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MODELLING COMOVEMENTS OF ECONOMIC TIME SERIES: 
A SELECTIVE SURVEY 

M. Centoni, G. Cubadda 

1. INTRODUCTION 

A large body of literature in time series analysis is dedicated to modeling co-
movements amongst multiple economic variables. The word comovement has been 
used in different meaning: even the spelling is uncertain, in most cases it can be 
found co-movement. In the present paper, comovement can be defined as “move 
together”, that is as movement that several series have in common. Comovements 
are often studied using correlation (e.g. Forbes and Rigobon, 2002; Imbs, 2004; Bax-
ter and Kouparitsas, 2005): some extension are, among others, dynamic correlation 
of Croux et al. (2001) and the concordance index of Harding and Pagan (2006). 
However, economic time series have many characteristics such as trends, cycles, sea-
sonality, serial correlation, and so on. Then it is important to consider these proper-
ties when analyzing comovement. To this respect (Vahid and Engle, 1993, pag. 341):  

comovement among time series indicates existence of common components. 

A well known example of comovement is cointegration (Engle and Granger, 
1987; Johansen, 1988; Stock and Watson, 1988): a group of series that possess 
stochastic trends is cointegrated when its element share some common stochastic 
trends. Due to the importance of cointegration for empirical research, most of 
the intuitions behind that were extended to the analysis of comovements among 
stationary series. Gourieroux and Peaucelle (1988) first extended the concept of 
cointegration to stationary time series and called this codependence: a group of 
variables are codependent if there exists a linear combination of them that pos-
sesses shorter memory than individual series. Later, Vahid and Engle (1997) show 
that codependence implies common short-run components. Another example of 
linear combinations of stationary variables that have lower order dynamics than 
the individual series is the scalar component model (SCM) of Tiao and Tsay 
(1989), that studied this type of structure in a multivariate ARMA model. These 
ideas were further developed and formalized in a series of paper by Engle and 
Kozicki (1993) and Vahid and Engle (1993). Engle and Kozicki (1993) considered 
features that satisfy the following axioms:  
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1. The vector series tX  has (does not have) the feature if any non-singular lin-

ear transformation of tX  still has (does not have) such feature;  

2. If two n-vector time series 1tY  and 2tY  do not have the feature then 

1 2( )t tY Y  does not have the feature;  

3. If tY  does not have the feature but tX  has the feature then ( )t tY X  has 
the feature. 

Then, any dynamic property of the data could be viewed as a special case of 
feature: for example, series with stochastic trends satisfies all axioms. As pointed 
out by Engle and Kozicki (1993) a linear combination of two series that both 
have the feature does not necessarily posses the feature. This is the most interest-
ing case, and to this issue Engle and Kozicki gave particular attention by the fol-
lowing definition:  

Definition 1: A feature, which is present in each of a set of series, is said to be 
common to those series when there exists a nonzero linear combination of 
these series that does not have the feature.  

It follows that cointegration is a special case of common features. Nowadays, 
there is a huge collection of special cases of common features. A comprehensive, 
although still partial, list includes: serial correlation (Engle and Kozicki, 1993; Va-
hid and Engle, 1993), when a linear combination of serially correlated series is 
white noise; cotrending (Chapman and Ogaki, 1993), when a linear combination 
of trend-stationary time series no longer display deterministic trend; common 
volatility (Engle and Kozicki, 1993; Engle and Susmel, 1993), when a linear com-
bination of ARCH series eliminates the ARCH effects; common seasonality 
(Engle and Hylleberg, 1996), when a linear combination of seasonally integrated 
series is nonseasonal; co-breaking (Hendry, 1996), when a set of series appear 
subject to structural breaks but a linear combination of variables does not display 
the breaks; codependent cycles (Vahid and Engle, 1997), when a linear combina-
tion of a group of variables has shorter memory than the individual series; 
nonlinearity (Anderson and Vahid, 1998), when the conditional expectation of 
each element of a vector time series is nonlinear w.r.t. the conditional vector but 
there exist a linear combination of them whose conditional expectation is linear 
w.r.t. the conditional vector; common seasonal cycle (Cubadda, 1999), when there 
exists a linear combination of seasonal differenced series which follows an MA 
process of low order; common panel structure (Hecq et al., 2000), when there is a 
linear combination of the variables in a panel data which is white noise for all in-
dividuals of the panel; nonlinear cotrending (Bierens, 2000), when a linear combi-
nation of the components of a set of stationary time series around nonlinear de-
terministic time trends is stationary around a linear trend or a constant; polyno-
mial serial correlation (Cubadda and Hecq, 2001), when there exists a polynomial 
combination of serially correlated time series that is white noise; long-run pure 
variance (Engle and Marcucci, 2006), when the conditional variances of a collec-
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tion of assets all depend upon a small number of variance factors; non-innovation 
(Paruolo, 2006), when a linear combination of a demeaned autocorrelated process 
is an innovation process, i.e. non predictable; weak serial correlation (Hecq et al., 
2006), when a linear combination of serially correlated series adjusted for long-
run effects is white noise; periodic correlation (Haldrup et al., 2007), when a lin-
ear combination of periodic series is not periodic. 

Instead of analyzing separately different properties of a time series, it could be 
useful to develop a unifying framework in order to contemporaneously analyzing 
several properties. Cubadda (2007) made this with respect to different forms of 
common cyclical features, introducing the notion of weak polynomial serial corre-
lation which encompasses most of the existing formulation. 

From a statistical point of view, comovements imply a reduction to a more 
parsimonious structure such as common factor representation (see, inter alia, 
Gonzalo and Granger, 1995), that can be estimated by reduced rank regression 
techniques (Anderson, 1984, 1999) with considerable efficiency gain (Vahid and 
Issler, 2002). Let tY  be an n-vector time series such that  

t t tY Bf e   

where (n−s) common factors tf  have the feature and te  does not have the fea-

ture. Consider a s−vector   such that 0B   , then tY   does not have the fea-
ture. 

Comovements among time series are often predicted by economic theory. For 
example, in King et al. (1988) the solution of their macro model implies that out-
put, consumption and investment have a common trend and a common cycle. 
The common stochastic trend is generated by an integrated productivity shock, 
while the deviation of capital stock from its steady state value determines the 
transitional dynamics of output, consumption and investment. Other example is 
Campbell (1987) where the saving path implies that disposable income and con-
sumption cointegrate (Issler and Vahid, 2001). However, it could happen that ob-
served comovements are in contrast with the theoretical model, and some efforts 
are toward reconciling the model with the data: as an example, in the DSGE 
model of Justiniano et al. (2010), an extension of the well known model of Chris-
tiano et al. (2005), investment shocks are the driven forces of fluctuations over 
the business cycle. In this model, however, consumption typically falls after an 
investment shock. This finding is in contrast with the observed business cycle 
comovement between consumption and investment. Khan and Tsoukalas (2011) 
try to solve this “comovement problem” introducing some modifications to tradi-
tional DSGE model. 

The large body of literature on comovement obviously forces one to contain 
the discussion to some arguments: see Urga (2007) for a recent survey. Then, the 
plan of the rest of the paper is as follows. After introducing the general concept 
in Section 2, Section 3 discusses the implications of the presence of common 
trends in I(1) processes. Section 4 presents as different types of common season-
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ality as many seasonal patterns. Section 5 deals with alternative notions of com-
mon cycles. Section 6 takes into account the consequences of the presence of 
common features with respect to univariate representation of time series models. 
Finally, Section 7 concludes. 

2. COMMON FEATURES IN ECONOMIC TIME SERIES 

The main idea is that a small number of unobserved components posses a 
given feature and transmit it to a larger set of economic time series. It is then 
possible to combine such time series in order to cancel the influence of these un-
observed components, thus removing the common feature from the data. Re-
duced-Rank Regression (RRR) (Anderson, 1984) is often the statistical solution to 
the inferential problem. 

Let tY  be a stationary n-vector time series such that  

t t t tY X Z       

where tX  and tZ  are, respectively, vectors of k and m variables, 0  , and t  

are i.i.d. (0, )nN   errors that are independent from both tX  and tZ . Both tX  

and tZ  may contain (linear functions of) lags of tY . 
Let us assume that:  

1. Variables tX  posses the feature of interest whereas variables tZ  don’t.  

2. There exists a n×s (s<min{n,k}) full-rank matrix   such that tY   do not 

posses the feature. Then, it is said that variables tY  have s Common Features.  

In view of the above assumptions we get  

t t tY Z        

that is equivalent to  

0          

where   is a n×(n−s) full-rank matrix such that 0   , and   is a k×(n−s) 
matrix. 

If n>k, the matrix    has not full column-rank, then there exist (n−k) “trivial” 
CF. Hence, let us also assume that s<n≤k, so the matrix   has full-rank as well. 

2.1 Common Features & Reduced Rank Regression 

The cofeature matrix   and the coefficient matrix   are usually obtained by 
means of RRR. The procedure can be summarized as follows:  
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1. Regress both tY  and tX  on tZ  and obtain the partial regression model  

t t ty x    

where ( | )t t t ty Y E Y Z  , ( | )t t t tx X E X Z  , 1
xx xy   , and  

var
yy yxt

xy xxt

y

x

 

 

  
   

   
 

2. Solve the following maximization problem  

1

1 arg max

xx

n

yx xx xy

yy

 



 


 











 
      

 
  



 s.t. 1yy    

Then we get the solution 1/2
1 1yy  , where j  (j=1,…,n) is the eigen-

vector associated to the j-th largest eigenvalue j  1 2( ... )n      of the 

symmetric, semi-positive definite matrix  

1/2 1 1/2
yy yx xx xy yy
        

Note that 2 ( | )t tR y x   , where   , is maximized for 1   and 
1

1 1xx xy      since  

1 1

1/2 1 1/2
1 1 1 1 1

1yy

xx yy yx xx xy yy

 

      



      



 
 

3. Solve the following maximization problem  

1

2 arg max
n

yx xx xy

yy

 


 





  



    
  

 s.t. 
1

1

0
yy

yy

 

 








 

We get the solution 1/2
2 2yy   

Note that 2
2 2 2( | )t tR y x      where 1

2 2xx xy   . Moreover, 
2

1 2( | ) 0t tR y x     since  

1/2 1 1/2
2 1 2xy yy yx xx xy yy            ,  

and 1  and 2  are eigenvectors corresponding to different eigenvalues. 
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4. In general, we have that 1/2
j yy j   is the solution of:  

1

arg max
n

yx xx xy
j

yy

 


 





  



    
  

 s.t. 
1

0
j yy j

i yy j

 

 








 

for 2,...,i j n  . Moreover,  

2
for

( | )
0 for

j
i t j t

i j
R y x

i j


  


 


, 

where 1
j xx xy j   . 

5. Since 0     then so is xx    , that implies that 1 ... 0n s n      , 
then the cofeatures matrix   is obtained (up to an identification matrix) as 
follows  

1( , ..., )n s n     

6. Since 1 ... 0n s     , the coefficient matrix   is obtained (up to an iden-
tification matrix) as follows  

1( , ..., )n s     

7. Finally, the loading matrix   is given by the regression coefficients of ty  

on tx  . 

It is worth remarking that the eigenvalue problem  

1/2 1 1/2
yy yx xx xy yy           (1) 

is equivalent to finding the roots of the equation:  

1 1
yy yx xx xy        (2) 

with the normalization 1yy   . 

The solution of the above problem (equivalent to RRR) is known in statistics 
as partial canonical correlation analysis between tY  and tX  conditional to tZ , 
and it is denoted by  

CanCor( , | )t t tY X Z  
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2.2 Common Features & Reduced Rank Regression: Statistical Inference  

Under the assumption that ( , )t ty x    are normally distributed, RRR provides 
ML inference on   and   (Anderson, 1984). The LR test statistic on the exis-
tence of s Common Features is:  

1

ˆLR( ) ln(1 )
n

i
i n s

s T 
  

    (3) 

where ˆ
i  is the i-th largest eigenvalue of the sample matrix 1/2 1 1/2ˆ ˆ ˆ ˆ ˆ

yy yx xx xy yy
       . 

Under proper regularity conditions on the variables tX  and tZ  the test statistic 
(3) is distributed  

2LR( ) [ ( )]ds s k n s   . 

The ML estimator of the cofeatures matrix   is obtained (up to an identifica-
tion matrix) as follows  

1
ˆ ˆ ˆ( , ..., )n s n    , 

where 1/2ˆˆ ˆj yy j   and ˆ j ( 1,..., )j n  is the eigenvector associated to the j-th 

largest sample eigenvalue ˆ
j . 

The ML estimator of the coefficient matrix   is obtained (up to an identifica-
tion matrix) as follows  

1ˆ ˆ ˆ( , ..., )n s    , 

where 1ˆ ˆˆ ˆj xx xy j   . 

The ML estimator of the loading matrix   is finally obtained by the regres-

sion coefficients of ty  on ˆ tx  . 
The degrees of freedom of the test statistic (3) are obtained as follows. Under 

1H  the matrix   is composed by n×k elements. Under 0H  we have that  

  ,1 ,2

( ) ( ) ( ) ( )

( : )
k n s n s n s n s s

    

      

 . 

Without loss of generality, we assume that ,1  has full-rank. Then we can 

write  

1
,1 ,1       
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where ,2( , )sI     . Hence, the matrix   is composed by (n−s)×(s+k) ele-

ments. It follows that under 0H  s(k−n+s) restrictions are imposed. 

3. COMMON TRENDS 

Macroeconomic time series often display a clear trending behavior, and stan-
dard unit-root tests suggest that series need to be treated as processes integrated 
of order 1 (I(1) for short) rather than trend stationary. However, linear combina-
tions of such series do not show similar patterns, instead appears to be stationary: 
this is what is intended by cointegration. Cointegration introduced by Granger 
(1981) has became one of the most widely used concept in time series economet-
rics, due to the straightforward economic interpretation of the cointegrating rela-
tions as long-run equilibrium relationships. Comovement arises by the presence 
of common stochastic trends in the series, that are removed by the cointegrating 
relations. It is worth noting that if the non stationary behavior is due to presence 
of deterministic rather than stochastic trend, we refer to a stationary linear com-
bination of these series as cotrending relations (Chapman and Ogaki, 1993) or 
nonlinear cotrending relations, if non stationarity is due to nonlinear deterministic 
time trends (Bierens, 2000). The cointegrated vector autoregressive (VAR) model 
pioneered by Johansen (1988, 1996) is the most commonly used econometric 
tool: see Juselius (2006) for the use of cointegrated VAR models in macroeco-
nomic empirical research. In what follows we briefly review this model and de-
scribe the procedure to determine the number of cointegrating relations. 

3.1 Cointegration: Assumptions & Definition 

A n-vector of time series { , 1, ..., }ty t T  is generated by the VAR(p) model:  

( ) t t tA L y D    (4) 

where 
1

( )
p i

n ii
A L I A L


  , tD  is a vector of deterministic terms, and t  are 

i.i.d. (0, )nN   errors. Assume that elements of ty  are, at most, I(1), denoted by 

ty ~I(1). By expanding ( )A L  on 0 and 1, we rewrite (4) as 

1( ) (1)t t t tL y D A y       (5) 

where 
1

1
( )

p i
n ii

L I L



   , and 

1

p
i jj i

A
 

   . Since ty ~I(0), 1( ) tA y  

must be stationary as well.  
Three possible cases can arise: 

1. (1) 0A  , means that all the elements of ty  are I(1) and do not cointegrate, 
then a VAR in first differences is appropriate;  
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2. rank[ (1)]A n , then all the elements of ty  are I(0);  

3. rank[ (1)]A n , then (1)A    , where   and   are full-rank n×r-

matrices 1, ..., 1r n   and it follows ty  ~I(0). Series ty  are cointegrated 

of order (1,1), ty ~CI(1,1), the space spanned by   is the cointegration 
space.  

If variables cointegrate, we can rewrite the model (5) in his Vector Error Cor-
rection Model (VECM) representation:  

1( ) t t t tL y D y       (6) 

where series ty  react to previous stationary deviations from the equilibria. Series 

ty  admit the following Wold representation: 

( )t t ty D C L     (7) 

where ( )t tD C L D  , and 
1

( ) i
n ii

C L I C L



   is such that 

1
| |jj

j C



  . 

By expanding ( )C L  on 1 and integrating both sides of the above equation, we 
get the multivariate Beveridge-Nelson representation (Beveridge and Nelson, 
1981): 

0
1

(1) ( )
t

t t j t
j

y y D C C L 


     , (8) 

where t tD D   , 
0

( ) i
ii

C L C L



  , and i jj i

C C


   for all i. 

Since 1(1) ( )C       
  , series ty  share the following (n−r) common 

stochastic trends: 

1

t

t j
j

  


 . 

Note the analogy between (8) and the common factor representation of the in-
troduction: ( ) tC L   does not have the feature, while t  has the feature, and the 
(n−r) common stochastic trends are removed by the cointegrating vectors, since 

1( ) 0     
    . For alternative identifications of the common trends see 

Gonzalo and Granger (1995) and Johansen (1996) among others. 
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3.2 Cointegration: ML Inference 

In order to determine the number of cointegrating relations and consistently 
estimate parameters of the VECM (6), Johansen (1988, 1991, 1996) proposed to 
resort to RRR in a Gaussian ML framework. In particular, the number of cointer-
grating relations is based on the solution of the following problem: 

1
1

1

CanCor ,
...

t

t
t t

t p

D

y
y y

y




 






  
  
          

, 

and then conducts a LR test for 0H  rank[A(1)]=r vs 1H  rank[A(1)]=n using the 
test statistic: 

1

ˆln(1 )
n

j
j r

T 
 

  , 1, ...,r n , 

where ˆ
j  is the j−th largest squared canonical correlation. If the null hypothesis 

is not rejected, the ML estimator of   are the r eigenvectors associated with the r 

largest eigenvalues 1
ˆ ˆ, ..., r  .  

Note that when tD  is a constant, the test statistic Q(r|n) converges weakly in 
distribution to  

11 1 1

0 0 0

tr d ( ) ( ) ( ) ( )d ( )d ( )B u F u F u F u u F u B u

        
    

    

where {}tr   denotes trace, B(u) is the standard Brownian motion of dimension 

(n−r), and 
1

0

( ) ( ) ( )dF u B u B v v   . 

Moreover, when tD  is not constant (linear trend, step dummy, ...) in the esti-
mated model, F(u) has a different formula. However, the limit distribution of the 
test statistics does not depend on   (Johansen, 1991). 

The ML estimator of  , ˆ
ML , is T−consistent and its limit distribution is 

mixed-Gaussian, so tests on   are asymptotically 2  but the exact distribution 

of (normalized) ˆ
ML  has Cauchy-like tails (Phillips, 1994). 

Finally, the remaining parameters in VECM (6) are estimated by OLS after fix-
ing the matrix   to its estimated value, see Johansen (1996) for further details. 
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4. COMMON STOCHASTIC SEASONALITY 

Most of economic time series display a seasonal pattern that evolves in a sto-
chastic fashion (Hylleberg et al., 1993). Focusing, for simplicity, on quarterly time 
series, variables ty  are seasonally integrated of order 1 (Hylleberg et al., 1990) if 

4 ty  is stationary, where 4
4 (1 )L   . Notice that 

2
4

frequency 0 frequency frequency /2

(1 ) (1 ) (1 )L L L
 

       , 

which allows for three diverse kinds of cointegration relations:  
1. Cointegration at frequency 0, if a linear combination of 

2
1, (1 )(1 )t ty L L y    is stationary.  

2. Cointegration at frequency  , if a linear combination of 
2

2, (1 )(1 )t ty L L y    is stationary.  

3. Polynomial cointegration at frequency /2 , if a linear combination of 

3, (1 )(1 )t ty L L y    and its lags is stationary. 

4.1 Seasonal Cointegration: Assumptions & Definition 

Let { , 1,..., }ty t T  be an n-vector of time series generated by the following 
VAR(p) model:  

( ) t t tL y D     (9) 

where ( )L  is a p-order polynomial matrix, t  are i.i.d. (0, )nN  , and tD  is a 
deterministic kernel. 

Assume that elements of ty  are, at most, I(1) at frequencies 0,  , and /2 . 
By expanding Π(L) on 0, ±1 and ±i, we rewrite the VAR (9) as  

4 1 1, 1 2 2, 1 , 1 , 1( ) t t t t t t tL y D y y y y                     

where 
4

1
( )

p j
n jj

L I L



   , 

[( )/4 ]
41

p j
i j ll




   , 1
1 4

(1)   , 

1
2 4

( 1)   , 1
4

( )i    and C  denotes the complex conjugate of a com-

plex matrix C. 
Since 4 ty ~I(0), then 1 1,ty , 2 2,ty , and ,ty   must be stationary as well. 

If the series are cointegrated of order (1,1) at frequencies 0,  , and /2 , the 
VAR(p) model may be rewritten in the following Complex VECM (CVECM)  

4 1 1 1, 1 2 2 2, 1 , 1 , 1( ) t t t t t t tL y D y y y y                             
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where j  and j  are jn r -matrices with rank equal to jr  for j=1,2, and   and 

  are complex 3n r -matrices with rank equal to 3r , see Cubadda (2001) and 
Cubadda and Omtzigt (2005). 

Notice that four cointegrating relationships are present in the CVECM. In-
deed, 1  and 2  are, respectively, the cointegration matrices at frequencies 0 and 

 , whereas the conjugate complex cointegration matrices   and   are re-

spectively associated with frequencies 
2


 and 

3

2


. 

Since complex valued cointegration vectors are not amenable to economic in-
terpretation, we rewrite the complex VECM in the following Seasonal VECM 
(SVECM)  

4 1 1 1, 1 2 2 2, 1 4 3 3 4 3, 1( ) ( )( )t t t t t tL y D y y L L y                       

where 3 4 3 4
1

( )( )
2

i i           , see Lee (1992) and Ahn and Reinsel (1994). 

It is worth remarking that the SVECM exhibits a real but polynomial cointe-
gration vector 3 4( )L L     for the annual frequency. Further, the CVECM 
is more convenient than the SVECM for statistical inference because the cointe-
gration restrictions at the various frequencies imply the usual reduced-rank struc-
ture of the  ’s matrices. 

4.2 Seasonal Cointegration: ML Inference 

In order to determine the number of seasonal cointegrating relations, Hylle-
berg et al. (1990) suggest a two-step procedure after having appropriately filtered 
the series. Since this procedure need pretesting for seasonal root, Cubadda (2001) 
proposed a more general procedure that do not require any prior knowledge 
about seasonal integration and allows to test for seasonal cointegration at any col-
lection of frequencies. The procedure can be summarized as follows. Regress 

4 ty , 1, 1ty  , 2, 1ty  , and , 1ty   on 4 1 4 4( , , ..., )t t t pD y y     and take respectively 

the residuals 0,tR , 1,tR , 2,tR , and ,tR . These residuals asymptotically satisfy the 

following equation  

0, 1 1 1, 1 2 2 2, 1 , ,t t t t t tR R R R R                        

Since the processes 1,tR , 2,tR , ,tR , and ,tR  are mutually asymptotically un-

correlated, we can ignore reduced rank restrictions at the frequencies different 
from the one of interest. 

Hence, the (concentrated) ML solution is obtained by solving  

0, 1, 2, , ,CanCor{ , , , }t t t t tR R R R R   
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for cointegration analysis at frequency 0, and  

0, 2, 1, , ,CanCor{ , , , }t t t t tR R R R R   

for cointegration analysis at frequency  . 
Johansen and Schaumburg (1998) showed that the (concentrated) ML solution 

for cointegration analysis at frequencies 
2


 and 

3

2


 cannot be obtained by RRR. 

However, the solution of  

0, , 1, 2, ,CanCor{ , , , }t t t t tR R R R R   

provides asymptotically optimal inference for cointegration at frequency 
2


 (Cu-

badda, 2001). 
It is worth remarking that small sample improvements may be obtained by es-

timating the cointegration vectors jointly at the zero and seasonal frequencies 
(Cubadda and Omtzigt, 2005). 

5. COMMON CYCLES 

As we have seen in Section 3, a set of I(1) cointegrated time series share some 
common stochastic trends. However, detrended economic time series often dis-
play clear evidence of comovements (Lucas, 1977), which cannot be due to coin-
tegration, thus suggesting the presence of common cycles. If this is the case, we 
expect that there exists linear combination of cyclical series the are not cyclical. 
This Common Cyclical Features [CCF] (Engle and Kozicki, 1993; Vahid and Engle, 
1993) can be interpreted as short-run equilibrium relationships, similarly to the 
interpretation of the cointegrating relations as long-run equilibrium. Indeed, 
common cycles appear in many theoretical economic models. For examples, in 
models of aggregate consumption behavior as discussed in Vahid and Engle 
(1993) and Issler and Vahid (2001), the proportion of total income that accrues to 
“myopic” individuals (Campbell and Mankiw, 1990), that is, individuals that con-
sume their income entirely in every period, or excess sensitivity of consumption 
to current income (Flavin, 1993), provide that first differences of I(1) consump-
tion and income share a common cycle. Note that in the consumption theory of 
Hall (1978) consumption and income share only a common stochastic trend. In 
real business cycle models as in King et al. (1991) consumption, investment and 
income have a common cycle due to the fact that transitional dynamics of the 
system is a function of the deviation of the capital stock from its stationary value: 
see Issler and Vahid (2001). As another example, in the real business cycle model 
for sectoral output à la Long and Plosser (1983), as in Engle and Issler (1995), 
common cycles depend on the propagation mechanisms through the restrictions 
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on the production function, i.e. technological constraints. Hence, CCF implies 
restrictions on the VAR parameters that have meaningful implications for the 
short-run components of an I(1) vector time series, that can be estimated by the 
RRR techniques of Section 2. 

5.1 Alternative notions of Common Cyclical Features 

Let us start with the multivariate Beveridge and Nelson (1981, BN) cycles of 
series ty :  

( )t tC L   , 

where 
1

10
(1)

t
t tC 


  , and ( )t tC L   , and i jj i

C C


  . 

As showed in Section 3, from the Granger representation theorem (Engle and 
Granger, 1987) we know that the presence of cointegration is equivalent to the 
existence of (n−r) common stochastic trends since 0t   . The analysis of 
CCF’s is instead concerned with reduced-rank restrictions on the VECM parame-
ters that have interesting implications on the cycles t . 

However, differently from cointegration, there is not a unique notion of com-
mon short-run components. Indeed, also the degree of synchronicity of the 
common cycle plays a role in the definitions. Alternative notions of CCF impose 
differing reduced-rank structures to the VAR. Let us briefly review various form 
of CCF starting with the seminal notion proposed by Engle and Kozicki (1993). 

5.1.1 Serial Correlation Common Feature [SCCF] 
Series ty  have s (s<n) SCCF’s iff there exists an n×s matrix S  with full col-

umn rank such that the VECM (6) can be rewritten into the following RRR 
model 

1 1 1( , , ..., )t t S S t t t p ty D y y y                  (10) 

where S  is an (np−n+r)×(n−s) matrix with full column rank (Engle and Kozicki, 

1993). Since S t S t S ty D        , there exist s linear combinations of series ty  
that are unpredictable from the past, i.e. they are innovation processes. Since 

0S t   , there exist (n−s) common cycles in series ty  (Vahid and Engle, 1993) 
that are perfectly synchronized, as a results the impulse responses functions are 
exactly collinear. However, one observes that due to technical reasons (e.g., sea-
sonal adjustment) as well as economic reasons (e.g., adjustment costs, labor mar-
ket rigidities), the hypothesis underlying SCCF is sometimes too strong, since 
SCCF is not able to detect the existence of non-contemporaneous cyclical co-
movements (Ericsson, 1993). Then, some less restrictive variants of the SCCF 
have been introduced in the literature, which we will review in turn. 
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5.1.2 Polynomial Serial Correlation Common Feature [PSCCF] 
Cubadda and Hecq (2001) propose the notion of polynomial serial correlation 

common features as a measure of non-contemporaneous cyclical comovements. 
Non-synchronous common cycles arises, for example, in economic model of 
consumption with several types of consumer goods as, among others, in Vahid 
and Engle (1997) and Schleicher (2007): it is shown that the maximization prob-
lem of the representative agent implies a unsynchronized common cycle (code-
pendent cycle) in the consumer goods vector. 

By definition, series ty  have s PSCCF’s iff there exists an n×s matrix P  with 

full column rank such that 1 0P    , and the VECM (6) can be rewritten into the 
following partial RRR model 

1 1 2 1 1( , ..., , )t t t P P t t p t ty D y y y y                   , (11) 

where P  is an (np−2n+r)×(n−s) matrix with full column rank (Cubadda and 
Hecq, 2001). 

In order to interpret the notion of PSCCF, Cubadda and Hecq (2001) show 
that there exists a first-order polynomial matrix ( ) P PL L     such that  

( ) t P t P tL y D        . 

Hence, PSCCF requires that there exists a first-order polynomial matrix ( )L  

such that ( ) tL y   is white noise. The presence of PSCCF has an interesting im-

plication for the BN cycles of series ty : indeed, since 1( ) (1)t tL C     , the 
same PSCCF relationships cancel the dependence from the past of both the first 
differences and cycles of series ty . 

5.1.3 Weak Form of Serial Correlation Common Feature [WF] 
In the above definitions of CCF, the number of SCCFs or PSCCFs, s, cannot 

exceed the number of common trends (n−r). In order to remove this restriction, 
Hecq et al. (2006) proposed the notion of weak form of SCCF: series ty  have s 

WF’s iff there exists an n×s matrix W  with full column rank such that 0W   , 
and the VECM in (6) can be rewritten into the following partial RRR model  

1 1 1( , ..., )t t t W W t t p ty D y y y                 

where W  is an (np−n)×(n−s) matrix with full column rank (Hecq et al., 2006). 
In order to uncover interesting implications of the WF for the BN cycle,  

Cubadda (2007) shows that there exists a first-order polynomial matrix 
( ) ( )W W n WL I L       such that  

( )W t W t W tL y D       . 
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As consequence, since ( ) ( (1))W t W n tL I C      , the same WF relationships 
cancel the dependence from the past of both the cycles and linearly detrended 

levels of series ty . 

5.1.4 Weak Form of Polynomial Serial Correlation Common Feature [WFP] 
A limitations of the above methods for cyclical features analysis is that they 

cannot handle the possible coexistence of differing types of reduced-rank restric-
tions in the same vector. In order to overcome this limitation, Cubadda (2007) 
introduced the notion of weak form of PSCCF, which encompasses most of the 
existing formulations: series ty  have s WFP’s iff there exists an n×s matrix F  

with full column rank such that 0F   , 1 0F    , and the VECM in (6) can be 
rewritten into the following partial RRR model  

1 1 1 2 1( , ..., )t t t t F F t t p ty D y y y y                     

where F  is an (np−2n)×(n−s) matrix with full column rank. 
The WFP requires the existence of a second-order polynomial matrix 

2
1 1( ) ( )F F n F FL I L L             such that  

( )F t F t F tL y D       . 

An important implication of the WFP is that the polynomial matrix ( )F L  

transforms the BN cycles t  into a process with shorter memory, since 

( )F tL  ~VMA(1). 

5.2 Common Cyclical Features: ML Inference 

In order to determine the number of CCF’s and consistently estimate parame-
ters of the VECM (6), it is standard practice to resort to RRR (i.e., Engle and 
Kozicki, 1993; Vahid and Engle, 1993; Cubadda and Hecq, 2001). In particular, 
let CanCor{ , | }t t ty x z  denote the partial canonical correlations between series 

ty  and tx  conditional on tz . ML inference on the various forms of common 

features is obtained by solving CanCor{ , | }t t ty x z  for proper choices of the 

variables tx  and tz , as in Table 1A. 

TABLE 1A 

Canonical correlations and CCF’s 

Model tx   tz   

SCCF 1 1 1( ,..., , )t t p ty y y         tD  

WF 1 1( ,..., )t t py y      1( , )t tD y    

PSCCF 2 1 1( ,..., , )t t p ty y y         1( , )t tD y    

WFP 2 1( ,..., )t t py y      1 1( , , )t t tD y y      
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Let ˆ
i  denote the i-th smallest squared partial canonical correlation for 

1,...,i n . Under the null that s common features of a given form exist, the test 
statistic 

1
1

ˆln(1 )
s

i
i

LR T 


   , 1,...,s n , 

is asymptotically distributed as a 2
1( )d  as detailed in Table 1B (see, inter alia, 

Velu et al., 1986; Anderson, 2002). 

TABLE 1B 

Tests for common features 

Model 1d  

SCCF s×(n(p−2)+r+s) 

WF s×(n(p−2)+s) 

PSCCF s×(n(p−3)+r+s) 

WFP s×(n(p−3)+s) 

 

Moreover, let ˆ y

i


 and ˆx
i  respectively denote the partial canonical coefficients 

of ty  and tx  associated with ˆ
i . Optimal estimates of both the common fea-

tures vectors and (partial) RRR coefficients are then obtained as described in Ta-
ble 2 (see, inter alia, Velu et al., 1986; Ahn and Reinsel, 1988). 

TABLE 2 

Estimators of the common features vectors and RRR coefficients 

Model 
1
ˆ ˆ( ,..., )y y

s  
 1

ˆ ˆ( ,..., )x x
s n   

SCCF ˆ
S  ˆS  

WF ˆ
W  ˆW  

PSCCF ˆ
P  ˆP  

WFP ˆ
F  ˆF  

 
Finally, the remaining parameters of the various RRR models are estimated by 

OLS after fixing the matrices  ’s to their estimated values. 

5.2.1 Serial Correlation Common Feature when n is large 
ML inference discussed so far may perform poorly with high-dimensional sys-

tems, because inversions of large variance-covariance matrices are required. 
Hence, there exist problems of size and power in usual tests when the number of 
series, n, and the number of lags in the VAR, p, are large relative to the sample 
size, T. Cubadda and Hecq (2011) propose an alternative strategy to detect the 
presence of common cyclical features, SCCF in particular: they show that a Partial 
Least Squares (PLS) approach can be used to test and impose a RRR structure to 
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“medium” n systems VAR’s even in cases when canonical correlation analysis is 
not feasible due to a lack of degrees of freedom. The idea is to replace the condi-
tion that a linear combination of variables must be orthogonal to the past with 
the one of absence of autocorrelation (see, e.g., Lucke, 1994). To illustrate the 
idea, consider that equation (10) implies 

1E( | ) 0S t ty w    (12) 

where 

1 1 1 1( , , ..., )t t t t pw y y y          (13) 

However, when n or p are large relatively to the sample size T, it is convenient 
to resort to a weaker orthogonality condition, namely 

1E( |[ ,..., ] ) 0Si t t Si t p Siy y y          , 1, 2, ,i s   (14) 

where 1 2[ , , ..., ]S S S Ss    . This drastically decreases the number of restrictions 
to be imposed under the null hypothesis, thus making a test for (an implication 
of) SCCF feasible even when canonical correlation analysis [CCA] is not. In order 
to detect SCCF in high-dimensional systems, Cubadda and Hecq (2011) propose 
to test for this condition by means of univariate tests for no serial correlation of 
each Si ty    having fixed S  to a consistent estimate of a base for the SCCF 
space. However, it remains the problem of estimating common feature vectors. 
Cubadda and Hecq (2011) use a PLS approach instead of CCA that works well 
even in cases when CCA is not feasible due to a lack of degrees of freedom (both 
in simulations and empirical applications). PLS, introduced by Wold (1985), are a 
family of multivariate techniques with the aim of maximizing the covariance be-
tween linear combinations of two variable sets, see, e.g., Rosipal and Kraemer 
(2006) for a recent survey. 

From Section 2.1 and 5.2, we know that the CCA estimator of SCCF is  

1
ˆ ˆ ˆ[ , ..., ]CCA CCA CCA
S s   , 

where ˆCCA
i  is the eigenvector associated with the i-th smallest eigenvalue of the 

matrix 1 1ˆ ˆ ˆ ˆ
yy yw ww wy
     , where ˆ E( )yy t ty y    , 1 1

ˆ E( )ww t tw w    and 

1
ˆ E( )yw t ty w    . 

The PLS estimator of the SCCF matrix S  is 

1
ˆ ˆ ˆ[ , ..., ]PLS PLS PLS
S s    (15) 

where ˆPLS
i ( 1, 2,..., )i s  is the eigenvector associated with the i-th smallest ei-
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genvalue of the matrix 1 1ˆ ˆˆ ˆ
yy yw ww wyD D   , with yyD  and wwD  are diagonal matrices 

having the diagonal elements of, respectively, yy  and ww . 

Note that, since PLS require to invert diagonal matrices only, this method can 
provide estimates of S  (up to an identification matrix) that are less disperse and 

more numerically stable than the CCA estimator when the dimension of tw  ap-
proaches the sample size T. 

To consistently estimate the factor weights S , let’s assume that the columns 

of the matrix S  are equal to (n−s) distinct eigenvectors of the matrix 1
ww wwD  , 

then we get  

1 1 1
ww wy yy yw S S yy ywD D V D  
      

where V  is the diagonal matrix of the (n−s) eigenvalues of the matrix 1
ww wwD   

that are associated with the eigenvectors S , which implies that the matrix S  
lies in the space generated by the eigenvectors associated with the positive eigen-

values of the matrix 1 1
ww wy yy ywD D   . 

In order to test for the presence of SCCF in systems where n×p is large, Cu-
badda and Hecq (2011) consider tests for the null hypothesis that Si ty    is a 
white-noise for 1, 2,...,i s  as in (14). In particular, we look at the Box-Pierce test 
statistic 

2
, ,

1

ˆ
k

j
i i j l

l

Q T r


   

where 

, ,2 2
, , ,

1 1

1
ˆ

j jT T
t i t l i j

i j l t i
t l t

e e
r e

T l T


  

   
        
   

and ,
ˆj j

t i Si te y   for ,j CCA PLS  and 1, 2,... .i s  The test statistic j
iQ  fol-

lows asymptotically a 2
( )k  distribution under the null. However, one should con-

trol the overall size of the test when applied for different values of s. Cubadda 
and Hecq (2011) propose two different strategies to solve this problem: using a 
Bonferroni correction to fix the overall significance level of the s tests computing  

max( )j j
s iB Q , ,j CCA PLS  



 M. Centoni, G. Cubadda 286 

and confronting it with the critical level at 
s


% in the 2

( )k ; or, based on Cu-

badda et al. (2008), testing for the null of no autocorrelation on the aggregate 

, ,1

sj j
t s t ii

a e


  for ,j CCA PLS . Under the null, ,
j

t sa  is a white noise in large 

sample whereas ,
j

t sa  does not converge to an innovation process when the SCCF 

rank is less than s. 

6. COMMON FEATURES AND UNIVARIATE TIME SERIES MODELS 

ARIMA models are still a popular tool for forecasting economic time series, 
since they often outperform large macro models. Indeed, in macroeconometrics 
we are typically interested in the interactions between entities, and in order to ac-
count for the links between variables we usually resort to a multivariate frame-
work (VAR, VARMA, VECM...). However, univariate ARIMA models are also 
the implied final equations (FEs) of systems such as VARs or VARMAs (Zellner 
and Palm, 1974). But here a paradox comes: FEs are theoretically non-
parsimonious, whereas low order ARIMA models are empirically appropriate. 
Cubadda et al. (2009) show that VAR models with a reduced-rank structure aris-
ing from the presence of common features can give an answer to this paradox. 

Let us start by referring to a recent solution to the well-known “autoregressiv-
ity paradox”, i.e., multivariate time series models imply highly non parsimonious 
ARIMA models for individual time-series. 

6.1 The Final Equations (FEs) of the VAR 

Let us consider the n dimensional VAR(p) (4) 

( ) t tA L y   (16) 

where deterministic terms are omitted for simplicity. 
Following Zellner and Palm (1974), the univariate representation of elements 

of ty  can be obtained by premultiplying both sides of (16) by ( )adjA L , the  
adjoint matrix (or the adjugate) associated with ( )A L , such that 

1( ) det[ ( )] ( )adjA L A L A L  , in order to obtain the Final Equations (FEs) 

det[ ( )] ( )adj
t tA L y A L  , (17) 

where det[ ( )]A L  is a polynomial of order np and ( )adjA L  is matrix polynomial 
of order (n−1)p. 
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6.2 Implications of the Final Equations 

Equation (17) implies that every FE is an univariate ARMA( *, *)p q  although it 
is derived from the finite order VAR(p). They have identical autoregressive pa-
rameters because det[ ( )]A L  is the same of the n equations. Here the paradox: an 
n-dimensional VAR(p) would imply ARMA(np,(n−1)p) processes, an implication 
that is rejected when tested on economic data where one usually finds quite par-
simonious ARIMA models. 

To illustrate this point, let us assume that n=3 series are generated by the fol-
lowing VAR(1): 

1

0.5 0.5 0.5

0.25 0.25 0.25

0.5 0.5 0.5
t t ty y 




 
     
   

 

where 1 2 3( , , )t t t ty y y y  . 
For the above VAR, the FEs are: 

3 2 2 2det[ ( )] 1 0.5 (0.75 2 ) (1.25 )A L L L L         , 

such that individual series follow ARMA(3,2) models. 
However, if 0  , the VAR has reduced-rank structure  

1

0.5

0.25 [1 1 1]

0.5
t t ty y 

 
    
  

 

which produces the FEs: 

1

0.25 0.5
1 0 1

(1 0.75 ) 0.25 1
0 1 0.5

0.5 0.5
t t tL y   

  
            

. 

This implies that the univariate models are parsimonious ARMA(1,1) models 
with the same autoregressive parameter and cross-correlated errors and a VMA 
component of FEs with a factor structure. 

More generally, Table 3 summaries the reduction of the individual ARMA or-
ders due to common features restrictions. As one can see, the presence of com-
mon short-run components significantly reduces the order of the univariate 
ARMA representations. Hence, the existence of CCF’s is a possible, economically 
meaningful, solution of the paradox. 
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TABLE 3 
Maximum ARIMA orders of univariate series generated by an n-dimensional VAR(p) 

with s cofeature restrictions 

Models AR order I(d) MA order 
I(0) np 0 (n-1)p 

SCCF (n-s)p 0 (n-s)p 
PSCCF (n-s)p+s 0 (n-s)p+(s-1) 
C(1,1) n(p-1)+r 1 (n-1)(p-1)+r 
SCCF (n-s)(p-1)+r 1 (n-s)(p-1)+r 

PSCCF (n-s)(p-1)+r+s 1 (n-s)(p-1)+r+s-1 
WF (n-s)(p-1)+r 1 (n-s)(p-1)+r 

 

It is worth noting that Table 3 provides the maxima ARIMA orders under 
CCF’s restrictions. However, the orders can be even smaller due to additional re-
strictions on the VAR parameters, such as block-diagonal or block-triangular 
structures. 

6.3 Implications of Common Cyclical Features for the VMA component 

The presence of short-run comovements has also consequences for the VMA 
part of FEs. Cubadda et al. (2009) show that in a stationary VAR(p), the existence 
of s SCCFs implies that in the FEs the VMA coefficient matrices associated with 
degrees strictly larger than (n−s−1)p have a common right null space that is 
spanned by  . Hence, it is possible to reduce the order of the VMA component 
to a degree of at most (n−s−1)p instead of (n−s)p. In particular, when n−1=s, the 
FEs follow a model that is popular in the macro-panel literature: an homogene-
ous AR component and cross-correlated VMA errors having a factor structure. 
However, in the CF’s framework this model is not a priori assumed but it is an 
implication of the presence of a (testable) time series property of the data. 

In order to clarify this point, it may be appropriate to use an empirical exam-
ple. Cubadda et al. (2009) considered the IPIs of Canada and the US. Since they 
found no cointegration in log levels, a VAR(1) in first differences seemed appro-
priate. The estimation by OLS delivers (standard errors in brackets) 




( 0.088) (0.079) 1

1
(0.102) (0.092 )

0.333 0.273ln ln

0.265 0.360 lnln

t t

tt

US US

CACA





 



               

 

Theoretical FEs orders implies an ARMA(2,1) processes. However, SCCF test 
statistics is in favor of s=1 (p−value=0.31), with the estimated CCF relationship 
( ln 1.05 ln )t tUS CA  , that is an innovation with respect to the past. Empiri-
cal estimation of univariate models gives the following ARIMA(1,1,0)  





1
(0.001) (0.062)

1
(0.001) (0.064 )

ln 0.003 0.554 ln

ln 0.004 0.533 ln

t t

t t

US US

CA CA
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As expected, AR coefficients are very similar. Moreover, since the estimated 
cofeature vector ̂   is close to (1 : 1) , the variances of VAR residuals are similar, 
and the correlation of VAR residuals is around 0.65, the previous discussion may 
explain why the MA(1) components are almost negligible. 

6.4 Estimation of the Common AR parameters 

As illustrated above, the finding that a set of series have identical autoregres-
sive polynomials calls for the estimation of the common AR component that 
should be preferred to estimating ARMA models for the individual series. Indeed, 
the univariate parsimonious empirical ARMA( , )i ip q  models can be estimated by 
ML for each series individually such that 

1 1

ˆˆ ˆ ˆ ˆ
i ip q

it i ij it j ik it k it
j k

y y     
 

      

Instead, imposing the restrictions implied by the VAR is equivalent to using an 
estimator of the common AR part such that 

1 1

ˆˆ ˆ ˆ ˆ
i ip q

it i j it j ik it k it
j k

y y     
 

      

where ˆ j  is the jth lag order common coefficient to all n which should be pre-

ferred to ˆij  for individual series. 

In order to do so, we have various alternative at hand, such as the mean group 
estimator (the average of n individual estimators) 

1

1

ˆ ˆ
n

mg
j ij

i

n 



  , 1, ...,max( )ij p  

and the estimation on aggregates (univariate ARMA for the average of the n se-
ries) 

1 1

ˆˆ ˆ ˆ ˆ
p q

av
t j t j k t k t

j k

y y     
 

      

where 1

1

n

t it
i

y n y



  , t  is the innovation of the univariate ARMA(p,q) for ty  

and k  is the kth lag parameter of the MA part of ty . 
Cubadda et al. (2008) have shown by simulation that the best estimator is sim-

ply to fit the parsimonious model on aggregates. It is worth noting that the use of 
this estimator is fine under the null that the FEs are from the same initial VAR 
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model. However, one could evaluate whether this is also true when we “errone-
ously substitute” to the group of variables having common cycles additional se-
ries from another group. Cubadda et al. (2009) conducted a Monte Carlo experi-
ment and found that the empirical bias increases if one includes series with AR 
coefficients more distant from the FEs. However, the differences in terms of bias 
and RMSE decrease as n and T increase. 

When we work on the aggregate series, we impose the common autoregressive 
roots whose estimation can be volatile in individual series. It is worth remarking 
that due to the factor structure of the VMA component of the FEs, aggregation 
can reduce the order of the univariate MA components, which are noise in this 
estimation problem. For instance, in the FEs  

1

0.25 0.5
1 0 1

(1 0.75 ) 0.25 1
0 1 0.5

0.5 0.5
t t tL y   

  
            

 

pre-multiplication of both sides by (1,1,1)  annihilates the VMA component. 

7. FINAL REMARKS 

The main idea behind this survey was to create a “common thread” between 
various topics, related to each other by trying to model different kind of co-
movements typically present in economic time series, and in many cases also pre-
dicted by economic theory. Indeed, from a statistical point of view, comovements 
imply a reduction to a more parsimonious structure such as common factor rep-
resentation: a small number of unobserved components posses a given feature 
and transmit it to a larger set of economic time series. As we have seen, RRR is 
often the solution to the inferential problem. 

The large amount of literature on comovement has forced us to keep the dis-
cussion on a limited number of issues: specifically, trends, cycles and seasonality. 
However, we believe we have taken account of important extensions: the implica-
tions of common features for univariate time series models and how to address 
efficiency problems when the number of the variables is fairly numerous. 

The main drawback of the methods discussed in this paper is that different 
features are evaluated separately: one important exception is the unifying frame-
work for analyzing common cyclical features as discussed in Section (5.1.4). Then, 
a major challenge ahead is to develop estimation and testing procedures that al-
low for joint identification of several common features using an integrated ap-
proach. Further, the analysis of various forms of reduced rank structure in large 
dimensional systems appears to be promising. 
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SUMMARY 

Modelling comovements of economic time series: a selective survey 

Modelling comovements amongst multiple economic variables takes up a relevant part 
of the literature in time series econometrics. Comovement can be defined as “move to-
gether”, that is as movement that several series have in common. The pattern of the series 
could be of different nature, such as trend, cycles, seasonality, being the results of differ-
ent driving forces. As a results, series that comove share some common features. Com-
mon trends, common cycles, common seasonality are terms that are often found in the 
literature, different in scope but all aimed at modeling common behavior of the series. 
However, modeling comovements is not only a statistical matter, since in many cases 
common features are predicted by economic theory, resulting from the optimizing behav-
ior of economic agents. 




