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We investigate the stability and dynamics of natural convection in two dimensions, sub-
ject to inhomogeneous boundary conditions. In particular, we consider a Rayleigh-Bénard
(RB) cell, where the horizontal top boundary contains a periodic sequence of alternating
thermal insulating and conducting patches, and we study the effects of the heterogeneous
pattern on the global heat exchange, both at low and high Rayleigh numbers. At low
Rayleigh numbers, we determine numerically the transition from a regime characterized
by the presence of small convective cells localized at the inhomogeneous boundary to
the onset of bulk convective rolls spanning the entire domain. Such a transition is also
controlled analytically in the limit when the boundary pattern length is small compared
with the cell vertical size. At higher Rayleigh number, we use numerical simulations based
on a lattice Boltzmann method to assess the impact of boundary inhomogeneities on the
fully turbulent regime up to Ra ∼ 1010.

1. Introduction

Many flows in nature are driven by density differences, they are called convective flows.
Thermal convection has applications spanning from cooling devices in micro-computers
to heat exchangers in thermal machines. Convection is relevant in biological systems,
the earth interior (Guillou 1995; Lenardic 2003, 2005; Jellinek 2012; Solomatov 2000),
the ocean (Aargard & Carmack 1989; Holland 2001; Martinson 1990; Wirth & Barnier
2006), the atmosphere (Soloviev & Klinger 2001; Cieszelski 1998) and in stars (Choudhuri
1998). In all of these flows many processes might be involved, as for example rotational
effects, phases changes, complex boundary conditions and non-linear equations of state.
Thermal Rayleigh-Bénard (RB) convection is the simplest system of convective motion,
see Bodenschatz (2000); Lohse & Xia (2010); Ahlers et al. (2009); Chilla & Schumacher
(2012) for recent reviews on the topic. The RB system consists of a fluid subject to an
external gravity field with intensity g placed between two horizontal plates, heated from
below and cooled from above. The associated thermal dynamics is parameterized in terms
of two non-dimensional parameters, namely the Rayleigh number, Ra = gα∆TH3/(νκ),
and the Prandtl number, Pr = ν/κ, where H is the distance between the plates, α and κ
are the thermal expansion and diffusivity coefficients of the fluid and ν is the kinematic
viscosity. For the standard case when the top and bottom boundaries have homogeneous
temperatures the system is known to be linearly unstable and convection starts above
a critical Rayleigh number, the latter being determined by the fluid properties and the
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boundary conditions of the system (Chandrasekhar 1961; Rayleigh 1916). On the other
hand, in many, if not all, applications a certain degree of inhomogeneity is present in the
thermal forcing at the boundary. Whenever horizontal inhomogeneities in the boundary
conditions appear, as for example a differential heating or cooling within a plate, the
system is always unstable as it can be easily checked from the equations of motion. If
the inhomogeneities are weak and localized, the convective dynamics is also localized. In
the case of weak and localized inhomogeneities one may still identify a critical Rayleigh
number, Rac, characterizing the transition from the presence of only localized convection
in the vicinity of the boundaries to the existence of global bulk convective motion. The
scope of this work is twofold. First, we discuss the dependence of such a transition on the
surface heterogeneities. In particular, we study the onset of large scale thermal convection
in a two dimensional RB cell, the upper plate of which consists of a periodic sequence
of insulating (∂zT = 0) and “thermalized” (T = Tup) patches, as shown in figure 1, and
quantify the effects of the boundary heterogeneity on Rac. Second, we intend to explore
the high Rayleigh numbers regime by changing the pattern length-scale and the Rayleigh
number using direct numerical simulations for the same two-dimensional set-up.
The problem is important for a series of geophysical applications, such as the role of

fractures, leads and polynyas in the sea-ice, which is an almost perfect insulator to heat
flux. Their existence leads to inhomogeneous convection in both the ocean and the atmo-
sphere. It was recently shown (Marcq & Weiss 2012) that the size distribution of leads is
multi-scale, and that the size matters, small leads (several meters) being more efficient in
heat transport than larger ones (several hundreds of meters). The water masses formed
by this inhomogeneous convective process around Antarctica are the densest known in
the worlds ocean. They sink to the very bottom and are key to the oxygenation of the
deepest waters in the ocean and the thermohaline circulation (Aargard & Carmack 1989;
Holland 2001; Martinson 1990). The insulating effect of continents on mantle convection
in the Earth (Guillou 1995; Lenardic 2003, 2005; Jellinek 2012; Solomatov 2000) is an-
other example. Homogeneous RB convection is an important physical problem, but in
engineering devices and in nature, inhomogeneities are a conspicuous feature too. Results
on inhomogeneous convection is scant which is in stark contrast to the homogeneous case.
In order to make the problem simpler, we specialize here to only one case of inho-

mogeneities, that is periodically alternating conducting and insulating regions on a one-
dimensional pattern at one boundary, the other boundary being homogeneous. Other
theoretical, numerical and experimental studies have investigated the onset of convection
and the transition to pattern formation in Rayleigh-Bénard with periodic temperature
modulation on one plate with and without vertical inclination of the cell (Freund et al.
2011; Weiss et al. 2011; Seiden et al. 2008). More recently, a detailed study of transition
to bulk convection for a RB cell heated with a sinusoidal profile from below was presented
(Hossain & Floryan 2013) where some of the issues here discussed are also addressed. In
particular, at changing the characteristic wave number of the heating mechanism, the
authors study the transition from a system with convection limited to the region close
to the boundary condition to a bulk regime with rolls that have different orientation,
transversal or longitudinal, depending on the forcing wavenumber. Our work is distin-
guishable from the previous ones for at least two reasons. First, we investigate a different
set-up, with insulating and conducting regions that cannot be characterized by a single
harmonic modulation of the temperature, therefore changing both the type (Dirichlet
and Neumann) and spatial characteristics of the boundary conditions with respect to the
previous studies. This is clearly inspired by and reflects very well the oceanic context. It
also reflects applications to thermal convection at surfaces covered with different mate-
rials having different thermal properties as used in many engineering applications. Such
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Figure 1. Sketch of the cell with periodic horizontal boundary conditions and mixed temper-
ature boundary conditions in the upper wall. Black regions denote insulating properties, white
regions denote a constant temperature.

boundary condition applies to many applications, but it also involves dynamics of many
Fourier modes and their interaction. This makes its analytical and numerical treatment
more involved than a sinusoidal (single wave-number) variation of the magnitude of the
temperature or the heat-flux. Second, we address also the impact of such modulation on
the high Rayleigh number regime addressing the universality of the turbulent statistics
at changing the details of the forcing mechanisms.
All numerical simulations have been done using a lattice Boltzmann scheme. Lattice

Boltzmann Methods are well known and widely applied to a variety of single and multi-
phase hydrodynamic problems (Shan & Chen 1993; Shan & Doolen 1996; Sbragaglia et al.
2007; Succi 2005) and they have also been developed to study thermal fluids, both
with the Boussinesq approximation (Benzi et al. 1998; Shan 1997) and in a fully ther-
mal regime (Scagliarini et al. 2010; Zhang & Tian 2008; Biferale et al. 2013; Shan et al.
2006; Philippi et al. 2006; Prasianakis & Karlin 2007; Gonnella et. al. 2007; Watari 2009).
Lattice Boltzmann methods are particularly adapted to attack non-homogeneous bound-
ary conditions, thanks to their fully local stream-and-collide nature. In the following, we
first validate the method against exact results in the low Rayleigh number limit and then
we apply it to explore the high Rayleigh number regimes.
The paper is organized as follows. In section 2 we discuss the equations describing our

problem and we sketch the main idea behind the analytical calculation of Rac for the
onset of bulk convection. In sections 3 and 4 we show analytical and numerical results
for the low Rayleigh number conduction of heat. In section 5 we briefly summarize a
few technical details of the lattice Boltzmann methods, before using it to determine the
stability of the system in section 6 and disentangle the high Rayleigh number regime in
section 7. Conclusions are given in section 8.

2. Non-homogeneous Rayleigh-Bénard convection

The typical geometrical set-up is depicted in figure 1, where inhomogeneities are re-
stricted only to the upper plate (z = H) and made of alternating regions of either fixed
temperature, T = Tup, or vanishing temperature gradient, ∂zT = 0. The lower bound-
ary (z = 0) is kept at constant temperature, T = Tdown. To study the dynamics of the
fluid, we use the classical Oberbeck-Boussinesq (Lohse & Xia 2010; Ahlers et al. 2009)
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equations (repeated indexes are meant summed upon):










∂iui = 0

∂tui + uk∂kui = −∂iP + ν∂kkui − αT gδi,z

∂tT + ui∂iT = κ∂iiT,

(2.1)

where ui is the i-th component of the velocity field and P the internal pressure of the
fluid. We set the origin of coordinates at the lower boundary, and such that the point
(x = 0, z = H) is located in the middle of one insulating region (see also Figure 1). The
boundary conditions are periodic with a period L:











T (x,H) = Tup x /∈ [−L1 + jL, L1 + jL], j ∈ Z

∂zT (x,H) = 0 x ∈ [−L1 + jL, L1 + jL], j ∈ Z

T (x, 0) = Tdown ∀x
(2.2)

where L1 and L are defined in figure 1. Moreover, we will assume periodic boundary
conditions on the horizontal axis and no-slip velocity boundary conditions at both hori-
zontal plates. In this simplified geometry, we have two new control parameters defining
the properties of the geometrical pattern, namely the pattern length in units of the cell
height, λ = L/H and the total percentage of insulating regions, ξ = 2L1/L. In the limit-
ing case ξ = 0 one recovers the usual RB homogeneous convection, while ξ = 1 leads to a
purely homogeneous cell with T = Tdown in the whole domain. Different questions can be
asked by changing λ and ξ. For instance, from an applied point of view, it is interesting
to understand what happens by varying λ at fixed ξ. This would answer the following
question: suppose you have a given percentage of insulating tiles to cover your floor (or
ceiling), what is the optimal pattern to reduce/enhance the vertical heat transfer, at fixed
temperature jump? Another important question concerns the horizontal entrainment of
turbulent convection inside the stable non-convective regions at different cell heights, a
phenomena that might have important applications to deep convection in the oceans.
From more fundamental aspects, we know that it is difficult to predict the heat flux in
the high Rayleigh number regimes already for the case of purely homogeneous convection.
Moreover, the question about universality of large and small scales statistics at changing
small details of the forcing and boundary properties is another key issue in turbulence
theory and applications. For example, breaking of homogeneity or isotropy in the bound-
ary conditions can affect the flow on a wide range of scales (Biferale & Procaccia 2005).
As a result the turbulent statistical properties might be strongly sensitive to symmetry
breaking mechanisms and be described by different statistical attractors even in highly
turbulent regimes as recently suggested to explain puzzling transition observed at high
Rayleigh numbers in some experimental set-ups (He et al. 2012; Ahlers et al. 2009a) and
in highly sheared flow (Cortet et al. 2010). Clearly, understanding the effects of possible
–small– boundary heterogeneities for such critical behavior could be key to improve our
understanding of such a general question.

In the following, we first start to study the low Rayleigh number regime. We know
that there exists a critical Rayleigh number for the onset of convection in the homo-
geneous case. For no-slip velocity boundary conditions it is about Rac(ξ = 0) = 1707
(Chandrasekhar (1961)). In presence of horizontal heterogeneities, the system cannot
have a stable static solution with u(x, z, t) = 0 for non vanishing Rayleigh numbers. So
formally Rac(ξ > 0) = 0. In fact, the situation is more complex and one may easily
imagine that for ξ ∼ 0 and λ ∼ 0, the situation is not too different from the one of a
homogeneous RB cell and that therefore all velocity instabilities are localized close to
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Ra=347, λ=1/5 Ra=1715, λ=1/5 Ra=1762, λ=1/5

Figure 2. Non-homogeneous RB system at ξ = 0.5, λ = 1/5 at three different Rayleigh numbers,
before (left and center panel) and after (right panel) the transition to bulk convection. Vectors for
the Ra = 347 and Ra = 1715 cases are multiplied by a factor 10 with respect to the Ra = 1762
ones. Notice in the low Rayleigh number regimes, the presence of convective rolls localized at
the top boundary before the transition.

the top boundary in form of micro-convective cells (see figure 2). In other words, we still
expect the existence of a critical Rayleigh number characterizing the switch from a near
plate micro-convective pattern to a global bulk convective behavior. Such a transition
must be identified in a change of the behavior of the Nusselt number, i.e the normalized
heat flux, versus the Rayleigh number:

Nu =
〈uzT 〉x,t − κ∂z〈T 〉x,t

κ∆T/H
, (2.3)

where ∆T = Tdown − Tup, as well as in the global behavior of, e.g., the total kinetic
energy:

Ek =
1

2

∫ H

0

〈u2
z + u2

x〉xdz. (2.4)

In the above definitions, we have used 〈...〉x,t for the average time and in the x direction,
while 〈...〉x indicates only the average in the x direction. Let us also notice that one
could have adopted a slightly different definition of Nusselt number, taking into account
that the solution at zero Rayleigh number, g = 0, is not anymore characterized by a
homogeneous profile. In this case, the normalization factor in the denominator must be
changed considering that the mean temperature at the upper plate is not anymore given
by Tup. If we denote with ∆T0(ξ) = 〈T (x,H)〉x−Tdown the difference between the mean
temperature at the upper plate and the temperature at the bottom plate at zero Rayleigh
number, we have:

Nu∗ =
〈uzT 〉x,t − κ∂z〈T 〉x,t

κ∆T0(ξ)/H
. (2.5)

The definition (2.5) ensures that for small enough Rayleigh the Nusselt number tends to
Nu∗ = 1 for any ξ. In figure 3 we show the stationary (t → ∞) value of the total kinetic
energy Ek and of the Nusselt number at changing Rayleigh number for two different
cases, the classical homogeneous RB (ξ = 0) and a case with ξ = 0.5, λ = 1/5. The
results have been obtained using a code based on the lattice Boltzmann models (see
section 5). As one can notice, the presence of the insulating patches at the top boundary
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Figure 3. Plot of total kinetic energy (Ek), compensated with its value at Ra = 1260, and
Nusselt number (Nu∗) as a function of Ra close to the transition for two cases, one homogeneous
(�) and one at ξ = 0.5 with λ = 1/5 (•). Notice the delay in the onset of a global macroscopic
convective roll. Inset: enlargement of the region close to Rac.

delays the transition to a bulk convection. A rigorous treatment of such phenomena will
be discussed in the next section.

3. Basic Temperature Profile

In this section we sketch the construction of the basic static temperature profile T0(x, z)
at g = 0, that is the profile that will define the background configuration also at g > 0
but for Ra < Rac(ξ), i.e. the large scale temperature distribution superposed to the
micro-convective cells close to the top boundary. In the bulk region we need to solve a
harmonic problem with the boundary conditions given by (2.2):

∂xxT (x, z) + ∂zzT (x, z) = 0. (3.1)

We look for a solution in the form

T (x, z) = T0(z) +
∆TL

2πH2
Θ̃(x, z),

where

T0(z) = Tdown −
(

∆T

H

)

z = Tdown − βz

is the usual linear profile with the property that T0(0) = Tdown and T0(H) = Tup. The

boundary condition for the deviations from the linear conductive profile, Θ̃, are










Θ̃(x,H) = 0 L1 < x < L
2

∂zΘ̃(x,H) = 2πH
L 0 < x < L1

Θ̃(x, 0) = 0.

Because of the symmetry of the problem, we consider only solutions periodic and even for
x → −x and we will solve only in the half semi-plane x ≥ 0. Since T (x, z) is harmonic and
T0(z) is linear, Θ̃(x, z) must also be harmonic: ∂xxΘ̃ + ∂zzΘ̃ = 0. Due to the periodicity
and the symmetry of the problem, we seek the solution in the following form

Θ̃(x, z) = F0(z) +
∞
∑

j=1

Fj(z) cos

(

2πj

L
x

)

.
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The requirement that eq. (3.1) and the boundary conditions at the lower boundary are
satisfied leads to

Θ̃(x, z) = b0z +
∞
∑

j=1

bj

(

e+
2πjz
L − e−

2πjz
L

)

cos

(

2πj

L
x

)

where b0 and bj are constants to be fixed upon imposition of the upper plate boundary
conditions. We then define the variables x̃ = 2π

L x to get:






Θ̃(x̃, z) = b0z +
∑∞

j=1 bj

(

e+
2πjz
L − e−

2πjz
L

)

cos (jx̃)

∂zΘ̃(x, z) = b0 +
∑∞

j=1 bj
2πj
L

(

e+
2πjz
L + e−

2πjz
L

)

cos (jx̃) .
(3.2)

It is then possible to verify that the mixed boundary condition at the upper boundary
is given by:







a0

2 +
∑∞

j=1 aj

(

1− e−
4πjH

L

)

cos (jx̃) = 0 c < x̃ < π

a0
L

4πH +
∑∞

j=1 jaj

(

1 + e−
4πjH

L

)

cos (jx̃) = 1 0 < x̃ < c
(3.3)

where we have set c = 2πL1

L = πξ and used the definition aj =
bj
H e

2πjH
L , a0 = 2b0.

As we see from eq. (3.3), the imposition of the mixed boundary condition leads to a
typical case of Dual Series (DS) (Sneddon (1966)), which we can handle numerically
quite efficiently (Lauga & Stone 2003). Moreover, the solution can be analytically found
in some asymptotic cases, as discussed in the following subsections. Once we know the
{aj} from (3.3), the temperature profile on the whole domain can be written as:

T (x, z) = T0(z) +
∆TL

2πH





a0
2

z

H
+

∞
∑

j=1

aj
(

1− e−4πj z
L

)

e+
2πj(z−H)

L cos

(

2πj

L
x

)



 . (3.4)

Let us notice that the above expression implies that the averaged profile along the x-
direction depends only on the a0 coefficient, i.e. it is always linear for the conductive
case, at g = 0:

〈T 〉x = T0(z) +
∆TL

2πH2

a0
2
z. (3.5)

3.1. Small wavenumber limit of the pattern perturbation, L ≪ H, λ → 0

If we assume that L ≪ H , we see that the modulation terms along x are active only
for distances of the order of L from the upper wall (at least when ξ ≪ 1); for distances
larger than L every mode is exponentially damped and the profile reduces to

T (z) ≈ T0(z) +
∆TL

2πH2

a0
2
z, (3.6)

meaning that at distances of the order (and larger) of the periodicity length L from the
upper wall we tend to perceive only the average value of the temperature corrections. In
the limit L ≪ H (with a0L/H ≪ 1) the non-homogeneous term in the second equation
of (3.3) can be neglected and the whole expansion reduces to a particular case of the
general expression:

{

a0

2 +
∑∞

j=1 aj cos (jx̃) = 0 c < x̃ < π
∑∞

j=1 jaj cos (jx̃) = f(x̃) 0 < x̃ < c
(3.7)



8 P. Ripesi, L. Biferale, M. Sbragaglia and A. Wirth

with f(x̃) = 1. The solution of the general case is (see Appendix A for all the details):

a0 = 4log

(

1

cos( c2 )

)

(3.8)

where the singularity of the expansion for the purely insulating case, ξ = 1, is only
apparent because (3.8) is obtained assuming a0L/H ≪ 1 and therefore one cannot send
ξ → 1 at fixed L/H in the above calculations. Finally, it is also possible to explicitly
calculate the whole temperature profile in contact with the insulating region at z = H
(see Appendix A):

2πH

∆TL
(T (x,H)−Tup) =

1

2
a0+

∞
∑

j=1

ajcos(jx̃) = 2arccosh

(

cos( x̃2 )

cos( ξπ2 )

)

0 < x̃ < c. (3.9)

3.2. Large wavenumber limit of the pattern perturbation, L ≫ H

In the limit L ≫ H we have slits (i.e. strongly vertically confined situations). The tem-
perature in the central region has not enough space to develop a non trivial profile and
it stays enslaved to the value at the lower boundary. The temperature profile is therefore
expected to be:

T (x, z) =

{

Tdown +
(

Tup−Tdown

H

)

z c < x̃ < π

Tdown 0 < x̃ < c
(3.10)

so that

a0 =
4πH2

∆TL
〈T (x,H)− Tup〉x =

4πHξ

L
. (3.11)

This argument can be checked directly in the DS eq. (3.3) which, in the limit H ≪ L,
reduces to

{

a0

2 +
∑∞

j=1 aj
4πjH

L cos (jx̃) = 0 c < x̃ < π

a0
L

4πH +
∑∞

j=1 2jaj cos (jx̃) = 1 0 < x̃ < c
(3.12)

or, alternatively:

a0
L

8πH
+

∞
∑

j=1

jaj cos (jx̃) =
1

2
θ(c− x̃)θ(x̃) 0 < x̃ < π

where with θ(x) we denote the Heaviside function. Eq. (3.12) can be solved by calculating
the inner product on the interval 0 ≤ x̃ ≤ π with cos(ix̃):

a0 =
4πHξ

L
; aj =

sin(jπξ)

πj2
j > 0 (3.13)

where we have used
∫ π

0

cos(ix̃) cos(jx̃)dx̃ =

{

0 i 6= j
π
2 i = j, i > 0

;

∫ c

0

cos(ix̃)dx̃ =

{

c i = 0
1
i sin(ic) i 6= 0.

3.3. The Case 1 ≈ L
H ≫ e−4πH/L (Intermediate case)

In this limit we can ignore the exponential functions e−
4πjH

L and we end up with the
following DS

{

a0

2 +
∑∞

j=1 aj cos (jx̃) = 0 c < x̃ < π

a0
L

4πH +
∑∞

j=1 jaj cos (jx̃) = 1 0 < x̃ < c
(3.14)
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Figure 4. Plot of the the zeroth order coefficient, a0, characterizing the mean profile 〈T 〉x (see
eq. (3.5)) as extracted from our numerically assisted solution (◦) described in section 4 for both
ξ = 0.4 (left panel) and ξ = 0.8 (right panel). The cell height H has been varied from H ≪ L

to H ≫ L. The limits H ≫ L, H ≪ L and 1 ≈ L
H

≫ e−4πH/L are reported, as described in eqs.
(3.8), (3.13) and (3.15). For the numerical assisted solution of the DS in eq. (3.3), the truncation
order is N = 500 (see section 4).

where we can find again an exact solution for the DS (see Appendix B for details):

a0 =
4log

(

1
cos( c

2 )

)

1 + L
πH log

(

1
cos( c

2 )

) . (3.15)

4. Numerically assisted solution of dual series

Let us now attack the most general case, without any approximation. We start from
the DS eq. (3.3) which can be rewritten in the whole interval 0 ≤ x̃ ≤ π as:

∑

j=0

ajFj(x̃) cos(jx̃) = G(x̃) (4.1)

with G(x̃) = θ(x̃)θ(c − x̃) and

Fj(x̃) =

{

1
2θ(x̃− c)θ(π − x̃) +

(

L
4πH

)

θ(x̃)θ(c− x̃) j = 0
(

1− e−
4πjH

L

)

θ(x̃− c)θ(π − x̃) + j
(

1 + e−
4πjH

L

)

θ(x̃)θ(c− x̃) j > 0.

(4.2)
To solve this equation for {aj} numerically (Lauga & Stone 2003), we can truncate the
series at the order N and calculate its inner product on the interval 0 ≤ x̃ ≤ π with
cos(ix̃). This is particularly simple because Fj(x̃) is a piecewise constant function. At
the end of a lengthy but straightforward analysis we need to solve a linear system

Ai,jaj = yi (4.3)

where Ai,j is a N ×N matrix and yi is a vector whose details are reported in Appendix
C. For the truncated series, calculations are found to converge well above a truncation
order N of a few tens (see Appendix C). Choosing N = 500, we therefore safely ensure
the recovery of the solution with an error less than a fraction of a percent.

In figure 4 we plot the coefficient a0 as extracted from our numerically assisted solution
of the DS for both ξ = 0.4 and ξ = 0.8. H has been varied from H ≪ L to H ≫ L.
The expected behavior in the limits discussed in subsections 3.1-3.3 H ≫ L, H ≪ L
and 1 ≈ L

H ≫ e−4πH/L is also plotted. As one can see, there is an excellent agreement
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Figure 5. Temperature profile in the RB cell with mixed boundary conditions (see figure 1).
Comparison between the analytical solution for the temperature profile at the upper wall (z = H)
obtained in the limit H ≫ L, see eq. (3.9), and the DS solution given by (3.3), numerically
evaluated with N = 500 as described in section 4. The temperature profile is obtained for the
following parameters: Tdown = 1.5, Tup = 0.5, L = 2π and H = 100 for both ξ = 0.4 (◦) and
ξ = 0.8 (�). The coordinate x is made dimensionless with 2π/L, i.e. x̃ = 2π

L
x.

between the exact numerical solution and the three asymptotic estimates in the limit
when they can be applied. Moreover, we notice that the case when we take L ∼ H and
neglect the exponential term gives a good first guess for all values of the cell aspect ratio.
This is due to the fact that the exponential term is indeed always very small even in the
exact solution. Next, in figure 5, we plot the temperature profile at the upper wall as
results from the rhs of eq. (3.9) against the solution of the truncated DS for the following
parameters: Tdown = 1.5, Tup = 0.5, L = 2π and H = 100 for both ξ = 0.4 and ξ = 0.8.

5. Numerical approach based on Lattice Boltzmann Methods

In order to go beyond the static cases, we have also developed a numerical algorithm
based on the lattice Boltzmann models (LBM) to solve for the whole dynamical prob-
lem with the most generic boundary condition. LBM (Gladrow 2000; Benzi et al. 1992;
Chen & Doolen 1998) for ideal isothermal fluids can be derived from the continuum
Boltzmann (BGK) equation (Bhatnagar et al. 1954), upon expansion in Hermite veloc-
ity space of the single particle distribution function, f(x, ζ, t), describing the probability
of finding a molecule at the space-time location (x, t) and with velocity ζ (He & Luo
1997; He et al. 1998; Martys et al. 1998; Shan & Yuan & Chen 2006). Lattice dynam-
ics is enforced with a discrete finite set of velocities ζ ∈ [c1, c2, . . . , cM ], with the total
number M determined, case-by-case, by the embedding spatial dimension and the re-
quired degree of isotropy (Gladrow 2000). As a result, the dynamical evolution is given
by a set of populations fℓ(x, t) with l = 1, . . . ,M on a discretized spatial and temporal
lattice. In what follows we will only address two dimensional cases, where M = 9 is
enough to get the right continuum hydrodynamic limit. As far as we are interested in
the Oberbeck-Boussinesq limit, i.e. with thermal properties entering only via a buoyancy
term in the Navier-Stokes equations, one may extend the single-fluid LBM dynamics to
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describe also the evolution of a temperature field by adding another set of populations,
gℓ(x, t) (for more complex cases where thermal effects enters also into the equation of
state see Scagliarini et al. (2010); Biferale et al. (2013)). In the two-populations approach
the dynamics is then defined by the following discretized evolution :

{

fℓ(x+ cℓ, t+ 1)− fℓ(x, t) = − 1
τf

(

fℓ(x, t)− f̄ℓ(x, t)
)

gℓ(x+ cℓ, t+ 1)− gℓ(x, t) = − 1
τg

(gℓ(x, t)− ḡℓ(x, t))
(5.1)

where, τf and τg are two characteristic times governing the relaxation dynamics to-
wards the local equilibrium distributions, f̄ℓ(x, t), ḡℓ(x, t). The hydrodynamic evolution
is obtained considering the long wavelength limit (Succi (2005); Gladrow (2000)) of the
equations for the coarse-grained density, momentum and temperature fields, defined as:

ρ(x, t) =

8
∑

ℓ=0

fℓ(x, t) ρu(x, t) =

8
∑

ℓ=0

cℓfℓ(x, t) T (x, t) =

8
∑

ℓ=0

gℓ(x, t). (5.2)

The functional form of the equilibrium for the density-momentum evolution (the first
equation of (5.1)) is given by a discretization of the Maxwellian (repeated indexes are
meant summed upon):

f̄ℓ(x, t) = f̄ℓ(ρ(x, t),u
(S)(x, t)) = wℓ

[

ρ+
ρu

(S)
k ckℓ
c2s

+
(ckℓ c

s
ℓ − c2sδks)(ρu

(S)
k u

(S)
s )

2c4s

]

(5.3)

where wℓ are suitable weights used to enforce isotropy up to the desired order. The Navier-
Stokes equations for the hydro-dynamical velocity field given by the semi-sum of the pre-
and post-collision velocity fields, u(H) = u + F

2ρ , with the external buoyancy forcing

F = αgT ẑ, are then recovered in the Chapman-Enskog limit (with small g) if we define
the field entering in the local equilibrium by the shifted expression (Buick & Greated
2000):

u(S) = u+ τf
F

ρ
. (5.4)

Concerning the evolution of the temperature field, the local equilibrium (in the second
equation of (5.1)) is given by:

ḡℓ(x, t) = ḡℓ(T (x, t),u
(H)(x, t)) = wℓT

[

1 +
u
(H)
k ckℓ
c2s

+
(ckℓ c

s
ℓ − c2sδks)(u

(H)
k u

(H)
s )

2c4s

]

.

(5.5)
Let us also notice that in order to get the right hydrodynamic limit of the temperature
evolution, an extra body-force term is in principle needed in order to avoid spurious
terms in the continuum limit, as shown by Latt (2007). The importance of this term
depends on the applications. In all our simulations we have checked that it is negligible.
In conclusion, in the hydrodynamic limit, one can show that the small Mach number
version of the coupled Navier-Stokes equations given by expression (2.1) is recovered
with ν = c2s(τf − 0.5) and κ = c2s(τg − 0.5). Lattice Boltzmann methods have already
been widely used to investigate thermal convection under different geometries and forcing
conditions (Benzi et al. 1998; Shan 1997), but never for the case we are focusing here,
including non-homogeneous thermal properties at the walls. The locality of the lattice
Boltzmann algorithm, allows to enforce the spatial variations in the boundary conditions
in a optimal way. To validate the LBM algorithms, we have run numerical simulations in
a two-dimensional geometry of Lx×H grid points with Lx = 400, H = 100, 200, 400, 800
and τf = τg = 0.7 and compared with the analytical results discussed previously. The
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Figure 7. The zeroth order coefficient, a0, of the temperature profile expansion (3.4). The
theoretical predictions have been obtained by solving for the {aj} in the DS approach (3.3) with
the numerical procedure illustrated in section 4. The lattice Boltzmann prediction is extracted
from the average profile consistently with eq. (3.5). We have considered the lattice Boltzmann
numerical simulations with Lx = 400, τf = τg = 0.7 and with the following cell heights: H = 100
(λ = 4, •), H = 200 (λ = 2, △), H = 400 (λ = 1, H), H = 800 (λ = 1/2, �). The insulating
fraction has been varied between ξ = 0.2 and ξ = 0.8. The analytical solution of the DS for
λ = 0 (see eq. (3.8)) is also reported.

insulating fraction has been varied between ξ = 0.2 and ξ = 0.8. The static case (g =
0, u = 0) has been reproduced and the temperature profiles are compared with the
theoretical prediction in figure 6. Similarly, in figure 7, we show the comparison between
the LBM results and the solution of the DS for the a0 coefficient at changing ξ.
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6. The stability of a convective cell in the limit H ≫ L

As we noted in the previous section, when H ≫ L (and when 2L1 is not close to L),
the temperature profile (3.4) simplifies considerably. A modulation along x is present
only in a boundary layer of width ≈ L close to the upper wall. Away from this boundary
layer, the temperature has the form

T (z) ≈ T0(z) +
∆TL

2πH2

a0
2
z, (6.1)

where ∆T = (Tdown − Tup). Therefore, when we consider in this limit a RB cell with a
periodic modulation of normalized length λ in the upper boundary condition, we may
use the results of an equivalent homogeneous RB convection but with an effective tem-
perature:

T eff
up = Tup +

∆TL

2πH

a0
2
.

Then, we can apply the same arguments leading to the stability of the RB homogeneous
flow provided we redefine the Rayleigh number with a renormalized temperature gradient
β′ = ∆T

H (1− a0L
4πH )

Ra′ =
gαβ′H4

νκ
= Ra+Ra

L

Hπ
log

(

cos

(

πξ

2

))

, (6.2)

where for Ra we kept the usual definition of the Rayleigh number, i.e. Ra = gαβH4

νκ , of
the fully homogeneous set-up. Let us stress again that we are looking here for the critical
Rayleigh number at which we should observe a transition from ’localized’ convective cells
in the belt within a distance L from the upper plate to a bulk convection. The criteria for
stability in Ra′ should be unchanged. The convective cell is linearly destabilized when
Ra′ > Ra′c = 1707 (when periodic boundary conditions in the x-direction are considered,
the horizontal to vertical aspect ratio of the cell is set to two and no-slip boundary
conditions for the velocity fields are applied at the two horizontal walls). Translating the
result in terms of Ra, we identify a critical Rayleigh number given by

Rac(ξ) =
Ra′c

1− L
4πH a0

=
Ra′c

1 + L
πH log

(

cos
(

πξ
2

)) . (6.3)

Since log
(

cos
(

πξ
2

))

≤ 0 we see that the flow is stabilized by the mixed boundary

condition. Let us also note that the divergence at ξ = 1 is only apparent, due to the
assumption a0L/H ≪ 1 needed to get to (6.3). Keeping in mind Eq. (6.3), we have
performed numerical simulations for various ξ in order to validate the theoretical argu-
ment. Using the Thermal lattice Boltzmann numerical scheme on a 2D domain of size
Lx × H = 2080×1040, with periodic boundary conditions on lateral walls and no-slip
boundary conditions on the upper and lower wall, we have estimated the numerical values
of Rac at ξ =[0, 0.2, 0.4, 0.6] for two configurations, with λ = 1/10, 1/20 respectively. As
one can see in figure 8, the agreement between the low λ-limit (6.3) and the numerics is
good for λ = 1/20, while at smaller separation the effects of the insulating regions enter
too much in the bulk and the prediction (6.3) is lost.
In conclusion, we have shown that the mixed boundary condition enhances the aver-

age temperature of the top boundary, thus decreasing the average buoyant force in the
Navier-Stokes equations. The problem can be paralleled to that of a shear flow over a
plate with a regular array of longitudinal no-shear slots (Philip 1972), where the effect
of the patterning is to provide an effective slip velocity, i.e. an increase of the top tem-



14 P. Ripesi, L. Biferale, M. Sbragaglia and A. Wirth

1700

1720

1740

1760

1780

1800

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

R
a c

(ξ
)

ξ

λ=1/10 Eq.(6.3)
λ=1/20 Eq.(6.3)

λ=1/10 LBM
λ=1/20 LBM

Figure 8. Comparison between the prediction for Rac(ξ) as given by eq. (6.3) and the LBM
results for ξ = 0.2, 0.4, 0.6, 0.8 and λ = 1/10 (•) and λ = 1/20 (�). The critical value for Ra is
estimated from the transition in the global kinetic energy as shown in figure 3.

perature in our language. The effective temperature gradient (and therefore the effective
Rayleigh number) is decreased as compared to a situation with homogeneous top bound-
ary temperature. Consequently, the critical Rayleigh number at the onset of large scale
convection is increased.

7. Non-homogeneous RB analysis in the high Rayleigh number

regime

In this section we investigate the high Rayleigh number regime of the RB non ho-
mogeneous system. In order to minimize the complexity we will attack only the two-
dimensional problem with a fixed percentage of insulating region (ξ = 0.5) at changing
both Rayleigh number and the typical normalized length, λ = L/H , of the boundary pat-
tern. A couple of snapshots of the temperature distribution close to the non-homogeneous
boundary for two cases with large and small λ are shown in figure 9. From this qualita-
tive figure one can see that when the boundary perturbation is larger than the typical
plume size, the thermal activity is concentrated on the conducting regions. On the other
hand, when the pattern has a very small length, the presence of cold plumes at the
top boundary is fully uncorrelated on the boundary perturbation. Our main goal here
is to understand the effects of this boundary ’corrugation’ in the conducting properties
on the bulk heat transfer at varying Rayleigh number. It is known that other types of
corrugation, e.g. induced by a geometrical roughness (Tisserand et al. 2011), may lead
to non-trivial changes in the global heat transfer. In particular, in the latter case, it is
observed that whenever the typical length-scale of the roughness becomes larger than the
thermal boundary layer, a transition towards an increased heat transfer is produced. This
can be justified in terms of an effective increase of the plate boundaries which in turns
produce a better heat exchange between the boundaries and the bulk fluid. In our set up,
an increase of λ above the typical thermal boundary layer length, λT , at a fixed Rayleigh
number should in principle lead to the opposite behavior, i.e. to a decrease of the Nusselt
number (2.3). This expectation is triggered by the observation that whenever the bound-
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Figure 9. (Color online) Two instantaneous snapshots of the temperature field close to the
non-homogeneous boundary for ξ = 0.5 and two periods of the boundary pattern, λ = 1/13 (left
panel), λ = 1/208 (right panel)

ary insulating pattern develops on a length-scale that is larger than λT the bulk flow sees
a real corrugation in the boundary even in presence of strong turbulent fluctuations. Such
corrugation is connected to the presence of regions where the system does not transfer
heat, the mean local temperature increases and the global heat exchange should decrease.

In figure 10 we plot the time evolution of the volume averaged temperature 〈T 〉x,z for
a given Rayleigh number at changing the pattern periodicity. The initial configuration
is given by the unstable homogeneous profile with T (x, z) = Tdown in the upper half
volume and with T (x, z) = Tup in the lower half volume, such as the system starts with a
Rayleigh-Taylor instability and then tends to develop the (non-homogeneous) RB mean
profile. We notice that the mean temperature becomes larger and larger by increasing λ,
this is clearly due to the fact that for λ > λT the insulating regions drives the temperature
dynamics in the bulk leading to a net increase in the mean temperature. Because the
mean temperature profile must always be symmetric with respect to the center of the
cell, it implies that the heat flux decreases.
In figure 11 we show the effects of the thermal corrugation on the averaged tempera-

ture profile 〈T 〉x,t at the upper wall for three different Rayleigh numbers. Notice that at
increasing Ra, the thermal boundary layer becomes thinner (as expected) but also the
’effective’ mean temperature at the wall increases, because the insulating region intro-
duces a perturbation that is larger and larger with respect to the width of the thermal
boundary layer. Our numerical resolution is such that even at the highest Rayleigh num-
bers investigated we have enough grid points in the boundary layer to observe smooth
profiles. In table 7 we summarized all details of the numerical set up.
Concerning the heat exchange properties, in the left panel of figure 12 we show the

Nusselt number as a function of Rayleigh number; in the right panel, instead, we nor-
malize the Nusselt number with the ∼ Ra1/3 empirical rule observed for homogeneous
RB systems (see, e.g. Ahlers et al. (2009); Chilla & Schumacher (2012) for detailed dis-
cussions about possible corrections to the dimensional 1/3 law). From these figures one
can observe the two main effects already discussed before. Looking on a global scale (left
panel), we do not observe any strong effect of the boundary non-homogeneities on the
heat exchange, at least as far as the scaling properties of Nu vs. Ra are concerned. At
a closer look (right panel), after compensation with Ra1/3, some small effects can be
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indeed detected. First, let us fix Ra and look at what happens at increasing λ by keeping
constant ξ = 0.5. For example, for Ra ∼ 5 × 108, we observe a systematic increase of
the heat flux by decreasing λ up to a critical value of the boundary corrugation where
nothing changes anymore by keeping reducing it. This is clearly in agreement with the
statement that thermal corrugations in the boundary might affect the bulk physics only
when their typical length is larger than -or of the order of- the thermal boundary layer.
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homogeneous case is also shown for comparison (�). Right: same data of left panel normalized

with the ∼ Ra1/3 law. The dependency on λ is more pronounced at increasing Ra, because the
thermal boundary layer thickness, λT , gets smaller than the period of the boundary pattern, L
(see figure 13).

Similarly, moving at higher Rayleigh number, say Ra ∼ 1010, we still observe a discrep-
ancy between the heat fluxes even for those values of λ that already had saturated at a
lower Ra. This is due to the fact that increasing Ra decreases λT and that therefore those
patterns that satisfy L ≪ λT at a low Ra, do not satisfy it anymore for higher Ra. It is
difficult to quantify this argument and the transition cannot be sharp. Mainly because
the very definition of λT depends also on the control parameters λ and ξ. In figure 13
we show the behavior of λT /L for the different data sets of figure 12 in order to give a
qualitative support to the previous statement. Indeed, we see that when λT /L ∼ 0.8 or
larger, the bulk heat transfer seems to become independent of the corrugation details.
Finally, in figure 14 we show a typical measurement of the mean temperature profile
close to the upper boundary for different λ at a given Ra, where we can see indeed that
whenever Nu does not depend anymore on λ, we also observe that λT > L.

8. Conclusions

Natural convection with non-homogeneous horizontal boundary conditions has been
investigated in presence of alternating strips of conducting and insulating boundary re-
gions. The simplest, one-dimensional, geometrical patterning has been investigated at
changing the (i) Rayleigh number, (ii) insulating/conducting surface ratio and (iii) pat-
terning periodicity. For moderate Rayleigh numbers we presented both analytical and
numerical evidences that the transition to bulk convection is delayed with respect to the
homogeneous case, happening at a renormalized Rayleigh number which depends on the
patterning properties. At high Rayleigh numbers we used numerical simulations based
on a lattice Boltzmann method for a two dimensional horizontally periodic box to show
that the control parameter can be identified in the ratio between the thermal boundary
layer width, λT , and the characteristic period L of the boundary pattern. For L ≫ λT ,
the insulating regions give an effective corrugation in the boundary and decreases the
normalized heat flux. The net effect, comparing two patterning with periodicity differing
of almost two order of magnitude (i.e. λ = 1/5, 1/416), can lead to an enhancement
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Ra λ Lx H ν κ Pr ∆T g τRB ttot/τRB

5 ×108 hom 2080 1040 3.3× 10−3 3.3× 10−3 1 0.1 5× 10−5 2.5× 105 26
5 ×108 1/5 2080 1040 3.3× 10−3 3.3× 10−3 1 0.1 5× 10−5 2.5× 105 40
5 ×108 1/13 2080 1040 3.3× 10−3 3.3× 10−3 1 0.1 5× 10−5 2.5× 105 40
5 ×108 1/208 2080 1040 3.3× 10−3 3.3× 10−3 1 0.1 5× 10−5 2.5× 105 40
5 ×108 1/416 4160 2080 1.6× 10−3 1.6× 10−3 1 0.1 1.5 × 10−6 2.8× 106 45

2 ×109 hom 2080 1040 1.6× 10−3 1.6× 10−3 1 0.1 3.5 × 10−5 3.5× 105 24
2 ×109 1/5 2080 1040 1.6× 10−3 1.6× 10−3 1 0.1 3.5 × 10−5 3.5× 105 42
2 ×109 1/13 2080 1040 1.6× 10−3 1.6× 10−3 1 0.1 3.5 × 10−5 3.5× 105 42
2 ×109 1/208 2080 1040 1.6× 10−3 1.6× 10−3 1 0.1 3.5 × 10−5 3.5× 105 42
2 ×109 1/416 4160 2080 1× 10−3 1× 10−3 1 0.1 1.5 × 10−6 3.7× 106 45

8 ×109 hom 4160 2080 1.6× 10−3 1.6× 10−3 1 0.1 2.5 × 10−6 7× 105 20
8 ×109 1/5 4160 2080 1.6× 10−3 1.6× 10−3 1 0.1 2.5 × 10−6 7× 105 47
8 ×109 1/208 4160 2080 1.6× 10−3 1.6× 10−3 1 0.1 2.5 × 10−6 7× 105 47
8 ×109 1/416 4160 2080 1.6× 10−3 1.6× 10−3 1 0.1 2.5 × 10−6 7× 105 47

Table 1. Numerical parameters for all simulations performed with the LBM algorithm. Dif-
ferent columns refers to: Rayleigh number, Ra = g∆TH3/(νκ); pattern length in units of the
cell height, λ = L/H ; the horizontal periodic length, Lx; viscosity and thermal diffusivity,
ν = c2s(τf − 0.5), κ = c2s(τg − 0.5), where c2s = 1/3 is the sound speed and τf and τg are the
relaxation times in the Boltzmann equation (see text); Prandtl number; difference between the
bottom plate and top plate imposed temperatures ∆T = (Tdown − Tup); gravity, g; large scale

eddy turn over time, τRB =
√

Lx

αg∆T
; total integration time, ttot/τRB .
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Figure 14. (Color online) Temperature profile averaged in time, 〈...〉t, close to a block of
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Notice that in the top row the two profiles at λ = 1/104, 1/208 have a thermal corrugation
length of the same order of (or smaller than) the typical thermal boundary layer width, λT , and
therefore their normalized Nusselt is not changing any more (see right panel of figure 12). For
the bottom row, only the case at λ = 1/416 has a corrugation of the order of λT /2, and the
Nusselt number of the three cases still shows some small dependency on λ.

in the normalized heat flux by a factor 40 − 50%. The above findings show that for a
given surface ratio of insulating/conducting regions it is more efficient to use tiles that
have a characteristic size smaller than -or equal to- the boundary layer thickness. The
situation is different to the case of rough geometrical elements on the surface, which
lead to an increase of heat transport when the characteristic size of the roughness el-
ements is larger than the boundary layer and penetrate it (see Tisserand et al. (2011);
Shishkina & Wagner (2011) for experimental and theoretical studies addressing the case
of multi-scale roughness or regular patterning, respectively). Clearly, for any fixed pat-
tern distribution, there will always exist a Rayleigh number high enough such that the
non-homogeneous structure will emerge. Further numerical investigations at changing
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the insulating/conducting distribution and pattern, and involving also 3D geometries
would be very welcome to understand the robustness of such finding in the general case.
Even more interesting could be the case where the patterning shows multi-scale non-
homogeneous properties as for the case of ice covering in the ocean. Another further
direction of investigation would be to add inhomogeneities also at the bottom plate and
gauge the formation of stable large scale flows triggered by a preferential patterning.
Finally, following the same approach, it could be interesting to study the importance of
adding also time modulation in the boundary conditions to detect possible synchroniza-
tion effects in the detachment of plumes and highlighting an optimal forcing protocol to
enhance heat transfer between the two plates following the works of Jin & Xia (2008);
von der Heydt et al. (2003).
The authors kindly acknowledge funding from the European Research Council under
the EU Seventh Framework Programme (FP7/2007-2013) / ERC Grant Agreement
no[279004]. We acknowledge computational support from CINECA (IT).

9. Appendix A

In this section we detail the calculations to solve the DS in the limit L ≪ H . The
general expression of such a DS is

{

a0

2 +
∑∞

j=1 aj cos (jx̃) = 0 c < x̃ < π
∑∞

j=1 jaj cos (jx̃) = f(x̃) 0 < x̃ < c,
(9.1)

with f(x̃) = 1. The solution of eqs. (9.1) can be found on page 161 of the book by
Sneddon (1966) in terms of a function h1(t):















a0 = 2
π

[

π√
2

∫ c

0

h1(t)dt

]

aj =
2
π

[

π
2
√
2

∫ c

0

h1(t)[Pj(cos(t)) + Pj−1(cos(t))]dt

]

j = 1, 2, ...
(9.2)

where Pj are the Legendre polynomials. The function h1(t) is such that

h1(t) =
2

π

d

dt

∫ t

0

sin(x2 ) dx
√

cos(x)− cos(t)

(∫ x

0

f(u)du

)

(9.3)

and, in our case where f(x̃) = 1, we get

h1(t) =
2

π

d

dt

∫ t

0

x sin(x2 ) dx
√

cos(x) − cos(t)
. (9.4)

The computation of a0 hinges on the knowledge of the function h1(t) which is the deriva-
tive of the integral

I(t) =
2

π

∫ t

0

x sin(x2 ) dx
√

cos(x) − cos(t)
. (9.5)

The integral in (9.5) can be evaluated with some manipulations and the use of formula
3.842 of the book by Gradshteyn & Ryzhik (2000), leading to:

I(t) =
4√
2
log

(

1

cos( t
2 )

)

(9.6)
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from which we get h1(t) =
√
2tan

(

t
2

)

and, consequently, the exact expression for a0:

a0 = 4log

(

1

cos( c2 )

)

(9.7)

where we have used c = πξ with ξ the insulating fraction. The other coefficients can also
be found using formula (9.2). Although not necessary for the scope of the paper, it may
be of interest to also give the expression for the first coefficients beside a0:











a1 = 2 sin2
(

c
2

)

a2 = −1− 3 cos4
(

c
2

)

+ 4 cos2
(

c
2

)

a3 = 2
3 − 20

3 cos6
(

c
2

)

+ 12 cos4
(

c
2

)

− 6 cos2
(

c
2

)

.

(9.8)

We also notice that using the results of Sneddon (1966) we can analytically solve for the
profile of the temperature in the insulating region at the top wall, 0 < x < c:

1

2
a0 +

∞
∑

j=1

ajcos(jx̃) = cos

(

x̃

2

)∫ c

x̃

h1(t)dt
√

cos(x)− cos(t)
. (9.9)

The integral in expression (9.9) can be done exactly to get the temperature at the upper
insulating region:

1

2
a0 +

∞
∑

j=1

ajcos(jx̃) = 2arccosh

(

cos( x̃2 )

cos( ξπ2 )

)

0 < x̃ < c (9.10)

that is the expression reported in (3.9) and used to benchmark our numerically assisted
solution for the DS reported in section 4.

10. Appendix B

In this section we give the explicit expression for the coefficients characterizing the DS
equation in the intermediate case, 1 ≈ L

H ≫ e−4πH/L. The DS reported in eq. (3.14) can
be rewritten as

{

a0

2 +
∑∞

j=1 aj cos (jx̃) = 0 c < x̃ < π
a0λ
4π +

∑∞
j=1 jaj cos (jx̃) = 1 0 < x̃ < c

(10.1)

with λ = L
H . We use the general solution given by eqs. (9.2) and (9.3), with the function

h1(t) given by

h1(t) =
2

π

d

dt

∫ t

0

sin(x2 ) dx
√

cos(x)− cos(t)

(∫ x

0

f(u)du− λ

4π
a0x

)

. (10.2)

The integrals are the same of the previous Appendix. This leads to the following expres-
sion for h1(t):

h1(t) =
√
2

(

1− λ

4π
a0

)

tan

(

t

2

)

(10.3)

and an equation for a0:

a0 = 4

(

1− λ

4π
a0

)

log

(

1

cos( c2 )

)

. (10.4)



22 P. Ripesi, L. Biferale, M. Sbragaglia and A. Wirth

Therefore, we determine h1 and a0 as follows

h1(t) =
√
2



1− L

4πH

4log
(

1
cos( c

2 )

)

1 + L
πH log

(

1
cos( c

2 )

)



 tan

(

t

2

)

(10.5)

a0 =
4log

(

1
cos( c

2 )

)

1 + λ
π log

(

1
cos( c

2 )

) =
4log

(

1
cos( c

2 )

)

1 + L
πH log

(

1
cos( c

2 )

) . (10.6)

Besides a0, the first three coefficients are found to be:










a1 = (1−B(c))
[

2 sin2
(

c
2

)]

a2 = (1−B(c))
[

1− 3 cos4
(

c
2

)

+ 4 cos2
(

c
2

)]

a3 = (1−B(c))
[

2
3 − 20

3 cos6
(

c
2

)

+ 12 cos4
(

c
2

)

− 6 cos2
(

c
2

)]

(10.7)

where, for simplicity, we have defined the function

B(c) =
L

4πH

4log( 1
cos( c

2 )
)

1 + L
πH log( 1

cos( c
2 )
)
.

11. Appendix C

In this appendix we report the details of the linear system used to solve the general
DS problem of section 4. The starting point is the equation

∑

j=0

ajFj(x̃) cos(jx̃) = G(x̃) (11.1)

with G(x̃) = θ(x̃)θ(c − x̃) and

Fj(x̃) =

{

1
2θ(x̃− c)θ(π − x̃) +

(

L
4πH

)

θ(x̃)θ(c− x̃) j = 0
(

1− e−
4πjH

L

)

θ(x̃− c)θ(π − x̃) + j
(

1 + e−
4πjH

L

)

θ(x̃)θ(c− x̃) j > 0.

(11.2)
Taking the inner product with cos(ix̃) we reduce the problem to the linear system:

Ai,jaj = yi. (11.3)

The function Fj(x̃) in (11.1) is piece-wise constant and, upon multiplying by cos(ix̃) and
integrating in the interval 0 ≤ x̃ ≤ π, we get:
∫ π

c

a0
2
cos(ix̃)dx̃+

∞
∑

j=1

aj

(

1− e−
4πjH

L

)

∫ π

c

cos(jx̃)cos(ix̃)dx̃+

∫ c

0

a0
L

4πH
cos(ix̃)dx̃

+

∞
∑

j=1

jaj

(

1 + e−
4πjH

L

)

∫ c

0

cos(ix̃)cos(jx̃)dx̃ −
∫ c

0

cos(ix̃)dx̃ = 0.

(11.4)

Using the following integral:

∫ c

0

cos(ix̃)cos(jx̃)dx̃ =











−
∫ π

c

cos(ix̃)cos(jx̃)dx̃ i 6= j

−
∫ π

c

cos(ix̃)cos(jx̃)dx̃+
π

2
i = j

(11.5)
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Figure 15. Convergence rate of the DS at changing the number of terms N in the expansion.

we obtain:
∫ π

c

a0
2
cos(ix̃)dx̃ +

∞
∑

j=1

aj

(

1− e−
4πjH

L

)

(

−
∫ c

0

cos(ix̃)cos(jx̃)dx̃+
π

2
δij

)

+

∫ c

0

a0
L

4πH
cos(ix̃)dx̃ +

∞
∑

j=1

jaj

(

1 + e−
4πjH

L

)

∫ c

0

cos(ix̃)cos(jx̃)dx̃ =

∫ c

0

cos(ix̃)dx̃.

(11.6)

The term yi in (11.3) is therefore given by

yi =

∫ c

0

cos(ix̃)dx̃ =

{

c i = 0
1
i sin(ic) i 6= 0.

(11.7)

To write out the matrix elements Ai,j we need some algebra. An indefinite integral of
interest is

∫

cos(ix̃) cos(jx̃)dx̃ =
1

2

sin((i − j)x̃)

i− j
+

1

2

sin((i + j)x̃)

i+ j
+ const.

so that we estimate
∫ c

0

cos(ix̃) cos(jx̃)dx̃ =

{

1
2
sin((i−j)c)

i−j + 1
2
sin((i+j)c)

i+j i 6= j
c
2 + 1

2
sin((i+j)c)

i+j i = j.
(11.8)

Finally, we need
∫ π

c

cos(ix̃)dx̃ =

{

π − c i = 0
− 1

i sin(ic) i 6= 0.
(11.9)

To summarize, we obtain

Ai,j =δi0δj0
1

2

(

L

2πH
c+ π − c

)

+ (1− δi0)δj0
1

2

(

L

2πH
− 1

)

1

i
sin(ic)

+δij(1− δj0)

[

(

j
(

1 + e−
4πjH

L

)

−
(

1− e−
4πjH

L

))

(

c

2
+

1

2

sin((i+ j)c)

i+ j

)

+
(

1− e−
4πiH

L

) π

2

]

+(1 − δij)(1 − δj0)

[

(

j
(

1 + e−
4πjH

L

)

−
(

1− e−
4πjH

L

))

(

1

2

sin((i − j)c)

i− j
+

1

2

sin((i + j)c)

i+ j

)]

.

In order to give a quantitative idea of the rate of convergence of the DS as a function
of the truncation order N , we report in figure 15 results concerning a0 for two different
boundary conditions and different cell aspect ratios.
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