetes [29]. EA, modulating 172

Fig. 2. EA counteracts the STZ-induced variation in tau and tau kinases phosphorylation in the brain. Representative western blots for total
tau, phosphorylated tau (see Table 1 for a list of epitopes investigated) and GAPDH as loading control in the cortex (A) and hippocampus
(B) of Controls, diabetic (STZ), EA-treated healthy (EA), and EA-treated diabetic rats (STZ + EA). Representative western blots for total
and phosphorylated (Ser9)-GSK3� (p-GSK3�) and phosphorylated (Thr180Tyr182)-p38 (p-p38) kinases and GAPDH in the cortex (C) and
hippocampus (D) of experimental groups. Graphs show the results of quantitative densitometry with GAPDH integrated optical density used
as normalization factor. Statistics were performed on four separate gel run/blots over different sets of two samples for each experimental group
(n = 8). Results are presented as mean ± S.D., ∗p < 0.05 versus Controls, #p < 0.05 versus STZ. Cortex: The ratio between AD2, AT8, and total
tau (A) increased after diabetes induction, indicating hyperphosphorylation of the two epitopes, and reverted to baseline by EA (STZ + EA versus
STZ, p < 0.05; STZ + EA versus Controls, p > 0.05). STZ also induces a decrease of the p-Gsk3�/Gsk3� and an increase of p-p38/p38 ratios in
the cortex (C, STZ versus Controls, p < 0.05), indicating a diabetes-associated increase in the activity of the two kinases. Both of the mentioned
alterations in kinases phosphorylation were counteracted by EA (STZ + EA versus STZ, p < 0.05). Hippocampus: The ratio between AD2 and
total tau (B) was not affected by STZ (STZ versus Controls, p > 0.05) but was decreased by EA in both healthy (EA versus Controls, p < 0.05)
and diabetic rats (STZ + EA versus STZ, p < 0.05). The AT8/tau ratio (B) was decreased by diabetes (STZ versus Controls, p < 0.05) and further
decreased by EA in STZ rats (STZ + EA versus STZ, p < 0.05). STZ induces a decrease of the p-Gsk3�/Gsk3� and an increase of p-p38/p38
ratios in the hippocampus (D, STZ versus Controls, p < 0.05), indicating a diabetes-associated increase in the activity of the two kinases. Both
of the mentioned alterations in kinases phosphorylation were counteracted by EA (STZ + EA versus STZ, p < 0.05).

http://rsbweb.nih.gov/ij/


U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

M.L. Rocco et al. / Electroacupuncture and Diabetic Brain 5



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

6 M.L. Rocco et al. / Electroacupuncture and Diabetic Brain

NGF synthesis/activity, might improve the function of173

damaged neurons in the central nervous system [16].174

Similar to that observed in AD, STZ-induced diabetes175

has been associated with central cholinergic dysfunc-176

tions [29] and to altered NGF and NGF signaling in177

the brain [30]. We found that type 1 diabetes melli-178

tus decreased NGF in the cortex and hippocampus and179

impaired the expression of TrkA and ChAT in BFC. We180

also found that EA-treatment can enhance the content181

of NGF in diabetic brain, with potential improvement182

in the function of BFC neurons. This is supported by183

the EA-induced increase of ChAT in the BFC, with184

ChAT expression in such nuclei directly regulated by185

the NGF [31] produced in the cortex and hippocampus.186

Both AD and experimental diabetes are character-187

ized by tau hyperphosphorylation [1, 4, 6, 32]. Though188

restricted to four phosphorylation sites among several189

described in tauopathies [32], our data confirm that190

experimental type 1 diabetes mellitus correlates with191

disturbance of tau metabolism [4] that we found in the192

cortex of diabetic rats. Other studies also found tau193

hyperphosphorylation in the hippocampus of diabetic194

male rats [28]. We only found STZ-induced alter-195

ations in tau kinases in the hippocampus, and it is196

conceivable that the lack of tau hyperphosphorylation197

depends on experimental timeframe and/or on gender198

difference in the response to STZ [33]. We also demon-199

strated that EA counteracted STZ-induced increase in200

tau phosphorylation, likely by modulating the activity201

of GSK3� and p38 kinases, which have been previ-202

ously found deregulated in the STZ model [4, 28] and203

have been correlated with tauopathy in AD [32]. How-204

ever, we cannot exclude that phosphatases involved in205

tau metabolism could also be modulated by STZ [28]206

and/or EA.207

Our data suggest the possibility that EA normal-208

izes tau kinases activity by improving cholinergic209

neurotransmission from BFC to the cortex and hip-210

pocampus [34]. It is known that physical exercise,211

sharing with EA common physiological substrates212

[7], improves cholinergic functions by stimulating213

NGF action in STZ-treated rats [12]. It has also214

been demonstrated that acupuncture reversed the215

corticosterone-induced decrease of ChAT in the BFC216

[35] and that EA improves cholinergic-related behav-217

ioral tasks in stressed mice [36], indicating that218

peripheral needling could influence the phenotypic219

features of BFC neurons. Here we postulate that EA220

induces an enhancement of NGF delivery from cor-221

tex and hippocampus to their afferent nuclei in the222

BFC. The NGF-driven augmentation of BFC cholin-223

ergic neurotransmission could in turn result in an224

activity-dependent decrease of tau hyperphosphoryla- 225

tion in the cortex and the hippocampus. Further studies 226

using cholinergic antagonists and/or NGF blockers will 227

clarify the proposed mechanism. 228

We cannot exclude that tau dysmetabolism in our 229

experimental model could be secondary not only to 230

hypoglycemia but also to decrease of body tempera- 231

ture induced by STZ, though this seems unlikely in our 232

experimental conditions, given that reduction of body 233

temperature has been reported to occur 30 days after 234

STZ treatment [37]. Nevertheless, we demonstrated 235

the effectiveness of EA in counteracting tau hyper- 236

phosphorylation in experimental diabetes suggesting 237

a therapeutic link among EA, the NGF system, and 238

cholinergic neurotransmission. 239
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