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We perform a joint numerical and experimental study to sistematically characterize the motion of drops sliding
over a periodic array of alternating hydrophobic and hydrophilic stripes with large wettability contrast, and
typical width of hundreds of µm. The fraction of the hydrophobic stripes has been varied from about 20% to
80%. The effects of the heterogeneous patterning can be described by a renormalized value of the critical Bond
number, i.e. the critical dimensionless force needed to depin the drop before it starts to move. Close to the
critical Bond number we observe a jerkily motion characterized by an evident stick-slip dynamics. As a result,
dissipation is strongly localized in time, and the mean velocity of the drops can easily decrease by an order of
magnitude compared to the sliding on homogeneous surface. Lattice Boltzmann (LB) numerical simulations
are crucial for disclosing to what extent the sliding dynamics can be deduced from the computed balance of
capillary, viscous and body forces at varying the Bond number, the surface composition and the liquid viscosity.
Away from the critical Bond number, we characterize both experimentally and numerically the dissipation inside
the droplet by studying the relation between the average velocity and the applied volume forces.
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I. INTRODUCTION

In the last ten years surface topography has proved to be a promising tool for controlling wettability [1–4] and liquid trans-
port [5]. Nevertheless many challenges must still be tackled. In particular, although it is well known that the shape of a sessile
drop can be controlled by the balance between capillary forces and gravity [6, 7], there is still a lack of understanding on the role
played by wetting and dewetting phenomena arising from the interaction with the solid substrate [8].
The problem of the contact line dynamics and drop motion on structured substrates has been investigated in a number of theoret-
ical and numerical studies [9–18]. In a series of works by Thiele and coworkers [10–12], the depinning process corresponding
to the loss of stability of drops moving over a heterogeneous pattern has been studied in the limit of small contact angles and
small wettability contrasts, with the emergence of a stick-slip motion during which the contact line jumps from one wetting
defect to another [13, 14]. Using lattice Boltzmann (LB) numerical simulations, Kusumaatmaja and coworkers [14, 15] explored
the feasibility of using chemical patterning to control the size and polydispersity of micrometer sized drops: in agreement with
other authors [13] the stick-slip motion of the contact line was recorded in the simulations. Wang and coworkers [16] simulated
the moving contact line in two-dimensional chemically patterned channels using a diffuse-interface model with the generalized
Navier boundary condition: the motion of the fluid-fluid interface has been found to be modulated by the chemical pattern on the
surfaces, leading to a stick-slip behaviour of the contact line. In addition molecular-dynamics simulations [17] and the Stokes
equations employing a boundary element method [18] have been applied to the problem. From the experimental side, the sliding
of a drop on a chemically striped surface has been studied [19, 20]. Morita et al. [19] have produced micropatterned surfaces
with alternating stripes of different wettability having a width ranging from 1 to 20 microns. Their attention is focused on the
anisotropic behavior of drops sliding in the direction parallel and orthogonal to the stripes. Suzuki et al. [20] realized micropat-
terned surfaces with alternating stripes having width of 100 or 500 microns and a wetttability contrast of about 10◦. They report
smooth oscillations in the advancing and receding contact angles for the 500 microns stripes and practically constant angles for
the narrow stripes. For the former pattern, fluctuations in the velocity are reported.
Despite such an ample amount of works dealing with drops moving on chemically patterned surfaces, a joint numerical and
experimental systematic investigation of the stick-slip regime, the role of the energy balance, and the effect of the patterning
at the mesoscale is still lacking. Given this state of affairs, we started a systematic and comprehensive study to explore the
dynamics of drops sliding down an inclined plane (see Fig. 1) consisting of a periodic array of alternating hydrophobic and
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hydrophilic stripes with a large wettability contrast (about 70◦). This is a case where the usual theoretical approaches relying on
a long-wavelength limit of hydrodynamics [11, 12, 21] cannot provide quantitative answers, as they restrict themselves to drops
with small contact angles and small wettability contrasts. For small velocities, a jerkily motion featuring an evident stick-slip
dynamics is observed [22]. The mean sliding velocity is found to be systematically affected by the patterning details, with a
slowing down that can easily reach up to an order of magnitude with respect to the corresponding homogeneous coating with
the same static morphology (the same equilibrium contact angle). To investigate a more ample interval of contact angles and
extend the experimental observation in [22], we studied sliding drops of water and ethanol in water mixtures. Numerical simu-
lations performed in close synergy with the experiments are crucial for disclosing the physical mechanisms behind the sliding
dynamics, elucidating the relative importance of capillary, viscous and body forces, quantities otherwise impossible to obtain in
the experiments.
The paper is organized as follows: in Sec. II A we describe the experimental details for realizing the heterogeneous patterns and
studying the sliding drops (Sec. II B). Numerical results are presented in Sec. III. Conclusions follow in Sec. IV. In the Appendix
(Sec. V) we report the details of the LB method used.

II. EXPERIMENTS

A liquid drop of volume V sliding down an inclined plane tilted by an angle α is subject to the gravity force, interfacial forces
and the viscous drag. The down-plane component of the drop weight is ρgV sinα, ρ being the fluid density and g the gravity
acceleration. The interfacial force is proportional to γLGV 1/3∆θ, where γLG is the liquid-gas surface tension and ∆θ is a non
dimensional factor depending on the contact angle distribution along the perimeter and on the perimeter shape. The viscous
drag force is of the order of c(θd)ηV 1/3U , where U is the drop velocity, η is the viscosity of the liquid drop while the function
c(θd) depends on the dynamical contact angle distribution θd along the perimeter of the moving droplet in contact with the
surface. The function c(θd) results from the viscous dissipation in the wedge [51] and encodes the general feature that smaller
contact angles are associated with higher viscous dissipation [23, 24]. In addition, the difference between the advancing and the
receding contact angle (as shown in Fig. 1) does not necessarily vanish for small velocities, a feature that is known as contact
angle hysteresis. The hysteresis results in the presence of a critical angle αc, below which the drop is pinned [6]. Above this
threshold the force balance between gravity, viscous and capillary forces implies the following scaling law [23, 24] between the
Capillary number Ca = ηU/γLG and the Bond number Bo = (3V/4π)2/3ρg sinα/γLG

Ca ∝ Bo−Boc
c(θd)

(1)

where Boc = (3V/4π)2/3ρg sinαc/γLG depending on the wetting hysteresis through ∆θ. It is reasonable to approximate
θd ≈ θeq , the equilibrium contact angle on the homogeneous surface, either when dynamic contact angles do not deviate
severely from θeq or when the arithmetic mean of the advancing and receding contact angles is close to θeq [24].
When drops are deposited on a surface functionalized with stripes of alternating wettability, they may assume elongated shapes,
which are characterized by different contact angles in the directions perpendicular and parallel to the stripes. This morphological
anisotropy has been the object of intense scrutiny in a variety of situations [19, 26–29]. When anisotropy is not well pronounced,
the equilibrium properties are well described by the Cassie-Baxter equation [30]

cos θhete = f1 cos θ1 + f2 cos θ2 (2)

which averages over the surface contact angles and f1 and f2 are the fractions of the surface with intrinsic equilibrium contact
angle θ1 and θ2 respectively. We will take the convention to indicate with subscript ‘1’ the more hydrophobic component.

A. Materials and Methods

Chemically patterned surfaces, featuring alternating hydrophilic and hydrophobic stripes, are realized through microcontact
printing: masters with rectangular grooves are produced by photolithography and replicated in PDMS (polydimethilsiloxane)
to obtain the stamp for the printing of a solution of OTS (octadecyltrichlorosilane) in toluene on a glass substrate. The result
is a surface presenting hydrophobic stripes (OTS regions) alternated with hydrophilic stripes (uncoated glass regions). Sample
characterization is performed by condensing water vapour, as shown in Fig. 2, where parallel stripes of different wettability can
be clearly evinced having a periodicity W ∼ 200µm.

The printed pattern is also analyzed in terms of contact angle measurements through the Cassie-Baxter equation [30], as
reported in Table I. We measured simultaneously the equilibrium contact angle both parallel (θ‖) and perpendicular (θ⊥) to
the stripes (see cartoons in Table I) of 4 µl water drops, using the experimental apparatus described in [31]. In agreement
with [19, 29] only the equilibrium contact angle parallel to the stripes is compatible with the theoretical prediction calculated
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FIG. 1: (Color online) Sliding drop on an inclined plane tilted by an angle α. The characteristic sliding velocity U is governed by the down-
plane component of the gravitational acceleration g sinα. The advancing contact angle θA is found to be larger than the receding angle θR
(contact angle hysteresis). The surfaces may be chemically homogeneous (top panel), or functionalized with stripes of alternating wettability
with periodicity W (bottom panel).

through the Cassie-Baxter equation (see Table I) and the asymmetry is more pronounced in the case of the more hydrophilic
surfaces.
To compare the sliding of drops between heterogeneous and homogeneous surfaces, different coatings of glass slides
have been produced with a variety of molecules and methods: OTS, N-octyltrimethoxysilane and Trichloro(1H,1H,2H,2H-
perfluorooctyl)silane deposited from the vapour phase or by immersion in a solution of toluene, obtaining contact angles ranging
from θeq = 71◦ ± 2◦ to θeq = 115◦ ± 2◦. Sliding measurements on these surfaces are performed with drops of distilled water
(ρ = 1000 Kg m−3, η = 1 cP, γLG = 72.8 mN m−1 and V ≈ 30 µl) and drops of a solution of ethanol in water 30% w/w (ρ =
954 Kg m−3, η = 2.5 cP, γLG = 35.5 mN m−1 [32] and V ≈ 30 µl) through a setup similar to [33]. Drops of desired volume
are deposited by means of a vertical syringe pump on the already inclined surface, placed on a tiltable support whose inclination
angle α can be set with 0.1◦ accuracy. A mirror mounted under the sample holder at 45◦ with respect to the surface allows
viewing the contact line and the lateral side of the drop simultaneously [33]. The drop is lightened by two white LED backlights
and is observed through a CMOS camera equipped with a macro zoom lens. Acquired sequences of images, where drops appear
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FIG. 2: (Color online) Vapour condensation on the heterogeneous surfaces featuring hydrophilic glass and hydrophobic OTS parallel stripes:
smaller drops form on the hydrophobic areas whereas bigger drops on the hydrophilic ones. These three patterns are characterized by the same
periodicity W ∼ 200µm (corresponding to the scale bar), but different fractions of OTS and glass: (a) 19% OTS and 81% glass (f1 = 0.19,
f2 = 0.81), (b) 50% OTS and 50% glass (f1 = 0.5, f2 = 0.5) and (c) 83% OTS and 17% glass (f1 = 0.83, f2 = 0.17).

dark on a light background, are analyzed through a custom made program which identifies the drop contour and then fits it with
a polynomial function, subsequently used to evaluate the front and rear contact points and angles [34].

TABLE I: (Color online) Static contact angles of both homogeneous and heterogeneous surfaces of glass (red/dark) and OTS (yellow/light).
In agreement with [19, 29] only the static contact angle parallel to the stripes is compatible with the theoretical prediction calculated through
the Cassie-Baxter equation (2).

ID Sample Cartoon f1
(fOTS)

f2
(fglass) Equilibrium contact angle

Cassie-Baxter
prediction

GLASS homogeneous 0 1 32◦ ± 3◦ -

OTS homogeneous 1 0 110◦ ± 3◦ -

OG 19 81 heterogeneous 0.19 0.81 θ⊥ = 74◦ ± 3◦ θ|| = 58◦ ± 4◦ 52◦ ± 2◦

OG 50 50 heterogeneous 0.50 0.50 θ⊥ = 83◦ ± 2◦ θ|| = 72◦ ± 2◦ 75◦ ± 2◦

OG 83 17 heterogeneous 0.83 0.17 θ⊥ = 100◦ ± 3◦ θ|| = 100◦ ± 3◦ 98◦ ± 2◦
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B. Experimental Results

The sliding of water drops down the heterogeneous samples has been observed in the direction perpendicular to the stripes, as
shown in Fig. 1. In the case of surfaces with wider stripes of glass (Fig. 2a), drops assume an asymmetric shape, elongated in the
direction of the stripes, and get pinned for every inclination angle up to 90◦ so that sliding measurements are not possible. Drops
on surfaces with stripes of glass and OTS of equal width (Fig. 2b) and on surfaces with larger stripes of OTS (Figure 2c) are not
affected by this pronounced asymmetry and the motion is studied for various inclinations α of the sample. To extend the range
of static wettability on the heterogeneous samples, we also studied the sliding of ethanol in water drops (see Sec. II A) down the
surface with stripes of equal width. An example of the particular drop dynamics in these three different situations is shown in
Fig. 3. The drop clearly advances with a stick-slip behavior, with jumps of the order of the pattern periodicity W , on the surface
formed by OTS and glass stripes of equal width (see the upper and middle panels of Fig. 3). The time period T is defined as the
time required to a drop for a displacement equal to W . Considering point (a) in the top graph of Fig. 3 as the beginning of T , at
point (b) the front of the drop suddenly jumps forward by a distance almost equal to W/2, while the rear contact line is pinned.
After the jump, the front line slowly advances and subsequently the rear line jumps by a distance equal to W , corresponding to
points (c) and (d). The period T ends when the front contact point covers a length of W/2 before performing the next jump. The
process then repeats itself. In correspondence to the leap of the front line, a fall in θA occurs, whereas θR reaches the minimum
value just before the depinning of the rear contact point, then jumps to the maximum value in correspondence of the crossing
of W and finally, during the subsequent pinning, gradually decreases. We point out that the pinning-depinning transition occurs
through a discontinuity both in the position and in the contact angle resulting more pronounced in the case of the rear of the drop.
This behavior is observed both in the case of ethanol in water and pure water drops on the same surface (OG 50 50), differing
only by the contact angle values that are higher in the case of water drops. On the other hand, the behavior of water drops on
surfaces with larger stripes of OTS is quite different (see the bottom panel of Fig. 3): even if drop motion is characterized by the
same space periodicity W , the trend of the front and the rear contact points is smoother and does not feature any net jump. Also
θA and θR exhibit only oscillations without any marked discontinuity.

By performing sliding measurements we can derive the relationship between the drop mean velocity U and the inclination
angle α of the surface. Fig. 4 reports data of water drops sliding on striped surfaces OG 50 50 and OG 83 17 and on homo-
geneous surfaces with similar wettabilities. Above the critical angle αc the sliding velocity U scales linearly with sinα, as
described by Eq. (1). We point out that experimentally we still observe motion even for tilt a few degrees (. 5◦) smaller
than αc, a condition in which the drop is moving at low Ca where the viscous dissipation is negligible and the prediction of
Eq. (1) is no more applicable. Nonetheless the determination of αc has been performed by extrapolating the linear trend in
the dissipative sliding up to zero velocity. Indeed the stick-slip regime is typically well observed close to αc. Considering the
heterogeneous and homogeneous surfaces with similar equilibrium contact angle, we observe two distinctive features: i) at the
same inclination α, the velocity is always lower on the heterogeneous surface than on the homogeneous one and the angle αc is
higher for the heterogeneous surfaces which are characterized by a larger pinning; ii) the slope of the curve U vs. sinα is the
same for similar wettability, regardless of the composition of the surface, and is higher for the surfaces characterized by higher
equilibrium contact angle. To better understand the dependence of the curve U vs. sinα on the static wettability, we extended
these measurements to several homogeneous samples featuring different equilibrium contact angles. Such data are collected in
the bottom panel of Fig. 4 and expressed in terms of the dimensionless numbers Ca and Bo−Boc in order to better appreciate
the range of slopes of the curves. We underline how the slope ∆Ca/∆Bo, being inversely proportional to the dissipation (see
Sec. II), clearly increases as the hydrophobicity of the surfaces increases [7, 24].

III. NUMERICAL RESULTS

For the numerical simulations we employ a mesoscopic LB model [35] to reproduce the diffuse interface dynamics of a binary
mixture. LB turned out to be a very effective method to describe mesoscopic physical interactions and non-ideal interfaces
coupled to hydrodynamics. Many multiphase and multicomponent LB models have been developed, on the basis of different
points of view, including the Gunstensen model [36], the free-energy model [37] and the “Shan-Chen” model [38], the latter
being widely used thanks to its simplicity and efficiency in representing interactions between different species and different
phases [39–45]. The numerical simulations with the LB models (see appendix) are used to reveal the importance of the various
terms in the equations of motion. In particular, these numerical simulations are crucial to elucidate the relative importance
of capillary, viscous and body forces in the dynamical evolution of the drop. We will analyze the case of a cylindrical drop
on a chemically striped surface with the drop radius such that R ≈ 10W . Simulating two-dimensional drops allows to better
resolve the hydrodynamics inside the drop and approach with higher accuracy the hydrodynamic limit of the LB equations (see
Appendix). We will first present results with a viscous ratio χ = ηin/ηout = 1, where ηin, ηout are the dynamic viscosities inside
(inner viscosity) and outside (outer viscosity) the drop, respectively. Later on, we will also specialize to the case of different
dynamic viscosities, to better compare with the experimental results. The dynamic equations we reproduce are the continuity
equations and the Navier-Stokes equations of a fluid mixture with two components ζ = A,B, with A the rich component in
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FIG. 3: (Color online) Time dependence of the front and rear contact points (left axis) and the advancing and receding contact angles (right
axis). Space is expressed in units of the pattern periodicity W and time in units of the period T (the time required for a displacement of
the drop equal to W ). Top panel: measurement about a 30 µl drop of ethanol in water (30% w/w) sliding down the sample with stripes of
equal width (OG 50 50); middle panel: data about a 30 µl water drop on the surface OG 50 50 formed by the same percentage of glass and
OTS (f1 = f2 = 0.5); bottom panel: measurement about a 30 µl water drop on the sample OG 83 17 featuring larger stripes of OTS (the
hydrophobic part) with f1 = 0.83, f2 = 0.17. Boxes on the left report corresponding experimental details.

the drop phase. As for the momentum equation, in the limit of very small Reynolds number, we integrate in time the following
equation (x is the down plane coordinate and repeated indexes are summed upon)

ρ
∂ux
∂t

= −∂Pxβ
∂rβ

+
∂σxβ
∂rβ

+ ρAg sinαδix (3)

where ρζ is the density of the ζ-th component (ρ =
∑
ζ ρζ is the total density), uα refers to the α-th projection of the fluid

velocity, σαβ is the viscous stress tensor and Pαβ is the pressure tensor [46] encoding both the non-ideal effects at the interface
(liquid-gas surface tension) and the interation with the solid wall (wettability). All the details of the model are reported in the
Appendix. The diffuse interface time-dependent Stokes equation (3) is integrated over the drop volume and made dimensionless
with respect to the surface tension force RγLG. We end up with the following balance

Ma(t) = Fcap(t) +D(t) + Fg (4)

where a(t) is the acceleration of the drop with mass M and Fg is the down-plane component of the gravitational force. The
term Fcap (calculated as the integral of the pressure tensor term) accounts for the nonuniform pressure and curvature distortion
as well as the capillary force on the drop at the contact line. The function D(t) (the integral of the viscous stress term) quantifies
the drag force due to viscous shear.
In Figs. 5 and 6 we show the emergence of the stick-slip dynamics in the numerical simulations. We have reproduced the same
wettabilities experimentally investigated in Fig. 3 and explored different values of the Bond numbers by changing the value of
g sinα. Figure 5 reports snapshots of the density and velocity magnitude corresponding to the pinning and depinning transition
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FIG. 4: (Color online) Top panel: mean velocity of 30 µl water drops sliding down the heterogeneous (open symbols) surfaces OG 50 50
(f1 = f2 = 0.5, θhete = 72◦) and OG 83 17 (f1 = 0.83, f2 = 0.17, θhete = 100◦) and down homogeneous (filled symbols) surfaces of
similar wettabilities, inclined by several angles α. Lines are linear fit to the data taken on a range where viscous dissipation is not negligible.
The intercept at U = 0 defines the critical angle αc. Bottom panel: Ca vs. (Bo − Boc) curves for homogeneous (filled symbols) and
heterogeneous (open symbols) surfaces of different wettability. Measures on heterogeneous surfaces (open symbols) are performed with water
drops on samples OG 50 50 (f1 = f2 = 0.5) and OG 83 17 (f1 = 0.83, f2 = 0.17) and with ethanol in water (30% w/w) drops on sample
OG 50 50 (f1 = f2 = 0.5), as reported in Fig. 3. The experimental data and the corresponding fits are horizontally shifted by Boc.

of the drop. In the left sequence (density snapshots), the front contact line gets pinned before entering the hydrophobic regions
(snapshot (a)). Then it penetrates slowly through the hydrophobic area with an increasing advancing angle until it enters the
hydrophilic region performing a sudden jump (snapshot (b)). The rear contact line motion on the hydrophilic and hydrophobic
stripes is similar, the only difference being the receding contact angle is reducing as the drop stays pinned, and increases after
the jump (snapshots (c) and (d)). In parallel, the right sequence of (velocity snapshots) shows a velocity magnitude close to zero
during the pinning on hydrophobic areas (snapshots (a) and (c)) and a spike in the correspondence of the drop slip (snapshots (b)
and (d)). We point out that the jumps of the front and rear contact lines do not take place at the same instant, since the front sticks
as the rear slips and vice versa, as clearly confirmed both experimentally (Fig. 3) and numerically (Fig. 6). Correspondingly, the
top panel of Fig. 6 displays the time evolution of the positions of the front and rear contact points normalized toW , for a situation
with the same fraction of hydrophilic and hydrophobic areas, i.e. f1 = f2 = 0.5, and for a Bond number Bo = 0.017 [22].
The time lag T is the characteristic period of the stick-slip dynamics, similarly to what is reported in Fig. 3. In the inset of the
top panel of Fig. 6 we can appreciate the change in the dynamics induced by larger hydrophobic stripes, achieved by simulating
a case with f1 = 0.75, f2 = 0.25: drop motion has the same space periodicity W , but the front contact point motion is
smoother, similarly to what we have experimentally observed in the bottom panel of Fig. 3. The rear contact point, instead,
experiences more frequent jumps forward. This may be seen as a signature of the transition from the regular stick-slip dynamics
to a homogeneous stationary motion. In the bottom panel of Fig. 6 we compare the stick-slip dynamics of the heterogeneous
case with f1 = f2 = 0.5 with that of a homogeneous substrate at the same Bond number (Bo = 0.017), with the homogeneous
equilibrium contact angle chosen in agreement with the Cassie-Baxter equation (2). The mean velocity of the heterogeneous
case is visibly an order of magnitude less that that of the homogeneous case.

Fig. 7 presents the analysis of the balance equation (4), comparing the sliding on homogeneous and heterogeneous surfaces,
for the same Bo and for a time frame 2T . The homogeneous case (top panel) is steady: the energy provided by Fg is almost
entirely transferred into dissipation, apart from the deformation of the interface which causes a term Fcap smaller by a factor≈10
with respect to the heterogeneous case (middle panel). As already reported [22], in the striped surface, when the drop is pinned,
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FIG. 5: (Color online) Density snapshots during the stick-slip dynamics for a situation with the same fraction of hydrophilic and hydrophobic
areas, i.e. f1 = f2 = 0.5, and for a Bond number Bo = 0.017. The orange/light (blue/dark) color is associated to high (low) density regions.
The four snapshots (a)-(d) refer to four different time steps as reported in the top panel of Fig. 6. The corresponding velocity-magnitude
snapshots are also reported. All data are reported in lbu (LB units).

Fg is almost balanced by Fcap (time step (a) in Fig. 5). Immediately after, the front contact line jumps forward and the drop
depins (Fcap → 0) with a consistent dip in the viscous drag force (time step (b) in Fig. 5). The process repeats itself for the rear
contact line (time steps (c) and (d) in Fig. 5). Overall, we see that the effective dissipation in the heterogeneous case is strongly
suppressed as compared with the stationary homogeneous case. This is because the large wettability contrast causes additional
energy to be stored in the non-equilibrium configuration of the drop which can pin before the contact lines jump forward. The
analysis of the balance equation (4) helps also to understand the transition from the stick-slip dynamics to the steady motion.
The bottom panel of Fig. 7 shows the effect of an increase in the Bond number for the dynamics on the heterogeneous case,
with the time scale T still indicating the characteristic period of the stick-slip dynamics at Bo = 0.017: as the Bond number
is increased, the jumps of the rear and the front contact points become more frequent while the amplitude of the fluctuations of
Fcap and the acceleration a(t) do not change appreciably. The change in Bo is compensated by an increase of the drag force,
and hence, an increase of the mean velocity. For even larger Bo the drag force will dominate over Fcap, the variations in a(t)
and Fcap become negligible, and the motion of the drop can be paralleled to that of a drop over a homogeneous substrate with
an effective equilibrium contact angle (see below).

The top panel of Fig. 8 shows the position of the front contact point as a function of time for different Bo. Increasing Bo,
we see that the net separation of time scales, characterizing the pinning of the drop and the jump forward, is progressively
disappearing. The capillary number computed from the mean velocity of the drop is displayed as a function of Bo in the bottom
panel of Fig. 8. We have chosen various wettabilities, producing the same Cassie-Baxter angle in Eq. (2). At variance with
the experimental data of Fig. 4, sliding on homogeneous surfaces in numerical simulations is by construction not affected by
the hysteresis. Therefore, from Fig. 8 we can appreciate the effect of the pattern in introducing a critical Bond number for the
onset of motion, representing the increase of the static energetic barrier that must be overwhelmed by gravity before the drop
starts to move. The slope ∆Ca/∆Bo is basically unchanged if we keep fixed the effective contact angle provided by the Cassie-
Baxter equation (2), at least for Bo reasonably larger than Boc [18]. This can be understood in terms of a simple qualitative
argument allowing us to identify an effective angle, parametrizing the effective (average) dissipation at the contact line. For the
homogeneous surface, viscous dissipation develops at the contact line and counterbalance the work done by the external (gravity)
force on the drop. The viscous dissipation is parametrized by the dynamic angle θd, which is close to the equilibrium angle θeq
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FIG. 6: (Color online) Top panel: time evolution in dimensionless units (see text for details) of the position of the rear and the front contact
points of a drop sliding down the heterogeneous surface for a Bond number Bo = 0.017 and f1 = f2 = 0.5. The front contact point
position is translated for visualization. Letters refer to the snapshots for density and velocity magnitude reported in Fig. 5. The inset shows
the corresponding situation with larger hydrophobic stripes, achieved by simulating a case with f1 = 0.75, f2 = 0.25. The bottom panel
compares the position of the rear contact point for the heterogeneous (f1 = f2 = 0.5) and the homogeneous case at the same Bond number
(Bo = 0.017), with the homogeneous equilibrium contact angle chosen in agreement with the Cassie-Baxter equation (2). The time scale T
indicates the characteristic period of the stick-slip dynamics at Bo = 0.017. The average speed of the heterogeneous case is visibly an order
of magnitude less than that of the homogeneous case.

for small Ca and small hysteresis (see section II A). The stationary wedge is therefore identified by the angle whose cosine
projects the liquid-gas surface tension (γLG) to balance the difference between the solid-gas and solid-liquid surface tensions
(γSG − γSL), i.e. Young equation γLG cos θeq ≈ γSG − γSL. In the heterogeneous case, when we seek the angle whose cosine
projects the liquid-gas surface tension to balance the difference between the solid-gas and solid-liquid surface tensions averaged
over the period, we end up with the Cassie-Baxter prediction (2).

To check the validity of this argument against a change in the viscous ratio between the inner and outer drop regions, as
well as a change in the fractions f1 and f2, we conducted a series of numerical simulations by changing the dynamic viscosity
of the outer phase, exploring cases with f1 = 1/4, f2 = 3/4; f1 = 1/2, f2 = 1/2; f1 = 3/4, f2 = 1/4. This offers the
possibility to complement the results presented in Fig. 4 and extend the results presented in [22] which are limited to situations
with f1 = 1/2, f2 = 1/2. In Fig. 9 we display the slope ∆Ca/∆Bo, including both the experimental data of Fig. 4 as well as
the numerical results with two viscous ratios, χ = 1 and χ = 20. Similarly to what we have done for the experiments, we have
performed numerical simulations for both homogeneous and heterogeneous samples. In all mesoscale approaches, as already
noticed elsewhere [15], the non-ideal interface is too wide (relative to the drop radius) with respect to the experiments. The
resulting contact line velocity is larger and the drop therefore moves too quickly in the simulations. This problem is accounted
for by introducing a scaling factor, the same for all the numerical simulations. Such scaling factor is found to be of the order of
the ratio log(ξLB/RLB)/ log(ξ/R) ≈ 0.2, with ξ the interface width (quantities without subscript refer to experimental values),
as one would guess by looking at the solution of the laminar flow equations in a wedge [7, 24]. The numerical results with χ = 1
do not show any appreciable variation of the slope ∆Ca/∆Bo with the equilibrium contact angle, indicating that the dissipation
is unchanged at changing the equilibrium contact angle. For a drop sliding down a homogeneous surface with equilibrium contact
angle θeq , a flow develops in the outer wedge angled by an angle π − θeq . Being the viscosity of the inner and outer phase the
same, the dissipation for a system composed of a drop with equilibrium contact angle θeq is therefore the same as that of a drop
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FIG. 7: (Color online) Time evolution of the various terms in the balance equation (4) for the homogeneous and heterogeneous (f1 = f2 = 0.5)
cases. Both the top panel (homogeneous case with static angle θeq ≈ 85◦) and the middle panel (heterogeneous case with θhete ≈ 85◦, with
θ1 = 50◦, θ2 = 120◦) refer to Bo = 0.017. The bottom panel shows the effect of an increase of the Bond number on the dynamics for
the heterogeneous pattern at Bo = 0.02. The time lapse considered is the same for the three cases, with the time scale T indicating the
characteristic period of the stick-slip dynamics at Bo = 0.017.

with equilibrium contact angle π − θeq . This symmetry in changing the outer fluid with the inner fluid is responsible for the
independence of ∆Ca/∆Bo on the contact angle. Repeating the simulations with the heterogeneous cases, we obtain the same
value of ∆Ca/∆Bo witnessing the emergence of the same average dissipation for the patterned surfaces. To observe a variation
of the slope with respect to a change in the equilibrium contact angle, we need to change the viscous ratio χ. Numerical results
are shown for the case χ = 20: the change in the slope that we achieve is not as large as the one that we get in the experiments,
and the reason is probably because such viscous ratio is still smaller than the experimental values. Unfortunately, numerical
simulations with very large χ are quite unstable and technical improvements are needed to cure such numerical instabilities.
At very large viscous ratio the dependence of the slope ∆Ca/∆Bo as a function of the equilibrium contact angle θeq can be
described by the scaling law Eq. (1) with c(θeq) calculated through the so called ‘wedge flow approximation’ [7, 22, 24]: such
scaling law is reported for comparison with the experimental and numerical data. Here we recall that the scaling of ∆Ca/∆Bo
encodes the general feature that smaller contact angles are associated with higher viscous dissipation (see Section II). Overall,
the numerical simulations provide evidence that the slope ∆Ca/∆Bo is well parametrized by the equilibrium contact angle,
either homogeneous or heterogeneous, even in situations where the outer phase has a non negligible viscosity with respect to the
drop phase.
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FIG. 8: (Color online) Top panel: time evolution in dimensionless units (see text for details) of the position of the front contact points for
different Bo. Bottom panel: relation between Ca and Bo for both homogeneous and heterogeneous surfaces. In the heterogeneous case the
capillary number is computed from the mean velocity and different intrinsic equilibrium contact angles θ1 and θ2 are chosen, all of them
leading to the same θhete in equation (2). The critical Bond number is zero for the homogeneous case, while it is different from zero for the
heterogeneous case.

FIG. 9: (Color online) Slope of the Ca vs. Bo curve as a function of the equilibrium contact angle. Open (filled) symbols refer to the
heterogeneous (homogeneous) experimental values analyzed in Fig. 4. Numerical simulations are performed with viscous ratios χ = 1 and
χ = 20 between the drop phase and the outer phase for both the homogeneous and the heterogeneous cases. The dashed line is the scaling
law predicted by (1), calculated for small drops sliding down homogeneous surfaces with a wedge dissipation as the dominant dissipative
contribution [7, 22, 24].
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IV. CONCLUSIONS

We have characterized both experimentally and numerically the motion of drops sliding across alternating stripes having a
large wettability contrast. For Bond numbers close to a critical Bond number, these drops undergo a characteristic non linear
stick-slip motion whose average speed can easily be an order of magnitude smaller than that measured on a homogeneous
surface having the same equilibrium contact angle. The slow down is the result of the pinning-depinning transition of the contact
line which causes energy dissipation to be localized in time and large part of the driving energy to be stored in the periodic defor-
mations of the contact line when crossing the stripes. We have quantified the change of dissipation inside the drop as a function
of the increasing Bond number, by comparing the motion of the drops on heterogeneous patterns with those on homogeneous
substrates: the main effects of the heterogeneous patterning can be readsorbed in a renormalized value of the critical Bond num-
ber, representing the increase of the static energetic barrier that must be overcome by gravity before the drop starts to move. Our
findings suggest workable strategies to passively control the motion of drops by a suitable tailoring of the chemical pattern. It is
also worth underscoring the essential role played by numerical simulations, which offer great flexibility in investigating a variety
of load conditions and performing local measurements of capillary, viscous and body forces, otherwise impossible to obtain by
experimental means. This would provide invaluable insights in the engineering of chemical patterns in open microfluidic devices.
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V. APPENDIX

The LB equation evolves in time the discretized probability density function fζi(r, t) to find at position r and time t a fluid
particle of component ζ = A,B with velocity ci according to the LB updating scheme

fζi(r + τci, t+ τ) = f∗ζi(r, t) = fζi(r, t) + ∆ζi + ∆g
ζi (5)

with the time step τ set to a unitary value. The (linear) collisional operator expresses the relaxation of the probability distribution
function towards the local equilibrium f

(eq)
ζj (the ∗ in (5) indicates the post-collisional probability density)

∆ζi =
∑
j

Lij(fζj − f (eq)ζj ) (6)

where the expression for the equilibrium distribution is a result of the projection onto the lower order Hermite polynomials [48,
49] and the weights wi are a priori known through the choice of the quadrature

f
(eq)
ζi = wiρζ

[
1 +

u · ci
c2s

+
uu : (cici − I)

2c4s

]
(7)

wi =


1/3 i = 0

1/18 i = 1 . . . 6

1/36 i = 7 . . . 18

, (8)

where cs is the isothermal speed of sound (a constant in the model) and u is the fluid velocity. Our implementation features a
D3Q19 model with 19 velocities

ci =


(0, 0, 0) i = 0

(±1, 0, 0), (0,±1, 0), (0, 0,±1) i = 1 . . . 6

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) i = 7 . . . 18

. (9)

The operatorLij in equation (6) is the same for both components (this choice is appropriate when we describe a symmetric binary
mixture) and is constructed to have a diagonal representation in the so-called mode space: the basis vectors ek (k = 0, ..., 18)
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of mode space are constructed by orthogonalizing polynomials of the dimensionless velocity vectors [48, 49]. The basis vectors
are used to calculate a complete set of moments, the so-called modes mζk =

∑
i ekifζi (k = 0, ..., 18). The lowest order modes

are associated with the hydrodynamic variables. In particular, the zero-th order momenta give the densities for both components

ρζ = mζ0 =
∑
i

fζi, (10)

with the total density given by ρ =
∑
ζmζ0 =

∑
ζ ρζ . The next three momenta m̃ζ = (mζ1,mζ2,mζ3), when properly

summed over all the components, are related to the velocity of the mixture

u ≡ 1

ρ

∑
ζ

m̃ζ +
1

2ρ
τg =

1

ρ

∑
ζ

∑
i

fζici +
1

2ρ
τg. (11)

The other modes are the bulk and the shear modes (associated with the viscous stress tensor), and four groups of kinetic modes
which do not emerge at the hydrodynamical level [48]. Since the operator Lij is diagonal in mode space, the collisional term
describes a linear relaxation of the non-equilibrium modes

m∗ζk = (1 + λk)mζk +mg
ζk (12)

where the relaxation frequencies −λk (i.e. the eigenvalues of −Lij) are related to the transport coefficients of the modes. The
term mg

ζk is related to the k-th moment of the forcing source ∆g
ζi associated with a forcing term with density gζ(r, t). While

the forces have no effect on the mass density, they transfer an amount gζτ of total momentum to the fluid in one time step. The
forcing term is determined in such a way that the hydrodynamical equations (15-16) are recovered, and can be written as

∆g
ζi =

wiτ

c2s

(
2 + λM

2

)
gζ · ci +

wiτ

c2s

[
1

2c2s
G : (cici − c2sI)

]
, (13)

where the components of tensorG are defined as

Gαβ =
2 + λs

2

(
uαgζβ + gζαuβ −

2

3
uγgζγδαβ

)
+

2 + λb
3

uγgζγδαβ . (14)

Using the LB model we are able to reproduce the continuity equations and the Navier Stokes equations for both densities
(repeated indexes are meant summed upon) [47]

∂

∂t
ρζ +

∂

∂rβ
(ρζuβ) = ∂βDζβ , (15)

ρ

[
∂uα
∂t

+ uβ
∂uα
∂rβ

]
= − ∂p

∂rα
+
∂σαβ
∂rβ

+ gζα. (16)

In the above equations, ρ =
∑
ζ ρζ is the total density and p =

∑
ζ pζ =

∑
ζ c

2
sρζ is the internal pressure of the mixture. The

α-th projection of the velocity is denoted with uα. The term
∑
ζ gζα refers to all the contributions coming from internal and

external forces. As for the internal forces, we will use the “Shan-Chen” model [38] for multicomponent mixtures

gζα(r) = −ρζ(r)
∑
i

∑
ζ′ 6=ζ

wigABρζ′(r + τci)ciα ζ, ζ ′ = A,B (17)

where gAB is a function that regulates the interactions between different pairs of components. The sum in equation (17) extends
over a set of interaction links coinciding with those of the LB dynamics (see equation (9)). When the coupling strength parameter
gAB is sufficiently large, demixing occurs and the model can describe stable interfaces with a surface tension. The effect of the
internal forces can be recast into the gradient of the pressure tensor P (int)

αβ [46], thus modifying the internal pressure of the

model, i.e. Pαβ = p δαβ + P
(int)
αβ . The thermodynamic properties of the drop are input via such a pressure tensor: this accounts

for the surface tension at the interface between the two fluids, as well as the capillary forces at the contact line via a suitable
imposition of wetting boundary conditions for the densities at the wall. The diffusion current Dζ and the viscous stress tensor
σ in equations (15-16) are given by

Dζα = µ

[(
∂pζ
∂rα
− ρζ

ρ

∂p

∂rα

)
−
(
gζα −

ρζ
ρ
gα

)]
, σαβ = ηs

(
∂uβ
∂rα

+
∂uα
∂rβ
− 2

3

∂uγ
∂rγ

δαβ

)
+ ηb

∂uγ
∂rγ

δαβ . (18)
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The relaxation times of the momentum (λM ), bulk (λb) and shear (λs) modes in (6) are related to the transport coefficients of
hydrodynamics as

µ = −τ
(

1

λM
+

1

2

)
ηs = −ρc2sτ

(
1

λs
+

1

2

)
ηb = −2

3
ρc2sτ

(
1

λb
+

1

2

)
(19)

where µ is the mobility and ηb, ηs the bulk and shear viscosities respectively. We introduce the effect of gravity in the Navier-
Stokes equation with a body force density, ρAg sinα, applied to theA phase along the x-direction. For the numerical simulations
presented we have used gAB = 1.5 lbu (LB units) in (17) corresponding to a surface tension γLG = 0.2 lbu and associated bulk
densities ρA = 2.3 lbu and ρB = 0.06 lbu in the A-rich region. The relaxation frequencies in (19) are such that λM = λs =
λb = −1.0 lbu, corresponding to a viscous ratio χ = ηin/ηout = 1, where ηin, ηout are the dynamic viscosities inside (inner
viscosity) and outside (outer viscosity) the drop, respectively. The cases with χ 6= 1 are obtained by letting λs depend on the
component ζ, thus allowing to model an inner dynamic viscosity larger than the outer one.
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