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Background: Several of the currently used anticancer drugs may variably affect thyroid function, with impair-
ment ranging from modified total but not free concentration of thyroid hormones to overt thyroid disease.
Summary: Cytotoxic agents seem to alter thyroid function in a relatively small proportion of adult patients.
Anticancer hormone drugs may mainly alter serum levels of thyroid hormone–binding proteins without clini-
cally relevant thyroid dysfunction. Old immunomodulating drugs, such as interferon-a and interleukin-2, are
known to induce variably high incidence of autoimmune thyroid dysfunction. Newer immune checkpoint
inhibitors, such as anti-CTLA4 monoclonal antibodies, are responsible for a relatively low incidence of thy-
roiditis and may induce secondary hypothyroidism resulting from hypophysitis. Central hypothyroidism is a
well-recognized side effect of bexarotene. Despite their inherent selectivity, tyrosine kinase inhibitors may cause
high rates of thyroid dysfunction. Notably, thyroid toxicity seems to be restricted to tyrosine kinase inhibitors
targeting key kinase-receptors in angiogenic pathways, but not other kinase-receptors (e.g., epidermal growth
factor receptors family or c-KIT). In addition, a number of these agents may also increase the levothyroxine
requirement in thyroidectomized patients.
Conclusions: The pathophysiology of thyroid toxicity induced by many anticancer agents is not fully clarified
and for others it remains speculative. Thyroid dysfunction induced by anticancer agents is generally manageable
and dose reduction or discontinuation of these agents is not required. The prognostic relevance of thyroid
autoimmunity, overt and subclinical hypothyroidism induced by anticancer drugs, the value of thyroid hormone
replacement in individuals with abnormal thyrotropin following anticancer systemic therapy, and the correct
timing of replacement therapy in cancer patients need to be defined more accurately in well-powered pro-
spective clinical trials.

Introduction

In cancer patients, abnormalities in thyroid function and
thyroid diseases are variably associated with cancer itself,

diagnostic procedures, or anticancer treatments. Abnormal-
ities of thyroid hormone synthesis and metabolism as well as
of thyrotropin (TSH) levels, more commonly known as ‘‘eu-
thyroid sick syndrome,’’ may occur in patients with advanced
cancers (1). Diagnostic procedures using iodinated contrast
agents can be associated with acute effects on the thyroid,
including hyperthyroidism triggering/exacerbation, as in
patients with autonomous thyroid nodules or Graves’ dis-
ease, or transient hypothyroidism (i.e., in patients with Ha-
shimoto’s thyroiditis) (2,3). Radiation therapy (RT) can lead to
primary hypothyroidism due to direct damage to the thyroid

or, indirectly, through hypopituitarism due to brain irradia-
tion (3,4). External cervical RT received during childhood has
been associated with thyroid nodules and papillary thyroid
cancer later in life (4).

Systemic anticancer treatments include old and newer cyto-
toxic and hormone drugs, immune system modulators, and
targeted drugs that selectively modulate key molecules in cancer
progression or immune response to cancer. Many of these agents
may variably affect thyroid function with impairment ranging
from modified total but not free concentration of thyroid hor-
mones to overt thyroid disease (5,6). Anticancer hormone drugs
may alter thyroxine-binding globulin levels, but marginally
affect thyroid function (Table 1). Only aminoglutethimide, used
to control adrenal, breast, and prostate cancer, is reported to
cause hypothyroidism in up to 31% of patients (7,8).
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This review focuses on thyroid function abnormalities and
diseases resulting from exposure to nonhormonal anticancer
agents currently used for the treatment of adult malignancies.

Search Strategy

The PubMed and MEDLINE databases were searched for
articles published before March 30, 2013. Electronic early-release
publications are also included. Only articles published in English
were considered. The search terms were ‘‘thyroid dysfunction,’’
‘‘hypothyroidism,’’ ‘‘thyroid toxicity,’’ ‘‘endocrine adverse
events,’’ and ‘‘autoimmunity,’’ in association with ‘‘anticancer
drugs,’’ ‘‘tyrosine kinase inhibitors,’’ ‘‘immune checkpoint in-
hibitors,’’ ‘‘interleukin,’’ and ‘‘interferon.’’ Proceedings from the
2000–2012 Conferences of the American Society of Clinical On-
cology, the European Society of Medical Oncology, and the
Endocrine Society were searched for relevant abstracts.

Thyroid and Cytotoxic Anticancer Agents

In adult survivors of childhood cancers, endocrine toxicity,
including thyroid disorders, is a common long-term compli-
cation of cytotoxic treatments (9). Conversely, cytotoxic
treatments seem to alter thyroid function in a relatively small
portion of adult patients (5). However, few studies prospec-
tively evaluated thyroid dysfunction induced by cytotoxic
agents in adult populations. Lomustine, vincristine, and cis-
platin have shown in vitro effects on thyroid cells (10). In small
series, 5-fluorouracil and L-asparaginase alter levels of thy-
roid hormone–binding proteins without clinical consequence
(11–16). L-asparaginase may cause transient central hypo-
thyroidism as well (17).

Mitotane, the only active agent against adrenocortical
cancer, reduced both activity and viability of mouse pituitary
TSH-secreting cells (18). In patients treated with mitotane for
adrenocortical cancer, a marked reduction in free thyroxine
(free T4) without concomitant reduction in free triiodothyro-
nine (free T3) (possibly by influence on deiodinase activity)
and without elevation of TSH was found (19). Free T4 levels
dropped in the hypothyroid range in most patients and were
inversely correlated with mitotane plasma levels (19).

Very few studies evaluated the effects induced by poly-
chemotherapy on thyroid function in cancer patients. Primary
hypothyroidism was diagnosed in 15% of patients with tes-
ticular cancer receiving a combination regimen of cisplatin,
bleomycin, vinblastine, etoposide, and dactinomycin (20).
Increased serum TSH levels were documented in 44% of pa-
tients with Hodgkin disease who received mechlorethamine,
vinblastine, procarbazine, and prednisolone (MOPP regi-
men). However, in this small trial, iodine load during
lymphangiography may have contributed to the thyroid ab-
normalities (21).

When delivered concomitantly with head-neck irradiation,
cytotoxic chemotherapy increases the risk of RT-induced
primary or central hypothyroidism (22–24). In compari-
son with RT, cytotoxic chemotherapy (CT) alone does not
increase the risk of thyroid cancer (5).

Immunoregulatory Drugs

Interferon-a

Interferon-a (IFN-a) is a human recombinant cytokine with
direct antiviral and antitumor activity, as well as indirect

immune-mediated destruction of cancer cells (25,26). IFN-a is
approved for patients affected by melanoma, renal cell car-
cinoma, AIDS-related Kaposi’s sarcoma, some hematologic
malignancies, and virus B/C hepatitis (27).

IFN-induced thyroid abnormalities can be classified as
autoimmune and nonautoimmune thyroiditis (28,29). Auto-
immune IFN-induced thyroiditis (IIT) can manifest as a clin-
ical disease (i.e., Graves’ disease or Hashimoto’s thyroiditis),
or as a subclinical disease, as seen in the presence of thyroid
autoantibodies (TAb) without overt thyroid dysfunction
(*20% of patients). Nonautoimmune IIT can present as de-
structive thyroiditis, or nonautoimmune hypothyroidism
(28,29). This classification proposed for IIT experienced by
patients affected by hepatitis appears suitable for cancer pa-
tient as well.

The incidence of thyroid abnormalities in patients receiving
IFN therapy for solid tumors is 2.4–31% (30–39), with up to
50% in some trials (40,41). In patients affected by hemato-
logical malignancies, the incidence of IFN-related thyroid
dysfunction appeared lower (42,43), with the difference re-
maining unexplained. Autoimmune IIT mainly occurs in the
first few weeks of treatment and, following a brief thyrotoxic
phase, may lead to hypothyroidism in close temporal rela-
tionship with the appearance of TAb, especially Tg-Ab. Hy-
pothyroidism persists in the majority of patients (31,44),
although transient hypothyroidism has also been described
(45). Pre-existing thyroid peroxidase antibody (TPO-Ab)
considerably increases the risk of hypothyroidism (38,46–48).
Thyroid abnormalities may recover with the withdrawal of
IFN. In two randomized trials of IFN-a on melanoma patients,
the association between the appearance of autoantibodies,
including TAb, and improved relapse-free interval was not
statistically significant. (49).

Rarely, classical Graves’ disease and sometimes Graves’
ophthalmopathy may develop (50). These conditions may
persist despite the withdrawal of the drug (6).

By binding to its receptors, IFN-a triggers several key im-
mune effects, including an increased expression of MHC class
I antigens (HLA) on cells, including thyroid epithelial cells
(48), enhanced activity of lymphocytes, macrophages, and
natural killer cells (NK) (51,52) and decreased T-regs function
(53,54). Notably, the IFNa-induced HLA overexpression is
associated with activation of cytotoxic T-cells leading to cel-
lular destruction, when lymphocytes are present in the tissue
(52). This mechanism was also seen in the thyroid and might
explain the worsening of pre-existing subclinical thyroiditis
(55). Furthermore, IFN-a can switch the immune response to
a Th1 pattern (56,57) with an increased production of inter-
feron-c and interleukin-2 (IL2), two potent proinflammatory
cytokines, and of IL-6 (52,56,57). This immune pattern may
trigger an autoimmune response. Finally, thyroid cells may be
directly damaged by IFN-a, a suggested mechanism for de-
structive thyroiditis (29,48,58). Despite accumulating evi-
dence, the precise mechanisms of IIT remain to be elucidated,
especially in cancer patients.

Pegylated IFNa

The pegylation of IFNa-2b provides a prolonged plasma
half-life of the drug, by decreasing renal clearance (59,60), and
improved efficacy in solid tumors and melanoma is reported,
compared to unpegylated form (61,62). In the 18991 European
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Organisation for Research and Treatment of Cancer trial eval-
uating pegylated IFNa (Peg-IFN) versus no treatment in high-
risk melanoma patients, autoantibodies, including TgAb, were
found in 52% of patients in the Peg-IFN group, compared with
18% in the control group (60). Better survival was not associ-
ated with the development of autoantibodies when analysis
was corrected for guarantee-time bias (Table 1) (63).

Interleukin-2

IL2 is a cytokine involved in several mechanisms of im-
mune response, including activation of NKs and antigen-
specific T-cells. IL2 is approved for the treatment of patients
affected by metastatic melanoma and renal cell carcinoma,
although its use is currently reduced as more effective and
better-tolerated agents are available (6).

Thyroid dysfunction and induction of TAb occur in 10–60%
of cancer patients treated with IL2 alone or in combination
with IFN-a, lymphokine-activated killer cells, or vaccines (64–
71). An early phase of presumptive destructive thyrotoxicosis
is common, with variable degrees of hyperthyroidism (68,72–
74). Hypothyroidism, mostly associated with TAb, occurs
4–17 weeks after treatment has commenced (64,65) and may
be reversible following discontinuation of the drug (65,72).

Various autoimmune mechanisms may be involved in
IL-induced thyroid toxicity. IL2 is a potent inducer of proin-
flammatory cytokines such as IL1, tumor necrosis factor al-
pha, and IFN-c (75–77). In patients with IL2-induced thyroid
diseases, high levels of interferon-c and tumor necrosis factor
alpha have been found. These cytokines may trigger auto-
immune thyroiditis by enhancing the presentation of HLA-II
and associated autoantigens on thyrocytes. Also, IL2 may
have a direct effect on thyrocyte function (78,79). Increase in
TAb levels (64,69) and lymphocyte infiltration of the thyroid
gland (73,80) were found in patients treated with IL2. Similar
to IFN-a, high TAb levels before treatment increase the risk of
IL2-induced hypothyroidism (65). Whether occurrence of
hypothyroidism during the treatment with IL2 predicts fa-
vorable outcomes remains uncertain (Table 1) (64,65,81–85).

Denileukin diftitox

In Denileukin diftitox (DD), the ligand-binding domain of
IL2 is fused to diphtheria toxin (86). The drug binds to the IL2
receptors on lymphocytes and macrophages and the toxin
inhibits protein synthesis, leading to cell death. It is approved
for use in cutaneous T-cell lymphoma and graft-versus-host
disease after allogenic stem cell transplant (86,87). In a retro-
spective study, eight patients showed TPO-Ab and thyro-
toxicosis within 1–35 days of treatment; five of them
eventually developed permanent hypothyroidism (88). Au-
toimmunity could not be the mechanism of DD-induced
thyroid toxicity, because the IL2-component of the drug does
not activate the IL2-lymphocyte receptor. The absence of IL2-
receptors on thyrocytes excludes direct thyroid toxicity (88).
However, DD might target and lyse intrathyroidal lympho-
cytes with local release of cytokines leading to thyroiditis/
thyrotoxicosis (88).

Thalidomide and lenalidomide

Thalidomide and its derivative lenalidomide are immu-
nomodulatory agents active against multiple myeloma (MM).

Lenalidomide is also efficacious in patients with the 5q-
myelodysplastic syndrome (89,90). Anticancer activity of these
drugs is based on immunomodulatory and antiangiogenic
effects and is elicited by NK-mediated cytotoxicity, inhibition
of proinflammatory cytokines, and increase in anti-
inflammatory cytokines secretion and production of proan-
giogenic factors (e.g., vascular endothelial growth factor
[VEGF], basic-fibroblast growth factor, tumor necrosis factor
alpha, interleukin-6) (91). Subclinical hypothyroidism was
reported in 20% of patients who received thalidomide for MM
with another 7% of overt hypothyroidism, mostly occurring
1–6 months after treatment has begun (92). In a retrospective
study, lenalidomide induced thyroid abnormalities in 6% of
patients affected by MM and increased the risk of progression
of thyroid dysfunction in patients with previous thyroid ab-
normalities (93). In another study, lenalidomide-induced hy-
pothyroidism was found in 5–10% of patients (94,95). No
thyroid abnormalities were reported in a large randomized
study on 459 patients with untreated MM, receiving lenali-
domide in combination with cytotoxics and prednisone (96).

Mechanisms of thalidomide/lenalidomide-induced hypo-
thyroidism remain uncertain. Interference with thyroid hor-
mone secretion and reduction of iodine uptake into follicular
cells have been suggested (97,98). As thalidomide/lenalido-
mide exert antiangiogenic activity, a compromised thyroid
blood flow may trigger thyroid toxicity (92). In some patients,
TSH suppression preceded hypothyroidism, suggesting
destructive thyroiditis, presumably induced by ischemia
(99,100). Alternatively, an immune-mediated destructive
thyroiditis may be induced by altered cytokine levels or
through direct effects on T-lymphocytes (92).

Immune checkpoint inhibitors

Recent progress in cancer immunotherapy led to the de-
velopment of immune regulatory monoclonal antibodies
(MAb) that inhibit immunologic checkpoints, such as the
cytotoxic T-lymphocyte antigen-4 receptor (CTLA-4) and the
programmed death-1 receptor pathway (101). The anticancer
activity of these drugs is presumably obtained by unleashing
tumor immune tolerance (102,103). Ipilimumab and tremeli-
mumab are immunomodulating MAb directed against
CTLA-4 (anti-CTLA4-MAb), which have shown variable ac-
tivity against several malignancies (104). Ipilimumab is ap-
proved for clinical use in patients with advanced cutaneous
melanoma (105). However, inhibition of CTLA-4 induces a
series of immune-related adverse events (106–108), mainly
colitis/diarrhea, dermatitis, hepatitis, and endocrinopathies
(109). Among endocrine toxicities, hypophysitis has emerged
as a distinctive side effect of anti-CTLA4-MAb (106,110). As
the damage to TSH-secreting cells and corticotroph is preva-
lent (111), in patients under ipilimumab the incidence of sec-
ondary hypothyroidism is similar to the incidence of
hypophysitis (0–17%) (112). Notably, in the majority of cases,
endocrine immune-related adverse events are irreversible and
lifelong replacement therapy is required.

In two studies, tremelimumab was associated with thyroid
dysfunction in 4% of patients (113,114). The incidence of ipi-
limumab-induced primary thyroid dysfunction appeared
lower (0–2%) when ipilimumab was administered at standard
dose (3 mg/kg), as a single agent or in combination with
CT. In small reports, higher dosage of ipilimumab alone
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(10 mg/kg) or in combination with bevacizumab (7.5–15 mg/
kg), an anti-VEGF agent, was associated with a higher rate of
thyroiditis (7% and 19% of cases, respectively) (115,116). In
patients with metastatic prostate cancer receiving ipilimumab
at increasing doses in combination with an anti-prostate
specific antigen vaccine, hypothyroidism was diagnosed in 4
(13.3%) patients at the higher dose levels (5–10 mg/kg) (117).
Conversely, no cases of endocrinopathy were reported in 36
patients receiving ipilimumab (0.1–3 mg/kg) combined with
IL2 (118). The anti-CTLA4-mAb thyroid damage presents as
thyroiditis associated with TAb and hypothyroidism, or
transient hyperthyroidism. Rare cases of Graves’ ophthal-
mopathy have also been reported, with elevation of TSH-re-
ceptor antibodies but normal thyroid function (119,120).
However, clinical details are still scarce. Similar to anti-
CTLA4-MAb hypophysitis, the onset of anti-CTLA4-MAb
thyreopathy occurs after 2–4 infusions. Most cases showed
subclinical course or may be transient, consistent with a silent
autoimmune thyroiditis. Alternatively, it may evolve into
permanent hypothyroidism, requiring thyroid hormone
supplementation (106). It is unknown whether the adminis-
tration of anti-CTLA4-MAbs may worsen previous thyroid-
itis, as patients with previous autoimmune disease were not
included in clinical trials evaluating these agents.

MAb blocking PD-1 or one of its ligands (PD-1L) are at an
early phase of clinical development (103,121). Currently, these
agents seemed to only slightly affect the endocrine system.
Hypothyroidism was reported in 2–3% of patients receiving
higher doses of these drugs (122,123). Further studies are
needed to better define the pathogenic mechanism of primary
and secondary thyroid dysfunction induced by immune
checkpoint inhibitors.

Alemtuzumab

Alemtuzumab is a humanized MAb binding the CD52 cell
surface antigen on lymphocytes and monocytes. The drug in-
duces complement-mediated lysis of these cells exiting in in-
tense lymphopenia (124). It is approved for high-risk or
pretreated B-cell chronic lymphocytic leukemia (125). Alem-
tuzumab is also used as an immune suppressor in several
conditions, including stem cell transplants, graft-versus-host
disease after allogeneic stem cell transplant, and multiple
sclerosis (MS) (126–128). Thyroid dysfunction has been re-
ported with alemtuzumab in patients who received the drug
for autoimmune disease (124,129,130), but not for cancer or
rheumatoid arthritis (131,132). In a large study, thyroid dys-
function was found in 48/216 (22%) patients with MS treated
with alemtuzumab (126). Autoimmune hypothyroidism was
reported in 6.9% and thyroiditis in 4.2%, but Graves’ disease in
14.8% of patients. In another study, 30% of MS patients
developed Graves’ disease, 9–31 months after a course of
alemtuzumab (133). Notably, the alemtuzumab-induced auto-
immune effects are mostly antibody mediated (type-2
hypersensitivity), including autoimmune neutropenia, throm-
bocytopenic purpura, and Goodpasture syndrome (134). The
reasons underlying the lack of thyroid dysfunction in cancer
patients compared to patients with MS are unknown.

Iodine-Based Anticancer Radioimmunotherapy

In cancer radioimmunotherapy, an antibody with speci-
ficity for a tumor-associated antigen is used to deliver a lethal

dose of radiation to the tumor cells during isotopic decay
(135). Tositumomab, an anti-CD20 MAb combined with 131I,
is approved for the treatment of non-Hodgkin lymphoma,
whereas 131I-metaiodobenzylguanidine is used in pheochro-
mocytoma, neuroblastoma and carcinoid tumors. As the ra-
dioactive iodine concentrates in thyroid cells, hypothyroidism
may occur in 9–64% of patients (within 6–24 months or later)
(136–141). However, this side effect is preventable by the
administration of oral iodine (Lugol solution or saturated
solution of potassium iodide, SSKI) or potassium perchlorate
(KClO4).

Tyrosine Kinase Inhibitors

Tyrosine kinase inhibitors (TKI) are small molecules ex-
erting their therapeutic activity by interfering with kinase-
receptors that are critical for tumor cell growth, invasion,
metastasis, and angiogenesis. Currently, several TKI are ap-
proved as anticancer therapeutics and approximately 150
kinase-targeted drugs are under clinical evaluation (142).
Despite their selectivity, TKI show variable affinity for dif-
ferent kinase-receptors and none is specific for a single kinase-
receptor. Therefore, off-target intracellular activities of normal
cells are frequently impaired, leading to a variety of toxicities,
often unusual, such as those to the endocrine system. TKI-
induced endocrine side effects mainly include thyroid dys-
function, whereas gonadal and adrenal functions, bone, and
glucose metabolism are less frequently or occasionally af-
fected (143). TKI may cause de novo hypothyroidism or hy-
perthyroidism, or worsen pre-existing hypothyroidism, thus
increasing thyroid hormone requirements in patients on le-
vothyroxine (LT4) replacement. When hyperthyroidism
occurs, it may represent the transient thyrotoxicosis phase of a
destructive thyroiditis, often followed by hypothyroidism
(144). These thyroid dysfunctions may be induced by TKI that
inhibit key kinase-receptors in angiogenic pathways, but not
by TKI targeting other kinase-receptors, such as epidermal
growth factor receptors family (Table 1).

In cancer patients with normal thyroid function, TKI may
cause abnormalities in thyroid laboratory tests, primary hy-
pothyroidism (overt hypothyroidism in 32–85%, subclinical
hypothyroidism in up to 100%), or decrease in TSH levels/
thyrotoxicosis (transient in 0–24%, persistent in 0–5% of cases)
(145) (Table 2). The onset of TKI-induced thyroid dysfunction
is largely variable, ranging from 4 to 94 weeks after initiation
of the treatment (median 4 weeks in prospective studies)
(146). Whether prolonged treatment with a TKI, or previous
treatments with cytokines (i.e., IFN/IL-2) or another TKI
might influence the incidence or the course of thyroid dys-
function remains to be clarified. Among TKI approved for
clinical use, sunitinib, a TKI mainly targeting angiogenic
kinase-receptors, exposes patients to a higher risk of devel-
oping TKI hypothyroidism (14–71% of patients in prospective
studies) (146–153). Thyroid dysfunction has also been de-
scribed with other antiangiogenic TKI, such as sorafenib,
motesanib, pazopanib, cediranib, and linifarib, but at lower
rates (154–178) (Table 2). Nilotinib and dasatinib are second-
generation TKI approved for the treatment of Philadelphia-
positive chronic myeloid leukemia, showing structural
similarity to imatinib, but greater potency and specificity for
inhibition of BCR-ABL (179,180). Thyroid abnormalities
during treatment with imatinib, nilotinib, and dasatinib were
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retrospectively reported in 25%, 55%, and 70%, respectively
(181). In patients under nilotinib, hypothyroidism was diag-
nosed in 12/55 (22%) patients, (6 subclinical, 6 clinical) and
hyperthyroidism in another 18 (33%) patients (10 subclinical,
8 clinical), while 4/55 (7%) patients had evidence of thyroid
autoimmunity (181). Similar results were reported with da-
satanib (181) (Table 2). Compared with imatinib, nilotinib and
dasatanib rarely altered the requirement of LT4 replacement
therapy. The causes of the above difference are still unex-
plained. However, thyroid toxicity induced by newer TKI
need to be better evaluated in prospective clinical trials.

Several mechanisms have been suggested to explain the
onset of thyroid dysfunction in patients under TKI treatment.
As thyrotoxicosis in a few cases preceded the development of
hypothyroidism and thyroid atrophy, destructive thyroiditis
might have triggered both adverse events (144,147). Other
possible mechanisms include direct toxic effects on thyro-
cytes, leading to an impaired iodine uptake (148) and a re-
duced synthesis of thyroid hormones related to inhibition of
TPO activity (149). However, altered iodine uptake has not
been confirmed by in vitro studies (182). Similarly, a direct
effect against TPO induced by TKI seems an improbable ex-
planation in cases with initial destructive thyrotoxicosis or
with thyroid atrophy. Induction of Hashimoto’s thyroiditis
has also been proposed as another potential mechanism (183).
However, TAb infrequently increased during TKI treatment
(146).

More likely, the TKI-induced thyroid dysfunction may
derive from the inhibition exerted by these agents on kinase-
receptors of angiogenic pathways, such as VEGF receptors
1–3 and platelet-derived growth factor receptor (PDGFR).
TKI-induced regression of thyroid vascular bed with signifi-
cant capillary alteration and reduction in density has been
demonstrated in experimental animal models (184,185). This
could cause the reduction of blood flow in the thyroid, an
extremely vascular gland. If the thyroid blood flow decreases
rapidly, an ischemic thyroiditis could result, leading to tran-
sient thyrotoxicosis (186). If the decreased blood flow devel-
ops more slowly, gradual thyroid destruction may occur,
resulting in hypothyroidism (186). In humans, reduced thy-
roid volume and vascularization by Doppler ultrasound
rapidly recovered after cessation of sunitinib (186,187). The
reduced thyroid volume induced by reduction in blood flow
may also explain the impaired iodine uptake seen in vivo but
not in vitro (188). Notably, targeting different molecular
components of angiogenesis (receptors vs. ligand) does not
trigger the same toxic effect. Unlike antiangiogenic TKI in-
hibiting vascular endothelial growth factor receptor
(VEGFR)/PDGFR, bevacizumab (which targets VEGF-A)
occasionally altered thyroid homeostasis (189,190).

The reason why some TKI do not affect thyroid or do this at
a lesser extent is unclear. In comparative studies, sunitinib
was shown to induce thyroid damage more frequently than
other TKI (i.e., sorafenib). This might be because sunitinib
inhibits more than a single kinase-receptor regulating normal
and tumor angiogenesis (not only VEGFR2, but also PDGFR
and VEGFR1) and more potently than other TKI. The thyroid
gland shows the highest blood flow rates per unit weight of
any tissue in the body (191). Physiologically, thyroid angio-
genesis is regulated mainly by VEGF signaling, but under
ischemia/hypoxia PDGF/PDGFR are upregulated to exert a
compensatory function (192,193).

The entire sunitinib-induced inhibition of both angiogenic
key molecules (i.e., VEGFR2) and upregulated compensatory
receptors (i.e., PDGFR) may result more frequently in thyroid
ischemia via capillary regression and constriction (194). This,
in turn, might trigger both destructive thyroiditis and thyroid
dysfunction (194). This hypothesis might also explain the
rarity of thyroid dysfunction induced by bevacizumab, which
binds VEGF-A, but not VEGFRs and PDGFR.

The worsening of appropriately treated hypothyroidism in
thyroidectomized patients under imatinib, a TKI mainly tar-
geting c-KIT, was the first thyroid hormone abnormality de-
scribed with TKI (195). Imatinib does not alter euthyroidism
in nonthyroidectomized patients (196). An interference with
the nondeiodination clearance of LT4 was initially thought to
explain the increased LT4 requirement induced by imatinib
(195). Several drugs (i.e., phenobarbital, phenytoin, carba-
mazepine, rifampicin, and nicardipine) increase thyroid hor-
mone clearance and worsen hypothyroidism in patients
under LT4, by inducing hepatic microsomal enzymes (12,197–
200), and imatinib is a potent competitive inhibitor of mixed
function oxygenases (CYP2C9, CYP2D6, CYP3A4/5) (195).
Consistently, TSH levels return to normal after discontinua-
tion of imatinib (195).

However, recent studies showed that other TKI may in-
crease the LT4 requirement in thyroidectomized hypothyroid
patients by interfering at different steps of thyroid hormone
metabolism (171,201–205) (Table 2). In thyroidectomized pa-
tients on sorafenib, decreased T3/T4 and T3/rT3 ratios, ac-
companied by doubling in TSH levels, were found (202). In
rats, sunitinib induced a decrease in serum T4 and T3 levels,
increased deiodinase-3 (DIO3), and decreased deiodinase-1
activity, together with marked thyroid capillary regression
(206). Also, it was suggested that motesanib and vandetanib
might increase LT4 metabolism via an increased activity of
DIO3 in peripheral tissue (171,204,205) in thyroidectomized
patients, while hypothyroidism is infrequently reported in
patients with thyroid in situ (172). Interestingly, in patients
treated with sunitinib, not only did the T3/reverse-T3 ratio
decrease and the TSH levels show a twofold increase, but
following sunitinib withdrawal, DIO3 activity reversed,
whereas thyroid hormone levels remained low (206). Further
evidence suggests an impairment in deiodases activity in TKI-
induced hypothyroidism. Indeed, in this condition, TSH lev-
els are often inappropriately high for the concomitant serum
free T3 and free T4 levels (194,207). This might be related to a
far more reduced activity of DIO2 (expressed in the pituitary
gland) than of deiodinase-1 (expressed mainly in the liver and
kidney), leading to an intracellular depletion of T3 in the
thyrotrophs and an inappropriately high TSH level (194).
Additionally, in a new mouse model lacking DIO2 activity in
pituitary thyrotrophs, normal serum T3 and high serum TSH
and T4 levels were found, despite an euthyroid status (208).

Moreover, TKI may interfere with thyroid hormones
even at central level, by inhibiting the monocarboxylate
transporter-8, a thyroid hormone trans-membrane trans-
porter expressed in the brain (including the hypothalamus
and pituitary) and other tissues (i.e., liver, kidney, thyroid). In
an in vitro model, several TKIs, including sunitinib and im-
atinib, dose dependently and noncompetitively inhibit T4/T3
uptake, inducing cellular depletion of T3 (209). However,
whether this mechanism is relevant in humans requires fur-
ther investigation.
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Table 2. Overview of Results from Clinical Trials Evaluating Thyroid Dysfunction Induced

by Tyrosine Kinase Inhibitors

Drug Targeted kinases
Approval/clinical

development Authors Type of study Cancer type
No. of

patientsa

Sunitinib VEGFRs-1–3,
PDGFR-b; C-KIT;
FLT-3

Approved for patients
with RCC or GIST.
Under evaluation for
several tumor types,
including breast,
lung, thyroid, and
colorectal cancer.

Desai et al. (147) P GIST 42

Mannavola et al. (148) P GIST 24
Wong et al. (149) R Solid

tumors
40

Rini et al. (185) R/P RCC 66

Wolter et al. (146) P RCC/GIST 59

Shinohara et al. (150) P RCC 17c

Baldazzi et al. (151) P RCC 22

Rutkowski et al. (152) P GIST 137
Sabatier et al. (153) P RCC 111

Sorafenib VEGFRs,
PDGFR-b,
c-KIT, RET,
B-RAF

Approved for patients
with RCC and HCC.
Evaluated in lung,
pancreatic, prostate,
melanoma and DTC.

Tamaskar et al. (154) P RCC 39

Clement et al. (155) P RCC 23
Miyake et al. (156) P RCC 69

Abdulrahman et al. (202) P MTC 21d

Di Lorenzo et al. (157) P RCC 52
Sunitinib/

Sorafenib
See above See above Riesenbeck et al. (158) P RCC 52

31

Sunitinib/
Sorafenib

See above See above Schmidinger et al. (159) P RCC 41
37

Sunitinib/
Sorafenib

See above See above Kitajima et al. (160) P RCC 17
25

Sunitinib/
Sorafenib

See above See above Clemons et al. (161) R RCC 34
22

Sunitinib/
Sorafenib

See above See above Feldt et al. (162) R
(postmarket)

RCC 1295
1214

Sunitinib/
Sorafenib

See above See above Zhao et al. (163) R Early
RCC

23
20
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Table 2. (Continued)

No. of patients
with altered
TFTs after

TKI
treatment

(%)

No. of
patients with

positive
TAb/evaluated

(%)

No. of patients
with increased

TSH after
TKI treatment

(%)

Overt hypo
thyroidism
after TKI

treatment (%)

No. of patients
with decreased

TSH after
TKI treatment (%)

Time to onset
of thyroid

dysfunction
(median)

No. of
patients

who needed
an increased
LT4 dosage

(%)

Prognostic
value of

TKI-induced
hypothyroidism

26/42 (62) 0/2 22/42 (52) 15/42 (36) 4/42 (10) 50 (12–94)
weeks

NR NR

16/24 (71) 0/23 16/24 (71) 10/24 (46) 0/24 NR NR NR
24/40 (60) NR 21/40 (53) 14/40 (35) 3/40 (8) 5 (1–36)

months
4/40 (10) NR

56/66 (85) 13/44 (30)
(TgAb)

46/66 (70) 17/66 (26)b 0/66 2 (1–14)
cycles

NR Uncertain

25/59 (42) 2/55 (4) 20/59 (34)
transient

16/59 (27) 3/59 (5) 4 (2–46)
weeks

NR NR

9/17 (53) 0/6 1/17 (6) 8/17 (53) TSH suppressed
in 4/8 patients
(transiently)

NR NR NR

13/22 (59) 0/22 13/22 (59) 2/22 (9) 0/22 3.3 (1–7)
cycles

NA Yes

NR NR NR 42/137 (31) 0/137 NR NR No
54/102 (53) NR 51/102 (50) 46/102 (45) 3/102 (3) 5.4 (0.6–22)

months
NR No

16/43 (43) 2/7 (29) NR 7/39 (18) 1/39 (3)
transient

1.8 (0.6–7.3)
months

NR

15/23 (65) NR 7/23 (30) NR NR NR NR NR
46/69 (68) NR 46/69 (68) 4/69 (6) 11/46 (24)

transient
1.7 (0.7–7.5)

months
NR NR

21/21 (100) NR 21/21 (100) NA NA NA 100 NA
NR NR NR 4/52 (8) 0/52 NR NR NR

13/52 (25)
8/31 (26)

NR NR 13/21 (62)
8/21 (38)

NR 16/21 (76%)
patients
showed
TSH
increase
within
the first 4
weeks
of treat-
ment

NR Yes

NR NR 12/41 (29)
18/37 (49)

NR NR 25/78 (32%)
patients
showed
TSH in-
crease
within the
first
4 weeks of
treatment

7/14 (50) Yes

NR NR NR 12/17 (71)
9/25 (36)

NR 95 (12–315)
days

NR NR

NR
NR

NR
NR

12/34 (35)
persist
3/34 (9)
transient
3/22 (14)
transient
3/22 (14)
persist

15/34 (44)
6/22 (27)

0 11 months
(range NR)

20 months
(range NR)

8/11 (73)
2/6 (33)

NR

NR NR 178/1295 (14)
77/1214 (6)

178/1295 (14)
77/1214 (6)

35/1295 (3) persist
42/1214 (4) persist

NR NR NR

NR NR NR 9/23 (39)
3/20 (15)

NR NR NR NR

(continued)
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Table 2. (Continued)

Drug Targeted kinases
Approval/clinical

development Authors Type of study Cancer type
No. of

patientsa

Axitinib VEGFRs 1–3 Approved for use in
patients with RCC
that failed to respond
to a previous
treatment.

Fujiwara et al. (165) P (phase I) Solid
tumors

18c

Mukohara et al. (164) P Solid
tumors

12

Tomita et al. (166) P RCC 64c

Rini et al. (167) P RCC 62
Axitinib/

Sorafenib
See above See above Rini et al. (168) P (phase III) RCC 359

355
Sunitinib/

Sorafenib/
Axitinib

See above See above Daimon et al. (169) R RCC 15
12
6

Vatalanib VEGFRs (VEGFR2),
PDGFR, KIT

Evaluated in various
solid and hemaologi-
cal cancers

Joensuu (170) P GIST 45

Vandetanib VEGFR-2, EGFR,
RET

MTC (advanced or
unresectable)

Robinson et al. (205) P MTC 17d

Motesanib VEGFRs 1–3,
PDGFR-b,
KIT, and RET

Under clinical evalua-
tion in various
cancers

Sherman et al. (171) P DTC 93d

Schlumberger et al. (204) P MTC 91d

Blumenschein et al. (172) P NSCLC
Motesanib
Bev 15 mg/Kg

181

Pazopanib VEGFRs,
PDGFR, KIT

Approved for use in
RCC and soft tissue
sarcomas. Active in
OC
and NSCLC.

Sternberg et al. (173) P RCC 290

Cediranib VEGFRs 1–3, Under clinical
evaluation in RCC,
NSCLC, CNS cancers

Matulonis et al. (174) P Ovary 46
Garland et al. (175) P PM 47

Linifanib VEGFR-1,-2,
PDGFR-b, CSFR-
1, fms-3

Under clinical evalua-
tion in NSCLC; HCC;
RCC

Asahina et al. (176) P (phase I) Solid tumors 18
Toh et al. (177) P HCC 44
Tan et al. (178) P NSCLC 139

Imatinib BCR-ABL, c-Kit,
PDGFR-b, RET,
c-Fms

Approved for use
in CML and GISTs

de Groot et al. (195) R GIST/MTC 11

Imatinib See above See above Kim et al. (181) R CML 8
Nilotinib BCR-ABL, c-KIT,

PDGFR-b
Approved for use

in drug-resistant
CML

R CML 55

Dasatanib BCR/ABL,
Src, c-Kit

Approved as 1st- line
therapy in CML
and Ph + ALL; under
evaluation in several
cancers types.

R CML 10

aEvaluable for TFT (baseline + at least one evaluation).
bPatients who started LT4 due to overt hypothyroidism.
cOnly Japanese patients included.
dAll patients were under LT4 replacement therapy due to thyroidectomy.
Bev, Bevacizumab; CML, chronic myelogenous leukemia; CSFR-1, colony-stimulating factor 1 receptor; DTC, differentiated thyroid cancer;

GIST, gastrointestinal stromal tumor; HCC, hepatocellular carcinoma; MTC, medullary thyroid cancer; NA, not applicable; NSCLC, nonsmall
cell lung cancer; PDGFR, platelet derived growth factor receptor; Ph + ALL, Philadelphia chromosome–positive acute lymphoblastic
leukemia; PM, pleural mesothelioma; RCC, renal cell carcinoma; TFTs, thyroid function tests; TKI, tyrosine kinase inhibitor; TSH, thyrotropin;
VEGFRs, vascular endothelial growth factor receptors. c-KIT, v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog; FLT3, Fms
(feline McDonough sarcoma virus) -like tyrosine kinase 3; RET, rearranged during transfection; B-RAF, v-Raf (rapidly accelerated
fibrosarcoma) murine sarcoma viral oncogene homolog B1; OC, ovarian cancer; CNS, central nervous system; BCR-ABL: breakpoint cluster
region-Abelson gene.
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Table 2. (Continued)

No. of patients
with altered
TFTs after

TKI
treatment

(%)

No. of
patients with

positive
TAb/evaluated

(%)

No. of patients
with increased

TSH after
TKI treatment

(%)

Overt hypo
thyroidism
after TKI

treatment (%)

No. of patients
with decreased

TSH after
TKI treatment (%)

Time to onset
of thyroid

dysfunction
(median)

No. of
patients

who needed
an increased
LT4 dosage

(%)

Prognostic
value of

TKI-induced
hypothyroidism

16/18 (89) NR 16/18 (89) NR 0/18 NR NR NR

11/12 (92) NR 11/12 (92) 7/12 (58) 3/12 (25)
transient

Within 1
month
(range NR)

NR NR

56/68 (88) NR NR 31/64 (48) NR NR NR NR
NR NR NR 11/62 (18) 0/62 NR NR NR
NR NR NR 69/359 (19)

29/355 (8)
NR NR

NR
NR Yes

9/15 (60)
6/12 (50)
6/6 (100)

4 (27)
1 (8)

0

NR 7/15 (47)
3/12 (25)
6/6 (100)

0/4 (27)
0
0

16 (range
NR) weeks

16 (range
NR) weeks

3 (range NR)
weeks

NR NR

1/45 (2) NR NR 1/45 (2) NR NR NR NR

NR NR 17/17 (100) NR 0 NA 17/17 (100) NR

22/93 (24) NR 11/93 (12) 11/93 (12) 0/93 NR 22/93 (24) NR
37/93 (41) NR 13/91 (14) 26/91 (29) 0/91 NR NR NR

NR NR —
7/121 (11)
1/60 (2)

NR NR NR NR NR

NR NR NR < 10 NR NR NR NR

NR NR NR 26/46 (56) 0/46 NR NR NR
NR NR 6747 (13) NR 0/47 NR NR NR

NR NR 8/18 (44) NR 0/18 NR NA NR
NR NR NR 2/44 (5) NR NR NR NR
NR NR 10/139 (7) 8/130 (6) NR NR NR NR
8/11 NR NR 8/11 (thyroidectomized

patients)
0/11 Within

2 weeks
8/11 NR

2/8 NR 1/8 (13) 0 1/8 (13) Day 7 0/9 NR
30/55 NR 6/55 (11) 6/55 (11) 18/55 (33) 248 (22–944)

days
NR

7/10 NR 4/10 (40) 1/10 (10) 2/10 (20) 142 (7–370)
days

NR
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Finally, it has been shown that inhibition of angiogenesis
might impair peripheral metabolism of thyroid hormones. In
rats, the expression of the DIO3 gene increases under
hypoxic–ischemic condition via the activation of the hypoxia-
inducible factor–dependent pathway (210). If this observation
is also confirmed in humans, difference in the hypothyroidism
rate seen with sunitinib compared with motesanib and van-
detanib may be further explained by the different affinity of
each drug for the kinases of angiogenic receptors (194). In-
deed, motesanib targets PDGFR with far less affinity than
the VEGFR2, and vandetanib targets neither VEGFR1 nor
PDGFR, while sunitinib showed the highest affinity for
VEGFR2 and PDGFR (194).

Bexarotene

Bexarotene is a selective agonist of the retinoid X receptor, a
nuclear hormone receptor with pleiotropic functions on cell
growth, apoptosis, and cell differentiation (211,212). Bexar-
otene is currently approved for treatment of cutaneous T-cell
lymphoma (213) and is under investigation for other cancers
and autoimmune diseases (214). Bexarotene causes a rapid
(4–8 hours) development of central hypothyroidism in 40%–
100% of patients (215–217). TSH levels return to normal
within a few days of drug discontinuation (213). Bexarotene
interferes with the pituitary–thyroid axis at different levels.
The normal feedback of thyroid hormone on the pituitary is
impaired by bexarotene (216,218), which renders the tran-
scription of the TSH b-subunit gene T3-independent (216,218).
Additionally, bexarotene directly inhibits the secretion of TSH
(219), explaining the rapid fall in TSH levels after adminis-
tration of the drug. Bexarotene also affects thyroid hormone
metabolism. In thyroidectomized thyroid cancer patients
under LT4 who receive bexarotene a marked increase in LT4
requirement is needed. In these patients, bexarotene induces a
dramatic decrease in thyroid hormones without compensa-
tory elevation of TSH levels (220), presumably by interfering
with peripheral thyroid hormone metabolism via non-
deiodinase mechanisms. In experimental studies the drug has
induced liver cytochrome P450 systems that also metabolize
thyroid hormones (221).

Why Is It Important to Assess Thyroid Function
in Cancer Patients?

Obviously, the correct and timely identification of thyroid
dysfunction induced by anticancer drugs is important in ob-
taining significant diagnostic and therapeutic advantages.
However, in cancer patients the recognition of symptoms due
to thyroid dysfunction may be difficult. For example, symp-
toms such as fatigue and/or constipation may be caused not
only by underlying malignancy, anticancer treatment(s), or
medications used to control other symptoms (i.e., nausea or
pain), but also by drug-induced hypothyroidism. Similarly,
symptoms of thyrotoxicosis (i.e., palpitations, weight loss,
heat intolerance, tremor, proximal muscle weakness, tachy-
cardia, insomnia, irritability, fever) overlap with other com-
plications (e.g., infection/sepsis). Missing the diagnosis of
thyroid dysfunction induced by an anticancer drug may lead
to unjustified dose reduction or treatment withdrawal of the
drug (6). Moreover, untreated hypothyroidism or thyrotoxi-
cosis may affect the metabolism of other medications, in-
cluding anticancer drugs themselves, potentially reducing

their efficacy (222). Undetected thyroid diseases can trigger
life-threatening consequences, such as cardiac toxicity pre-
senting as complication of TKI-induced hypothyroidism or
eventually myxedematous coma (223–225). The early diag-
nosis of hypophysitis allows for the detection of central hy-
pothyroidism and for the prevention of other consequences of
hypopituitarism, including a life-threatening condition such
as adrenal insufficiency (110).

Notably, it has been suggested that pretreatment hypothy-
roidism or drug-induced thyroid dysfunction may have a
prognostic value in cancer patients. Hypothyroidism has been
associated with reduced breast cancer incidence, older age at
diagnosis, and less aggressive disease (226). However, corre-
lations between hypothyroidism/thyroid autoimmunity and
breast cancer remain conflicting (227). Hypothyroidism fol-
lowing RT is a predictor of better survival in head and neck
cancer patients (228). Propylthiouracil-induced hypothyroid-
ism was associated with improved survival in patients with
high-grade glioma (229). IFN- and IL2-induced thyroid auto-
immunity correlated with better prognosis in various studies
(64,65,81,83), but not when guarantee-bias survival analyses
were performed (39,49,60). In renal cell carcinoma patients re-
ceiving sorafenib/sunitinib, better clinical outcomes were seen
when hypothyroidism developed (158,159,168,230). Interest-
ingly, higher risk of hypothyroidism during sunitinib therapy
has been significantly associated with VEGF-A/VEGFR-2 gene
single-nucleotide polymorphisms (152), suggesting that TKI-
induced thyroid dysfunction may depend on a specific genetic
predisposition. However, in this study better survival did not
correlate with TKI-induced hypothyroidism. Retrospective
analyses suggest that patients who experience immune-related
adverse events, including endocrinopathies, may be more
likely to benefit from anti-CTLA4-MAb therapy (107,231,232).

Therapeutic Challenges

The above issues emphasize that oncologists should
maintain adequate surveillance of thyroid function in cancer
patients. When drugs that are potentially associated with
thyroid side effects are used, thyroid function should be
carefully assessed at baseline and monitored throughout the
treatment and follow-up period (6,233). Specific guidelines
based on high-level evidence are lacking. However, in clinical
practice rational approaches may be a guide in appropriately
monitoring and treating thyroid dysfunction induced by an-
ticancer drugs (6,234,235).

Before starting IFN, IL2, DD, thalidomide/lenalidomide, or
alemtuzumab, TSH and TPO-Ab should be assessed, fol-
lowed by TSH measurement every 2–3 months, if TPO-Ab are
positive (6). With negative TPO-Ab, a less frequent TSH and
TPO-Ab assessment may be indicated. In the case of de novo
hypothyroidism, the withdrawal of the causative drug is
generally not required, based on the efficacy of LT4 replace-
ment. Thyrotoxicosis requires the treatment of symptoms
with b-blockers. In the rare cases of drug-induced Graves’
disease, methimazole or propylthiouracil may be adminis-
tered if clinically indicated.

As bexarotene directly affects TSH secretion, thyroid
function should be monitored with free T4 rather than TSH
levels biweekly for the first 2 months and then every 1–2
months (236,237). Bexarotene-induced hypothyroidism can
be prevented by starting high LT4 dosage with the drug. To
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obtain the therapeutic goal of free T4 levels in the normal
range, an LT4 dosage up to 2–3 times of the usual 1.6 lg/kg/
day may be needed due to the drug-induced thyroid hormone
degradation (6).

In patients who are candidates to receive ipilimumab,
pretreatment thyroid function tests should include both TSH
and free T4, as both secondary and primary thyroid dys-
function may occur. Monitoring of pituitary and thyroid
function is required on day 1 of every cycle of treatment (238).

Thyroid dysfunction in patients receiving TKI requires
specific considerations. In thyroidectomized patients under
adequate LT4 replacement who should be treated with im-
atinib, motesanib, vandetanib, or axitinib, pretreatment TSH
evaluation, followed by monthly monitoring of TSH, is re-
commended. In these patients, a substantial increase up to the
doubling of the LT4 dose on initiation of TKI should be con-
sidered (6,194). Once TSH levels are stable, monitoring every
2–3 months is advisable. In patients with normal thyroid
function, measurement of thyroid function tests before treat-
ment with sunitinib and then measuring TSH on day 1 of
every cycle appears appropriate (146,234,235). Elevated TSH
levels measured on day 1 of the cycle (at the end of the 2-week
rest period) are more likely to indicate clinically relevant
thyroid damage requiring further investigation and, if ap-
propriate, initiation of substitutive therapy (234,235,239).
Measurement of TSH at day 28 of the cycle (at the end of the
4-week sunitinib treatment period) may increase the chances
of early detection of thyroid dysfunction that may be sub-
clinical/transient, thus not requiring treatment (234). Specific
prospective trials are needed to better define the best timing of
thyroid function assessment in patients under sunitinib and
other TKI treatment (235,239). However, as treatment with
these agents may be prolonged (more than 1–2 years) and the
risk of thyroid toxicity seemed to be higher in the first 2–4
cycles, measurements of TSH may be empirically advised on
day 1 of cycles 1–4, and then every 2–3 cycles (6,146).

Patients with overt hypothyroidism (TSH > 10 mIU/L)
should receive LT4 with the objective of maintaining TSH
within the normal range. This may be achieved by an average
starting dose of 1.6 lg/kg/day, except in patients with coro-
nary artery disease or arrhythmias, in whom the dosage
should be titrated starting with a lower dose (6).

The treatment of subclinical hypothyroidism (TSH 5–10
mIU/L with a normal free T4) is questionable in cancer pa-
tients. In healthy population, the correction of subclinical
hypothyroidism is discouraged due to a lack of evidence
concerning its benefit (240,241). In cancer patients, this may be
even more problematic. Some preclinical, epidemiological,
and clinical evidence suggests that LT4 replacement therapy
may be permissive for tumor growth (242), while T3 obtains
this effect only at supraphysiological doses (243). Possible
effects of thyroid hormones on cancer cells include the am-
plification of EGFR, phosphorylation of insulin-like growth
factor-1 receptor, stimulation of migration, a direct trophic
effect on tumor cells, and angiogenesis and cell-specific anti-
apoptotic activity (242,244). However, effects of thyroid status
on cancer cells may be cell type specific (245) and current
experimental data need further prospective confirmation.

However, LT4 may be offered to cancer patients presenting
with TKI-induced subclinical hypothyroidism and TAb, hy-
percholesterolemia, thyroid nodules, or symptoms, such as
fatigue, that may greatly worsen patients’ quality of life.

Notably, in one study (185), at least half of patients who
started LT4 for sunitinib-associated hypothyroidism had im-
provement in fatigue (185). Based on preclinical evidence
showing that physiological doses of T4, but not T3, contribute
to tumor growth, it has been recently reported that selective
T3 supplementation in cancer patients may reduce the sug-
gested risk of T4-induced tumor growth (246).

Conclusions

Thyroid dysfunction is emerging as a variably common
endocrine toxicity of several anticancer drugs. However, the
pathophysiology of thyroid toxicity induced by these agents
remains to be fully clarified. Thyroid side effects induced by
anticancer agents are generally manageable and dose reduc-
tion or discontinuation of the causative drugs is not required.
Routine testing for thyroid abnormalities in patients receiving
many of the current anticancer agents is recommendable at
baseline, during the treatment, and the period of follow-up.
Furthermore, thyroid function tests should be included in
routine toxicity assessment of new TKIs and possibly of other
classes of targeted drugs under clinical evaluation. The
prognostic relevance of thyroid autoimmunity, overt and
subclinical hypothyroidism induced by anticancer drugs, the
value and the safety of thyroid hormone replacement in in-
dividuals with abnormal TSH following anticancer systemic
therapy, and the correct timing of replacement therapy need
to be defined more accurately. Additional prospective clinical
trials are necessary to investigate these important aspects.
These trials would offer a unique opportunity to clarify the
underlying molecular mechanism of thyroid toxicities in-
duced by an increasing number of anticancer agents and to
find potentially predictive factors of thyroid toxicity in cancer
patients.
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