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Human locomotor movements exhibit considerable variability and are highly complex in
terms of both neural activation and biomechanical output. The building blocks with which
the central nervous system constructs these motor patterns can be preserved in patients
with various sensory-motor disorders. In particular, several studies highlighted a modular
burst-like organization of the muscle activity. Here we review and discuss this issue
with a particular emphasis on the various examples of adaptation of locomotor patterns
in patients (with large fiber neuropathy, amputees, stroke and spinal cord injury). The
results highlight plasticity and different solutions to reorganize muscle patterns in both
peripheral and central nervous system lesions. The findings are discussed in a general
context of compensatory gait mechanisms, spatiotemporal architecture and modularity of
the locomotor program.
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INTRODUCTION
Investigating locomotor responses after neurological lesions is
fundamental to the development of improved rehabilitation
strategies and to explore the mechanisms involved in improv-
ing locomotor function. The problem of motor neurorehabilita-
tion is significant and complex. Numerous studies have shown
that motor activity after brain damage plays an essential role in
anatomo-physiological reorganization, which may occur in the
areas adjacent to the damage (Cao et al., 1998; Nelles et al., 1999).
Nevertheless, the building blocks with which the central ner-
vous system constructs the motor patterns can be preserved in
patients with neurological disorders. In particular, several studies
highlighted a modular burst-like organization of muscle activity.

While biomechanical and neural aspects of human locomo-
tion have been documented in many studies both in normal
and pathological gait, the architecture of neural circuits and the
nature of descending neural signals that are involved in locomo-
tor control remain elusive in humans. To date, little work has been
completed on characterizing the neural substrates for modular-
ity in both healthy individuals and in neurological patients with
different sensory-motor disorders. A number of studies explored
the bases of central motor programming by decomposing muscle
activation patterns as a means to look backward from the periph-
ery to the CNS (Davis and Vaughan, 1993; Prentice et al., 1998;
d’Avella and Bizzi, 2005; Ivanenko et al., 2006; Giszter et al., 2007;
Tresch and Jarc, 2009; Chvatal and Ting, 2012; Bizzi and Cheung,
2013; Lacquaniti et al., 2013). While different studies use different
decomposition techniques, the common message is the emphasis
on modular architecture of the motor output. Furthermore, these
computational techniques often converge to a similar solution

(Ivanenko et al., 2005; Tresch et al., 2006). The data and con-
cepts discussed here offer a new approach to characterizing the
mechanisms underlying control of human locomotion that may
potentially benefit the study of pathological gait and the ability of
current therapeutic exercises to improve patient outcomes.

In patients, the mechanisms involved in locomotor improve-
ments may rely on the inherent spatiotemporal organization
of neural circuitry and its adaptability. The question arises
as to whether the rhythmic patterning elements are invari-
ant when muscle activation patterns can be compromised by
spinal cord lesions, brain damage and other motor disturbances.
Compensatory strategies for plantarflexor weakness or after distal
limb segment amputation also represent important examples of
locomotor adaptations. Several recent studies provide some clues
on this topic. We will consider and discuss these examples in the
following sections.

LOCOMOTOR PATTERNS IN HEALTHY SUBJECTS
Muscle activity during normal locomotion has both invariant
and variant features. In each step, the control system needs to
compensate for body weight, provide forward and lateral stabil-
ity and maintain forward progression. The coordination of the
musculoskeletal system with non-linear properties and multiple
degrees of freedom is complex and requires activity of tens of leg
muscles. Major muscle activity during walking tends to be orga-
nized in bursts at specific moments of the gait cycle (Figure 1A)
to perform specific functions dictated by the biomechanics of
bipedal walking (Winter, 1989; Zajac et al., 2003; Lacquaniti et al.,
2012). For instance, in early stance hip and knee extensors con-
tribute to weight acceptance at heel contact (Figure 1B). Ankle
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FIGURE 1 | Motor patterns in healthy volunteers. (A) Ensemble-averaged
EMGs (n = 8 subjects) recorded from 10 ipsilateral leg muscles during
walking on a treadmill at 5, 7, and 9 km/h. At 9 km/h, there is an “atypical”
burst of activity in several thigh muscles that is synchronous with the peak
activity in the calf muscles [the data are illustrated from Ivanenko et al.
(2008)]. ST, semitendinosus; BF, biceps femoris; TFL, tensor fascia latae;
SART, Sartorius; Gmed, RF, rectus femoris; VM, vastus medialis; VL, vastus
lateralis; MG, gastrocnemius medialis; LG, gastrocnemius lateralis; SOL,
soleus; TA, tibialis anterior. (B) ensemble-averaged (±SD) ankle, knee and
hip moments of force (normalized to the subject’s weight) of the right leg
during overground walking at about the same speeds (as in panel A) in one
representative healthy subject.

plantar flexors provide body support and forward propulsion in
late stance while ankle dorsiflexors and hip flexors contribute
to foot lift-off in early- to mid-swing. Simultaneously, erector
spinae muscles activate at this time to stabilize the trunk. In late
swing, hamstrings decelerate the leg in preparation for heel con-
tact and then stabilize the pelvis. Throughout the entire step cycle,
adductor muscles contribute to the control of medio-lateral accel-
erations of the center of body mass. However, it is worth noting
that most leg muscles that are involved in the control of forward
progression in the sagittal plane have a noticeable lateral compo-
nent of force production and thus are also involved in the control
of motion in non-sagittal planes. Even though there is a relation-
ship between the neural and biomechanical control of the gait
cycle, evidentially the system is much more complex due to the
dynamic coupling of multiple body segments (e.g., Zajac et al.,
2003).

Whereas this “invariant” picture of muscle activation
(Figure 1A) has been documented in healthy subjects, there are
also variant features of muscle activity depending on the context
and differences between individuals. If one aims at reactivating
the “normal” motor patterns in patients and extrapolating them
to any walking condition, this may not be of benefit to the
patient due to the specific pathology or individual differences
that occur in pathological as well as healthy subjects. Muscle
activity in healthy subjects may show very non-linear changes in
both amplitude and temporal envelope, e.g., with changing the
speed or body weight support even while kinematics patterns
remain similar (Ivanenko et al., 2002; Lacquaniti et al., 2002).
For instance, the amplitude of EMG activity of “anatomical”
synergists may diverge remarkably in these conditions: lateral
and medial gastrocnemius muscles at different walking speeds
(Huang and Ferris, 2012), soleus and gastrocnemius muscles at
different levels of limb loading (McGowan et al., 2010). With
body weight unloading (Ivanenko et al., 2002), most muscles
(e.g., gluteus maximus and distal leg extensors) decrease their
activity, while other muscles demonstrate a “paradoxical” incre-
ment of activation (e.g., quadriceps) or considerable changes
in the activation waveforms (hamstring muscles). In addition,
muscle activity patterns are shaped by the direction of progres-
sion (e.g., forward vs. backward, Grasso et al., 1998, or walking
along a curved path, Courtine et al., 2006). In particular, such
studies suggest that a comparison of normal and pathological
gait should be preferably performed in the same stepping
conditions.

There is also notable inter-individual variability in muscle
activity during walking (Winter and Yack, 1987). The most
variable patterns are observed in the proximal and bi-articular
muscles especially at lower walking speeds. For example, quadri-
ceps activity is virtually silent in some subjects at low speeds
(<4 km/h), whereas it is still present in others (Ivanenko et al.,
2002). Finally, notable systematic changes in the EMG activity
during walking occur with age, e.g., co-contraction of leg muscles
in infants (Forssberg, 1985; Teulier et al., 2012; Ivanenko et al.,
2013b) and widening of EMG patterns in elderly (Monaco et al.,
2010).

Nevertheless, a number of recent studies using statistical analy-
ses of EMG suggest that the nervous system may adopt a relatively
simple control strategy (e.g., Ivanenko et al., 2005; Cappellini
et al., 2006; Clark et al., 2010; McGowan et al., 2010; Monaco
et al., 2010). Using pattern recognition mathematics, both the
stereotypical activation patterns and across-stride variability of
these patterns can be accounted for by combining and scaling
a small set of basic activation components. Such tendency for a
few basic patterns to account for about 90% of variance indicates
that leg muscles tend to group their activity in order to perform
specific biomechanical functions during gait.

While intuitively one would expect some changes in the EMG
activity in patients, the present question is whether the basic mod-
ular patterns or the functional grouping of muscles are conserved
in pathological participants. Below we summarize various exam-
ples of motor patterns in patients with both peripheral and central
lesions. The main focus is placed on the studies that analyzed
multi-muscle EMG patterns.
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LOCOMOTOR PATTERNS IN PERIPHERAL LESIONS
Compensatory strategies for plantarflexor weakness or after
below-knee amputation represent an important example of gait
adaptation. The human bipedal gait and heel-to-toe rolling pat-
tern are unique (Bramble and Lieberman, 2004) and require a
specific inter-segmental coordination (Lacquaniti et al., 2002),
balance control and walking experience for acquisition of planti-
grade gait at the beginning of independent walking (Forssberg,
1985; Ivanenko et al., 2007). Plantarflexor muscles are an impor-
tant muscle group that regulates the gait speed, compensates for
body weight and provides the vertical and horizontal (anterior-
posterior shear) forces during the push-off phase. Weakness of the
plantarflexors is considered as one of the limiting factors that pre-
vents humans from walking at faster speeds (Nadeau et al., 1999;
Brunner and Romkes, 2008).

In addition to the development of extensor forces in the dis-
tal antigravity muscles, there is an important sensory feedback
from these muscles and from numerous foot receptors. Peripheral
neuropathy and aging may result in muscle weakness and sub-
stantial impairments of sensory feedback and balance control
(Nardone et al., 2000, 2006; Nardone and Schieppati, 2004;
Mazzaro et al., 2005). For instance in older adults, ankle plan-
tarflexor work remains relatively constant at increasing speeds,
in contrast to the systematic increase in ankle work output with
walking speed in young adults (Winter et al., 1990; Judge et al.,
1996).

PATIENTS WITH LARGE FIBER PERIPHERAL NEUROPATHY
Weakness of distal extensors in patients with large-fiber neu-
ropathy can be observed after acute nerve compression in the
sciatic notch associated with a reduced level of motor and sen-
sory function. After sciatic nerve compression there may be a loss
of reflexes, movement skills, sensation in the affected area, and
atrophy of the affected muscles can occur (Hagiwara et al., 2003).
Sciatica commonly refers to pain that radiates along the sciatic
nerve and is typically felt in the back of the leg and possibly to

the foot, and is one of the most common forms of pain caused by
compression of the spinal nerves.

We analyzed adaptations of gait patterns at different walking
speeds in four patients with a unilateral large-fiber neu-
ropathy of S1 innervation resulting from acute nerve com-
pression in the sciatic notch. Plantarflexor weakness on the
affected side was evidenced by subjective difficulty to lift and
support the body weight on the forefoot region (forefoot-
standing) by plantarflexing the ankle joint during standing.
Reflexes and sensory thresholds were all normal in the con-
tralateral leg. Figure 2 illustrates EMG patterns in these patients
during walking and slow and fast speeds. After acute nerve
compression in the sciatic notch, the patients walked some-
what slower (even their self-selected fast speed was <5 km/h)
than healthy individuals. The EMG patterns differed from healthy
individuals walking at the same speeds (Figure 1A) and were vari-
able between the patients as well as between left and right leg
muscle activities (Figure 2). A part of these differences may orig-
inate from slightly different EMG electrode placements and/or
skin impedance. Nevertheless, we found an interesting coopera-
tion of distal and proximal extensors (Figure 2, marked in red)
and discuss its general functional significance for bipedal gait
adaptations (Dickey and Winter, 1992; Beres-Jones and Harkema,
2004; Nene et al., 2004; Ivanenko et al., 2008, 2013a).

The “atypical” burst of activity in the proximal leg muscle
was more prominent in patient 1 (Figure 2) on the affected side,
while it could be observed also in other patients on the con-
tralateral side. To understand better it’s link to the kinematics
and kinetics of gait, we recorded patient 1 again during over-
gound (Figure 3B) and treadmill walking (Figures 3A,C). The
second time (1 year later, session 2) the patient had recovered all
reflexes and reduced sensation was limited to the lateral, plantar
surface of the foot. The patient was now able to fully support his
body weight on the left leg during “forefoot standing,” although
some weakness still remained. The most prominent decrements
in angular oscillations and angular velocities were observed in

FIGURE 2 | Ensemble-averaged bilateral EMG activity of leg muscles

during overground walking at slow and fast speeds in four patients

(panels A–D) with unilateral sciatic nerve compression. Note an

“atypical” activation of proximal extensors during late stance (marked in
red) and its variability across patients and depending on the affected
side.
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FIGURE 3 | Motor patterns in a patient with sciatic nerve compression

[the same patient as in Figure 2A but recorded 1 year later (session 2)].

(A) ensemble-averaged (across 12 consecutive steps) joint angular
displacements (left panel, mean ± SD) and amplitudes of angular joint
motion (right panel) during walking at 3 km/h. Asterisks denote significant
differences. Note significantly smaller distal joint oscillations on the affected
(left) side. (B) ensemble-averaged (n = 5 steps) vertical (Fz ) and horizontal
anterior-posterior (Fx ) ground reaction forces, and ankle, knee and hip joint
moments of force normalized to the patient’s weight during overground
walking at ∼5 and 7 km/h in session 2 (left panels). The patterns are plotted

vs. normalized stance. On the right—peak-to-peak amplitudes. (C)

Ensemble-averaged bilateral EMG activity of leg muscles during walking on a
treadmill at different speeds. In session 1 (Figure 2A), the patient could walk
only at speeds up to 5 km/h due to plantarflexor weakness, while in session 2
we recorded walking in a wide range of speeds (3–9 km/h). Adapted from
Ivanenko et al. (2013a). Note a prominent burst of activity (marked in red) in
the proximal extensors during late stance on the affected (left) side at low
speeds in the session 1 (Figure 2A) and only at higher speeds (>5 km/h) in
session 2. Furthermore, at 9 km/h the “atypical” burst of activity was present
in both legs, as in healthy subjects (see Figure 1A).

the ankle joint motion (Figure 3A). In the knee joint, angular
motion asymmetry was significant only at higher speeds (7 and
9 km/h). When the plantarflexor strength and/or reflexes were
compromised in one leg, the primary compensatory mechanism
was an increase in activity of proximal extensor muscles (VL, RF,
VM, TFL evidenced by red circles in Figure 2) during late stance.
This compensatory effect was observed at all recorded walking
speeds in patient 1 in session 1 (Figure 2A) but only at the higher
speeds (>5 km/h) in session 2 (Figure 3C) which required greater
propulsion forces. This suggests a possible link to the extent of the
weakness in the ankle extensors.

Healthy volunteers typically do not show activity in the prox-
imal extensor muscles during late stance in normal walking
(Nilsson et al., 1985; Winter, 1989; Prilutsky and Gregor, 2001;
Nene et al., 2004; Cappellini et al., 2006). However, the atypical
proximal burst was present in all healthy subjects at high, non-
preferred walking speeds (Figure 1A, right panel). The proximal

muscles involved (RF, VM, VL, SART, Gmed, TFL) were activated
synchronously with the distal extensors (MG, LG, SOL) as was
observed for the patient. At the higher speeds, the muscle gain, or
force produced for a given level of activation, may be lower due
to the muscle force-velocity relationship (Neptune and Sasaki,
2005), so the force produced by ankle extensors alone may be
insufficient to initiate lift-off or to provide appropriate limb stiff-
ness. The proximal activation may be recruited to compensate by
supplying additional extensor torque and stiffness.

Similarities can also be noted between this type of adaptation
and unilateral acute pathologies such as hemiplegia (Knutsson
and Richards, 1979), below-knee amputation (Winter and Sienko,
1988) or unilateral ischemic block of distal leg muscles in healthy
subjects (Dickey and Winter, 1992). Co-activation of distal and
proximal extensors during stance in each leg was also observed
in the clinically incomplete spinal cord injury individuals dur-
ing weight-bearing treadmill stepping (Beres-Jones and Harkema,
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2004, see also below) and in healthy adults during walking on
a slippery surface (Cappellini et al., 2010). Such similarity indi-
cates that this kind of adaptation seems not to depend on the
location of the lesion of the neuronal system but may be related
to the activation of existing basic activation patterns or muscle
synergies.

Nevertheless, despite a potential broad-spectrum functional
significance of this compensatory response to plantarflexor
weakness, its biomechanical nature remains puzzling. One would
perhaps expect the cooperation of distal and proximal extensors
during knee-flexed locomotion, e.g., as it happens during dig-
itigrade gait requiring a significant positive (anti-gravity) knee
torque during stance. However, in our case (Figure 3B) there was
no generation of positive knee moments of force in response
to extra activation of knee extensors, likely reflecting dynamic
coupling between body segments (Zajac et al., 2003). Moreover,
biomechanical simulations of the compensatory strategies in
response to muscle weakness do not seem to predict the appear-
ance of “atypical” burst of activity in the proximal extensors
(Goldberg and Neptune, 2007). Perhaps a complete consideration
of all factors affecting gait optimization is necessary, including
a 3D rather than 2D musculoskeletal gait model (e.g., Gmed,
TFL, and SART may generate a noticeable trunk torsion or lateral
force component, Dostal et al., 1986) and taking into account the
mechanisms that regulate leg stiffness during walking (Fiolkowski
et al., 2005).

Whatever the exact biomechanical reasons for the observed
phenomenon (Figure 3), it is important to emphasize that the
timing of the reaction in the proximal muscles corresponded to
the timing of the calf muscle activation. This supports the idea of
a temporal architecture of the locomotor program linked to spe-
cific kinematic events (Ivanenko et al., 2005, 2006; Giszter et al.,
2007; McGowan et al., 2010) or critical points in the processing
of sensory information (Saltiel and Rossignol, 2004) in the gait
cycle.

TRANSTIBIAL AMPUTEES
Various efforts have been made to restore the normal EMG pat-
terns in patients, presumably by reactivating the CPG (central
pattern generator) circuitry or more directly by functional electri-
cal stimulation (FES) (Thrasher et al., 2006; Solopova et al., 2011)
or when implementing myoelectric control of powered limb pros-
theses in amputees (Au et al., 2008; Huang et al., 2011). For
instance, transtibial amputees can learn to volitionally activate
residual leg muscles (Au et al., 2008; Ha et al., 2011; Hargrove
et al., 2011) that can be used for movement intent recognition
in the myoelectric control of powered limb prostheses. However,
such strategies and their underlying hypotheses are often based
on the assumption that the motor patterns are relatively invariant
across different walking conditions, for instance, when using FES
for gait rehabilitation (Thrasher et al., 2006). Below we consider a
reorganization of EMG activity in transtibial amputees.

Below-knee amputation represents a severe damage of the neu-
romuscular apparatus of the leg and impaired sensory feedback.
As a result, the EMG activity in amputees may be compromised
by these factors. Indeed, below-knee amputation may result
in the EMG patterns different from those in healthy subjects.

For instance, co-activation of distal and proximal extensors
during stance, similar to that described in the previous sec-
tion (Figures 2, 3C), was also observed in below-knee amputees
(Winter and Sienko, 1988).

Of particular interest is residual lower leg muscle activation
following such an amputation. For instance, if the CPG output
were relatively fixed (e.g., providing an alternating activity of
flexors and extensors, Zehr, 2005) one would not expect major
changes in residual muscle activation profiles. Figure 4 illustrates
the results of a recent study on multi-muscle EMG activity in both
proximal and residual leg muscles during walking in transtibial
amputees (Huang and Ferris, 2012). In the upper leg muscles,
the data showed that amputee subjects had greater inter-subject
variability in their biceps femoris and gluteus medius muscle
activation profiles compared to control subjects during walk-
ing, as well as a different BF activation profile shape (Figure 4,
right panels). Amputee subjects also demonstrated reliable mus-
cle recruitment signals from residual lower leg muscles recorded
within the prosthetic socket during walking. However, the group-
ing of muscles activated together differed from that in controls
(see, for instance, “atypical” co-activation of Gmed, BF and
MG in the A02 subject or TA, BF and Gmed in the A10 sub-
ject). Overall, muscle activation profile variability was higher for
amputee subjects than for control subjects (Huang and Ferris,
2012). Nevertheless, it is interesting to note that muscle recruit-
ment signals in amputees tended to be locked to particular phases
of the gait cycle (Figure 4).

LOCOMOTOR PATTERNS IN CENTRAL LESIONS
Contrary to impairments in the peripheral sensory feedback or
neuromuscular apparatus, nervous system lesions may essentially
affect central controllers and thus provide some insights into
the spatiotemporal organization of neural circuitry. In partic-
ular, if muscle modules are indeed mechanisms by which task
level biomechanical goals are implemented, one would expect that
impairments to the neural control of such modules would directly
result in impaired biomechanical outputs (Cheung et al., 2009;
Ivanenko et al., 2009; Clark et al., 2010). In addition, lesion at
different levels of the neuraxis could differentially affect locomo-
tor control. Adaptation of gait after cortical, subcortical or spinal
cord damage might thus represent the experimental field in which
one might test such hypotheses and the therapeutic relevance of
different interventions.

STROKE PATIENTS
Post-stroke locomotor impairments are often associated with
abnormal spatiotemporal patterns of muscle coordination
(Knutsson and Richards, 1979; De Quervain et al., 1996; Mulroy
et al., 2003; Den Otter et al., 2007). Furthermore, impaired loco-
motor coordination in post-stroke may be accompanied by fewer
modules (Clark et al., 2010; Safavynia et al., 2011), though in
a recent study Gizzi et al. (2011) have argued that impulses of
activation rather than muscle synergies are preserved in the loco-
motion of subacute stroke patients (Figure 5). The discrepancies
could be accounted for by a different set of recorded muscles
or different populations of patients. The authors of both stud-
ies hypothesized that identification of motor modules may lead
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FIGURE 4 | Ensemble-averaged EMG activity of leg muscles

during walking at different speeds in the control group

(upper panels) and seven amputee subjects. Adapted from

Huang and Ferris (2012) with permission of the authors. Vertical
lines show average toe-off events for the fastest and slowest
walking speeds.

to new insight into how nervous system injury may alter the
organization of motor modules and their biomechanical outputs.
Furthermore, entraining appropriate motor modules can be of a
major importance for neurorehabilitation of gait in these patients
since many of them develop an abnormal stereotype of movement
during walking, which is difficult to correct.

A similar conclusion has been reached in recent studies on
the upper limb control (Cheung et al., 2009, 2012). All patients
studied suffered from a mostly unilateral cortical and subcortical
lesion resulting from either an ischemic or a hemorrhagic stroke.
The robustness of muscle synergies observed in that study sup-
ports the notion that descending cortical signals represent neural
drives that select, activate, and flexibly combine muscle syner-
gies specified by networks in the spinal cord and/or brainstem
and suggest an approach to stroke rehabilitation by focusing on
those synergies with altered activations after stroke. Nevertheless,
despite higher variability in muscle activation patterns, all these
studies suggest a modular organization of muscle coordina-
tion underlying motor control in both healthy and post-stroke
subjects.

In fact, one of the effective approaches to gait rehabilitation
after stroke consists in using step synchronized FES of leg mus-
cles (Yan et al., 2005; Tong et al., 2006; Ferrante et al., 2008).
FES has been shown to be an effective tool for muscle strength
augmentation, increase in the range of motion in joints and
improvements in walking in neurological patients (Popovic et al.,
2009). FES is delivered in reference to the timing of natural muscle
excitation during movement and it provides additional sensory

reinforcement which ultimately improves learning. As a result,
the locomotor centers or networks are excited or released from
inhibition in phase with their expected activity and thus may be
accessible for correction or stimulating effects (Yan et al., 2005;
Tong et al., 2006; Popovic et al., 2009; Solopova et al., 2011). Thus,
this approach takes advantage of the spatiotemporal architecture
of the locomotor program and increases the patient’s functional
abilities and the effectiveness of rehabilitation.

SPINAL CORD INJURY
Flexibility and adaptability of locomotor patterns are evident
from monitoring and analyzing the spatiotemporal spinal seg-
mental output after spinal cord injury. For instance, in motor
incomplete paraplegics who recovered independent control of
their limbs, an additional activation burst is present in the lum-
bosacral enlargement at full loading (Figures 6A,C). The presence
of this burst is related to abnormal activation of the quadri-
ceps muscle during this time. Patients can be trained to step
with body weight support unassisted, but they use activity pat-
terns in individual muscles that were often different from healthy
individuals.

A number of clinical trials have suggested the possible benefi-
cial effects of locomotor training in SCI patients (Edgerton and
Roy, 2012). In patients with severe SCI disorders, initial training
is performed while being supported by a harness or with their
body partially unloaded. As well, assistance of leg movements
by the therapist (or robotics) may be required. These patients
frequently show EMG patterns different from those of healthy
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FIGURE 5 | Surface electromyogram (means and SD), motor modules (bottom, left), and activation signals (bottom, right) for a representative

healthy control subject (A) and for the unaffected (B) and affected side of a stroke patient. (C) Adapted from Gizzi et al. (2011).

individuals suggesting that human spinal cord can interpret
differently loading- or velocity-dependent sensory input during
stepping (Beres-Jones and Harkema, 2004). One method used
to study such variability involves reconstructing the total output
pattern of motoneuron activity of the lumbosacral enlargement
of the spinal cord by mapping the recorded EMG waveforms
onto the known charts of segmental localization (Ivanenko et al.,
2006). Spatiotemporal maps of motoneuron activity are gener-
ally different from those of healthy subjects (Figure 6C; Grasso
et al., 2004). The legs may also show muscle activity which is
not-systematically synchronized with the gait cycle on the most
affected side (Figure 6B; marked in red). Although training of
stepping in patients with body weight support can be facilitated
in a laboratory setting, often new coordinative strategies appear.
Training can be utilized in order for patients to relearn foot kine-
matics of healthy individuals, but the muscle activation patterns
used to generate these kinematics differ from that of a healthy
group (Pepin et al., 2003; Grasso et al., 2004). While most incom-
plete paraplegics can recover independent control of leg muscles
sufficient to propel the limbs in swing and to support body weight
in stance, complete paraplegics, were unable to and they typi-
cally used their arms and body to assist the leg movements. SCI
patients largely relied on proximal and axial muscles to lift the
foot and to project the limb forward.

It is though that spinal lesions may trigger plasticity including
modified synaptic strengths, sprouting and anatomical develop-
ment of new circuits as well as plasticity of unlesioned descending
pathways, including both subcortical and cortical motor areas.
Stepping may also depend more heavily on cortical (and volun-
tary) control after severe spinal lesions (Van den Brand et al.,

2012) than it does in healthy subjects, where locomotion may
be more automatic. The spinal cord itself does also contribute
to the proposed adaptation mechanisms. Indeed, experiments on
both animals and SCI patients suggest that the spinal cord is
capable of adaptive locomotor plasticity with training after spinal
lesion (Hodgson et al., 1994; Belanger et al., 1996; Heng and de
Leon, 2007) or after peripheral motor nerve lesions (Bouyer et al.,
2001).

Modular pattern generator elements (or burst synergies), nev-
ertheless, tend to be conserved after spinal cord injury (Fox
et al., 2013; Giszter and Hart, 2013). Our previous work in SCI
patients (Ivanenko et al., 2003) has shown a similar set of tem-
poral components from EMG activity (Figure 6D). In addition,
muscles both rostral and caudal to the lesions could be strongly
weighted on a given component. However, some patients do
exhibit a smaller number of basic components during walking
(Ivanenko et al., 2003; Hayes et al., 2011; Fox et al., 2013) although
these results may be dependent on the number and selection
of muscles recorded during stepping. Nevertheless, similar acti-
vation timings in SCI patients (Figure 6D) may be ultimately
related to the global kinematic goal (a motor equivalent solution;
Grasso et al., 2004) or the necessity to apply forces at particular
phases of the gait cycle (Lacquaniti et al., 2012). These data high-
light the importance of understanding the modular structure of
motor behaviors to best provide principled therapies after central
nervous system lesions (Giszter and Hart, 2013).

CONCLUDING REMARKS
Taken together, the data support the idea of plasticity and dis-
tributed networks for controlling human locomotion (Scivoletto
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FIGURE 6 | Motor patterns in SCI patients. (A) An example of
weight-bearing stepping in a clinically complete (at 0.22 m/s, left panel)
and incomplete (at 0.89 m/s, right panel) SCI individuals [modified from
Beres-Jones and Harkema (2004) and Maegele et al. (2002) with
permission of the authors]. The stance phase in the right panel is
evidenced by the elevation in the ground reaction force trace and
indicated by the shaded region. MH, medial hamstring; load, vertical
ground reaction force. (B) Ensemble-averaged (across 5 strides) EMG
patterns in the SCI-C patient during walking at a natural speed
(∼3.1 km/h). Note variable and weaker muscle activity on the most
affected side (marked in red). (C) Examples of spatiotemporal patterns of
α-motorneuron activity in the lumbosacral enlargement in controls and

three SCI-C patients during walking on a treadmill at 1 km/h. Output
pattern for each segment was reconstructed by mapping the recorded
EMG waveforms (normalized method, see Ivanenko et al., 2006) onto the
known charts of segmental localization. White vertical lines denote
stance-to-swing transition time. (D) Time course of the temporal
components in controls and patients for stepping at 2 km/h, 0–75% body
weight support. The components extracted by factor analysis from
individual subjects. Right panel illustrates weighting coefficients of the
temporal components in individual activity patterns of 12 muscles for all
groups of subjects in a color coded scale. Adapted from Ivanenko et al.
(2003). Note similar basic EMG components in controls and patients as
opposed to quite different EMG patterns and weighting coefficients.

et al., 2007). Tens of muscles participate in the control of limb
and body movements during locomotion, and redundancy in the
neuromuscular system is an essential element of gait adaptabil-
ity (Winter, 1989; Cai et al., 2006; Noble and Prentice, 2006;
Ivanenko et al., 2009; Molinari, 2009; Duysens et al., 2013).
Indeed, experimental studies performed on individuals with well-
identified pathologies have demonstrated distinct adaptations.
Due to muscle redundancy, various neuromotor strategies may
exist to compensate for decreased muscle strength and joint stiff-
ness (Grasso et al., 2004; Goldberg and Neptune, 2007; Ivanenko
et al., 2009; Gordon et al., 2013).

A modular motor organization may be needed to solve the
degrees of freedom problem in biological motor control (Giszter
et al., 2010). Nevertheless, there are still many open ques-
tions related to the choice of appropriate modules, their task

dependence, influence of sensory input and adaptation to the
malfunctioning of neural networks in the case of different gait
pathologies. While many studies succeeded in a decomposition
of motor patterns into a few “motor modules,” nevertheless, the
way in which the central nervous system combines them together,
how and where the weighting coefficients are encoded are not
understood. Often it is difficult to distinguish what primar-
ily comes from pathology and what comes from compensatory
mechanisms. We suggest that many adaptive features in various
neurological disorders are likely compensatory, including modi-
fied EMG patterns during walking. In view of task dependence of
muscle synergies, it would be interesting also to compare them
in different behaviors and examine whether plasticity in muscle
patterns originates from sharing these common modules or by
creating new muscle synergies.
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An impulsive (burst-like) controller made of a low-
dimensional set of time-delayed excitation pulses has been also
thoroughly considered in a simulation study from the biome-
chanical viewpoint (Sartori et al., 2013). In particular, simulated
gait motions based on a few modular activation patterns were
successfully produced (see also Neptune et al., 2009; Allen and
Neptune, 2012; Allen et al., 2013). Once calibrated, the mus-
culoskeletal model could work in open-loop, approximating
joint moments over multiple degrees of freedom using only
the recorded kinematics and the internal impulsive controller.
The accuracy of estimation of the joint torques was compara-
ble when using the low-dimensional activation signals (Sartori
et al., 2013). This approach has substantial implications for the
design of human machine interfaces for prosthetic and orthotic
devices.

Uncovering a common underlying neural framework for the
modular control of human locomotion and its development rep-
resent an interesting avenue for the future work. Motor primitives
may reflect in a way how the nervous system develops, by build-
ing up or modifying modules as it matures. Some functional
units are likely inborn, others may develop later or be dependent
on individual body size/proportions or experience (Dominici
et al., 2011). Such investigations may have important implications
related to the construction of gait rehabilitation technology.
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