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Zelik KE, La Scaleia V, Ivanenko YP, Lacquaniti F. Can
modular strategies simplify neural control of multidirectional human
locomotion? J Neurophysiol 111: 1686–1702, 2014. First published
January 15, 2014; doi:10.1152/jn.00776.2013.—Each human lower
limb contains over 50 muscles that are coordinated during locomotion.
It has been hypothesized that the nervous system simplifies muscle
control through modularity, using neural patterns to activate muscles
in groups called synergies. Here we investigate how simple modular
controllers based on invariant neural primitives (synergies or patterns)
might generate muscle activity observed during multidirectional lo-
comotion. We extracted neural primitives from unilateral electromyo-
graphic recordings of 25 lower limb muscles during five locomotor
tasks: walking forward, backward, leftward and rightward, and step-
ping in place. A subset of subjects also performed five variations of
forward (unidirectional) walking: self-selected cadence, fast cadence,
slow cadence, tiptoe, and uphill (20% incline). We assessed the results
in the context of dimensionality reduction, defined here as the number
of neural signals needing to be controlled. For an individual task, we
found that modular architectures could theoretically reduce dimen-
sionality compared with independent muscle control, but we also
found that modular strategies relying on neural primitives shared
across different tasks were limited in their ability to account for
muscle activations during multi- and unidirectional locomotion. The
utility of shared primitives may thus depend on whether they can be
adapted for specific task demands, for instance, by means of sensory
feedback or by being embedded within a more complex sensorimotor
controller. Our findings indicate the need for more sophisticated
formulations of modular control or alternative motor control hypoth-
eses in order to understand muscle coordination during locomotion.

neural control; modularity; human locomotion; EMG; muscle syner-
gies

CONTROLLING EACH of the numerous muscles of the lower limb
individually seems to pose a computational challenge for the
sensorimotor control system (d’Avella et al. 2003; Giszter et al.
2010), which must generate different muscle activation profiles
depending on the type and direction of locomotion. It has been
proposed that a modular strategy might simplify intermuscular
coordination by enabling the nervous system to control mus-
cles in groups (called synergies), which could reduce dimen-
sionality, that is, reduce the number of neural activation out-
puts controlled (d’Avella et al. 2003; Ting and Macpherson
2005; Tresch et al. 1999). This strategy might provide a
parsimonious neural control solution that still maintains ade-
quate flexibility to generate task-specific muscle activity. The-
oretically, the nervous system could implement such a control

strategy in a multitude of ways, but there is no consensus on
the basic building blocks or the general organization of neural
modularity (Alessandro et al. 2013; Lacquaniti et al. 2012;
Tresch and Jarc 2009). Thus we sought to explore how various
modular architectures, if used by the nervous system, might
generate muscle activity profiles for different locomotor tasks.

Neural modularity is characterized by neural primitives (also
called modules) that can be flexibly recombined to generate
muscle activations for disparate motor behaviors. While this
concept of modularity has been formulated in various ways
(d’Avella et al. 2003; Delis et al. 2014; Drew et al. 2008;
Ivanenko et al. 2004; Ting and Macpherson 2005), the simplest
architectures one might think of would involve invariant neural
primitives. For instance, motor behaviors could be performed
by activating a set of invariant muscle synergies with patterns
(waveforms) of different shape and timing. Alternatively, a
controller might reuse fixed temporal patterns but modulate
which groups of muscle synergies they activate and in what
proportion. Neural primitives might also be more complex, and
various alternatives have been proposed, for example, relying
on spatiotemporally varying modules. These possibilities con-
stitute a portion of the candidate primitives operating at the
level of individual muscles, but neural modularity may also (or
instead) be realized at the level of motoneurons, interneurons,
spinal segments, individual joints, or cortical/subcortical cir-
cuitry (Lacquaniti et al. 2013; Tresch and Jarc 2009).

Modularity could also be organized in diverse ways, affect-
ing the degree to which neural primitives are shared between
tasks (d’Avella and Bizzi 2005; Cheung et al. 2005; Chhabra
and Jacobs 2006; Flanders 2011; Lewicki and Sejnowski 2000;
Tresch and Jarc 2009). Organizational structures might be
based principally on shared primitives, task-specific primitives,
or a combination of each. Also, neural primitives might be
adapted by task-specific sensory feedback, or be part of an
overcomplete representation of movement, in which a vast
array of modules might be neurally encoded and then selec-
tively activated. Furthermore, perspectives vary greatly as to
how much of movement might be controlled by modular versus
nonmodular processes.

The breadth of proposed modular architectures (i.e., neural
building blocks and how they are organized) can hardly be
tested in any single study. Nevertheless, a rigorous and sys-
tematic investigation of a subset of these modular architectures
may yield useful neurophysiological and methodological in-
sights. Here we investigate how simple modular controllers
might generate muscle activations during multidirectional lo-
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comotion and interpret the results in the context of dimension-
ality reduction.

METHODS

We recorded muscle activation profiles from different locomotor
tasks. We extracted modules (synergies or patterns) from unilateral
electromyography (EMG) recordings, using standard nonnegative
matrix factorization (NNMF) methods, first assuming task-specific
libraries of modules and next assuming a single, shared library. For
each control architecture we then computed the minimum number of
modules needed to reconstruct the recorded EMGs during perfor-
mance of a task and the total number of modules across all tested
tasks. The number of modules needed for a single task was then
compared with the number of recorded muscles activated during that
task, in order to investigate the dimensionality of control compared
with controlling each muscle independently. To keep this study
focused and computationally tractable, we limited the scope to invari-
ant primitives (synergies or patterns) organized in simple architec-
tures.

Experimental Protocol

We recorded surface EMG and foot motion for eight participants (4
men, 4 women; 25.6 � 2.6 yr old, 1.78 � 0.11 m, 76 � 16 kg) during
different locomotor tasks. In the main experiment (performed by all 8
participants), these tasks were walking forward (4 km/h), walking
backward (3.5 � 0.5 km/h), walking sideways to the left and to the
right (3 km/h), and stepping in place. Sideways walking was per-
formed in a manner such that the trailing limb never crossed ahead of
the leading limb. Some participants were unable to walk at the desired
backward speed of 4 km/h and therefore were tested at 3 km/h. In half
the subjects, the stepping in place cadence was fixed to match the step
frequency of forward walking (via a metronome), but this frequency
matching was observed to have little effect on the results, since EMGs
for all conditions were eventually normalized to a single gait cycle.
These multidirectional tasks were chosen to represent biomechani-
cally distinct movements that might share common neural control
pathways (Lamb and Yang 2000) and that could be performed at
steady state with sufficiently low intensity not to dislodge surface
electrodes. We also collected additional data on unidirectional walk-
ing tasks to assess whether our results were specific to multidirec-
tional gait or potentially generalizable to other forms of locomotion.
A subset of subjects (n � 4) performed another experiment involving
five variations of forward walking at 4 km/h: self-selected cadence,
fast step cadence (as enforced by a metronome), slow step cadence,
tiptoe, and incline (20% grade).

Prior to data collection the subjects were trained on each task,
allowing them time to acclimate to the various walking conditions on
the treadmill. All tasks were performed barefoot on a standard
treadmill for 40 s, from which we analyzed the middle 30 s. The
protocol was approved by the Ethics Committee of the Santa Lucia
Institute, and all subjects gave informed consent prior to participation.

EMG Recordings

Twenty five muscles were recorded from the right side of each
subject. These included 3 muscles from the lower back and buttocks
(erector spinae at L2 level, gluteus maximus, gluteus medius), 11 from
the thigh (vastus medialis, vastus lateralis, rectus femoris, biceps
femoris long head and short head, semitendinosus, sartorius, iliopsoas,
adductor longus, adductor magnus, tensor fasciae latae), 6 from the
shank (medial and lateral gastrocnemius, soleus, tibialis anterior,
peroneus longus and brevis), and 5 from the foot (extensor hallucis
brevis, extensor digitorum brevis, flexor digitorum brevis, extensor
hallucis longus, flexor digitorum/hallucis longus). The flexor digito-

rum longus and flexor hallucis longus activations were indistinguish-
able in our surface EMG recordings and thus are reported together.
Electrodes were placed based on recommendations from SENIAM
(seniam.org), the European project on surface EMG. For muscles not
included in SENIAM, the electrodes were placed by palpating mus-
cles to locate the muscle belly and orienting the electrodes along the
main direction of the fibers (Kendall 2005). The muscles recorded
were limited to those that could be reliably located by palpation and
were superficial enough to be monitored with surface EMG. All
EMGs were recorded at 4,000 Hz with the Delsys Trigno Wireless
System (Boston, MA) except the flexor digitorum brevis, which was
recorded at 1,000 Hz with a synchronized Delsys Bagnoli System.
This was necessary because of the recording site of flexor digitorum
brevis (on the bottom of the foot), which required a lower-profile
electrode (i.e., sensor thickness of 6 vs. 15 mm). Because of the large
number of muscles recorded and the challenge of recording from
various foot muscles, some electrodes became partially or fully
detached during testing, leading to unusable EMG signals. These
EMGs were removed on a subject-specific basis. On average we
analyzed 23.6 � 1.4 EMGs from each subject.

Motion Capture

Heel motion was tracked to identify gait cycles for each task. The
position of the right heel (calcaneus) was recorded at 100 Hz with a
nine-camera Vicon-612 motion capture system (Vicon, Oxford, UK),
which was synchronized with the EMG acquisition. The motion of the
heel was low-pass filtered at 12 Hz (zero-lag 3rd-order Butterworth)
and resampled at the EMG sampling frequency. For all walking tasks,
the beginning of the gait cycle was defined as the maximum forward
excursion of the right heel, where forward refers to the direction of the
treadmill. This generally occurred slightly before foot strike (typically
�5% of gait cycle). While foot strike is more commonly used in the
literature to delineate the beginning of a gait cycle, we found forward
excursion to be more robust across all the walking tasks. Ultimately,
the event that signifies the start of the gait cycle is a subjective choice,
the most important criterion being the repeatability that allows one to
average across multiple strides. For stepping in place, we defined the
start of the gait cycle as the time at which the vertical displacement of
the right heel reached its minimum (an estimate of foot strike). These
differences in definition of the start of the gait cycle introduced minor
time shifts between tasks. Since all muscle EMGs for a single task
shift together in time, this had no impact on extracting shared muscle
synergies, which were assumed to be time invariant. The differences
were, however, considered when extracting shared patterns, as de-
tailed in Factorization below.

EMG Processing

EMG signals were processed with conventional filtering and rec-
tifying methods. Flexor digitorum brevis EMGs were resampled to
match the other EMG signals. Then the mean signals were removed
from all raw EMGs. Next, filtering was performed: we applied a
30-Hz high-pass filter, followed by a 50-Hz notch filter (to remove
power-line artifacts), then rectified the signal, and finally applied a
10-Hz low-pass filter (all filters, zero-lag 3rd-order Butterworth). A
few subjects exhibited artifacts in the foot and peroneus muscles,
generally linked to foot strike and toe-off events. To remove these
artifacts, high-pass filtering of these muscles was performed with a
150-Hz cutoff frequency (rather than 30 Hz). Informal tests confirmed
that this artifact-removal filter had minimal effect on the shape of the
muscle activation pattern. For all EMG envelopes, small negative
values due to filtering overshoot were zeroed, a necessity for the
subsequent NNMF analysis. We divided EMGs into gait cycles based
on foot kinematics, then interpolated each stride to 1,000 time points,
and finally averaged across gait cycles (individually for each subject
and task). This yielded an n � m EMG matrix for each task, where n
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equaled 1,000 time points and m equaled the number of muscles
analyzed. These processed and stride-averaged EMG envelopes (in
�V) were then normalized and analyzed for each subject individually,
as detailed below.

EMG Normalization

We normalized EMGs by the maximum activation magnitude.
Normalization was performed to account for the differences in mi-
crovolt magnitudes recorded between muscles. Each muscle EMG
was normalized by its maximum activation magnitude, which we
defined as the muscle’s maximum EMG signal from either dynamic or
quasi-static trials, detailed below. Thus all EMGs are reported on a
scale from 0 to 1, where 0 indicates that a muscle is inactive and 1
represents maximum activity.

Additional quasi-static trials were performed to establish the max-
imum voluntary EMG magnitude for each muscle. Before the exper-
imental tasks, subjects performed a set of quasi-static maneuvers
against manual resistance. These included flexing/extending/abduct-
ing the toes, plantarflexing/dorsiflexing/inverting/everting the ankle,
flexing/extending the knee, flexing/extending/abducting/adducting the
hip, and flexing the back. Each exercise was performed for 5 s, during
which subjects were instructed to perform maximal contractions. The
EMGs were filtered as described previously. Across all quasi-static
trials, we looked at a sliding 1-s window and computed the average
EMG during each. The highest average EMG found during any 1-s
window was defined as the maximum quasi-static activation magni-
tude. Similarly, maximum dynamic activation magnitude was defined
for each muscle as the peak stride-averaged EMG across all five
multidirectional tasks. The normalization constant for each muscle
was then defined as the larger of the quasi-static and dynamic
activation magnitudes.

During analysis, we also tested other types of EMG normalization,
such as using only maximum dynamic activation magnitudes or
scaling normalized EMG by muscle physiological cross-sectional
area. In general, qualitative findings appeared insensitive to the exact
procedure used for EMG normalization.

Factorization

We extracted neural control modules (synergies and patterns) from
the stride-averaged EMG signals with NNMF (Lee and Seung 1999)
similar to prior literature (Fig. 1A; Ivanenko et al. 2005; Tresch et al.
1999). Briefly, this is a signal decomposition method that tries to best

describe a matrix of muscle EMGs by a linear combination of muscle
synergies (Wi) and temporal activation patterns (Ci).

EMG � �i
k CiWi � error, k � m (1)

A muscle synergy (also called simply “synergy”) represents a set of
weightings for muscles that are activated together. Specifically, the
time-invariant vector Wi indicates the proportional contribution of
each individual muscle to the ith synergy. Thus the muscle weightings
in each synergy are assumed to scale together linearly. The activation
pattern Ci is a waveform (defined over a gait cycle) representing the
neuromotor signal that modulates the excitation of its associated
synergy. When the number of synergies and patterns (k) is sufficient
to reconstruct the EMGs, but still substantially smaller than the
number of muscles commanded (m), then this modular decomposition
reveals a potential strategy for reducing the dimensionality of neural
control. We performed four variants of this general factorization
method to study simple modular architectures.

Variant I. Assuming task-dependent architectures (Fig. 1B), we
extracted patterns and synergies from each task separately. The
modules extracted from a task, which we call the task-dependent or
task-specific library, represent the minimum set of fixed modules that
is needed to adequately reconstruct EMGs during that task. The
criteria used to define adequate EMG reconstruction, and thus to select
the minimum number of modules, are detailed in the next section
below. It was not possible to differentiate between task-dependent
synergy and task-dependent pattern architectures since mathemati-
cally these represent identical solutions, although they may reflect
modularity at different layers of the neural circuitry.

Variant II. For task-independent architectures (Fig. 1C), we ex-
tracted shared patterns and then shared synergies from multiple tasks.
We performed this analysis in a cumulative fashion. First, EMGs from
forward walking were factorized alone. This was identical to the
task-dependent factorization. Then forward and backward walking
were factorized together. Then forward, backward, and sideways
walking (to the left) were factorized, and so forth, until all five tasks
were ultimately factorized together. We defined the task-independent
(shared) library of fixed patterns and the task-independent library of
fixed synergies as those extracted from all five tasks together. To
extract the library of shared synergies, the EMGs for each task were
concatenated along the time dimension of the matrix, yielding a
matrix with (1,000 � number of tasks) rows and (number of muscles)
columns, where 1,000 indicates the number of time points per gait
cycle. To extract the library of shared temporal patterns we concate-
nated EMGs along the muscle dimension of the matrix, yielding a

synergies

neural patterns

other 
muscles

controlled 
muscles

M1, M2, M3, M4, M5, M6

M1, M2, M3, M4

Task-Independent Library

M1, M3, M4, M5

M1, M2, M6M2, M3, M6

M1, M3, M4

FW

RSLS

BW

SIP

Task-Dependent Libraries

MF1, MF2, MF3, MF4

MB1, MB2, MB3, MB4

ML1, ML2, ML3 MR1, MR2, MR3

MS1, MS2, MS3

M = module (synergy or pattern)

B CA

Fig. 1. Experimental design. A: dimensionality of modular control was evaluated by computing the modular control ratio (MCR), the number of neural primitives
(patterns or synergies, also called modules) divided by the number of muscles activated (black circles) during a task. The example shown here of 3 primitives
controlling 10 muscles yields an MCR � 0.3, in other words, a 70% reduction in dimensionality compared with controlling each muscle individually. For clarity,
the central nervous system is depicted here by an image of the brain, although the primitives themselves may exist at either the spinal or the supraspinal level
and may receive input from both feedforward and feedback pathways. We extracted primitives from multidirectional locomotion assuming 2 simplified models
of modularity, task-dependent (B) and task-independent (C) architectures, where the modular primitives are designated M. The number of modules shown here
for each task is arbitrary, and thus the examples in B and C are only intended for illustrative purposes. Experimental conditions studied were walking forward
(FW), backward (BW), and sideways to the left (LS) and to the right (RS) and stepping in place (SIP).
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matrix with 1,000 rows and (number of muscles � number of tasks)
columns. NNMF was then performed on these combined EMG ma-
trices. Next, we found the subset of modules in each shared library
that was needed to reconstruct the EMGs for each individual task. For
example, a shared library might have 10 modules, but only 8 were
needed to reconstruct forward walking EMGs. We calculated this
subset of shared modules with a greedy search algorithm. Put simply,
we systematically eliminated each shared module and then recom-
puted the estimated EMGs until we identified the smallest subset of
modules that could still satisfy the EMG reconstruction criterion for a
given task.

Variant III. We also tested a special instance of the task-indepen-
dent architecture. We sought to answer the question: can the fixed
synergies or patterns extracted from forward walking be used to
reconstruct EMGs from the other modes of locomotion? If so, the
modules contained in normal walking could be recombined to coor-
dinate other locomotor tasks, an idea that has been suggested to
simplify responses to perturbations during gait (Chvatal and Ting
2012). We therefore extracted muscle synergies (WFW) from forward
walking EMGs and then found the nonnegative least-squares solutions
that mapped WFW onto the EMG matrices from each other task. Next,
we performed a similar extraction and mapping procedure using the
neural patterns (CFW) found during forward gait. We also allowed the
extracted temporal patterns to shift together up to �10% of the stride
to account for small differences in timing between tasks (Ivanenko et
al. 2004), which might be due to how gait cycles were defined or
differences in relative stance duration. Next, we estimated EMG
waveforms assuming fixed WFW and then fixed CFW, and we com-
puted their correlations with the experimental data.

Variant IV. Finally, we explored task-independent architectures
during variations of forward walking to determine whether modules
might be shared among unidirectional locomotor tasks. A subset of
participants (n � 4) performed five variations of forward walking at
4 km/h: self-selected, fast step cadence (as enforced by a metronome),
slow step cadence, tiptoe, and incline (20% grade). EMG processing
and factorization were performed in identical fashion to the prior
analyses (see variant II above), and we computed the minimum
number of shared modules needed to reconstruct the EMGs.

Evaluation Criteria

We established a criterion to determine the minimum number of
modules needed for each architecture to adequately reconstruct
EMGs. Modular architectures were assessed by correlating their
reconstructed estimates of EMG with the processed experimental
recordings. The coefficient of determination (R2) was computed as the
square of the centered Pearson correlation coefficient. To quantify the
minimum number of synergies or patterns needed to adequately
reconstruct the EMG data, we established an Individual-Muscle re-
construction criterion somewhat similar to the “local” criterion used in
prior literature (Chvatal and Ting 2012; Roh et al. 2012). The
reconstructed EMG waveform for each individual muscle was corre-
lated with the corresponding experimental EMG. The Individual-
Muscle criterion required that 90% of the Active muscle EMGs be
reconstructed with R2 � 0.8, where Active muscles were defined as
those whose peak EMG during a task surpassed 0.2 (20% of the
maximum activation magnitude). This evaluation criterion was an
attempt to ensure that most individual muscle reconstructions were
reasonable reflections of the empirical EMG recordings, while con-
sidering the biological and experimental noise and variability. The
Active muscle distinction accounts for the fact that measurement
variability may obscure EMGs at low activation levels, and thus it
may be impractical to expect high reconstruction fidelity of these
signals.

For comparison, we also included some results based on a
Grouped-Muscle criterion, which has commonly been used in prior
literature (Clark et al. 2010; Frere and Hug 2012; Ivanenko et al.

2005; Ting and Macpherson 2005). Grouped-Muscle evaluation in-
volves correlating the entire matrix of experimental EMGs with the
entire matrix of reconstructed EMGs, as opposed to comparing muscle
waveforms individually. Grouped-Muscle or “global” criteria gener-
ally require the R2 (centered Pearson correlation coefficient) or the
variance accounted for (VAF, uncentered Pearson coefficient) of the
overall EMG matrix reconstruction to be greater than some threshold
(e.g., VAF � 90% or R2 � 0.9). For comparison purposes in this
study we used the R2 � 0.9 Grouped-Muscle criterion. Other variants
of Grouped-Muscle criteria, such as adding modules until the increase
in VAF is �3–5% (Clark et al. 2010; Ivanenko et al. 2005), yield
similar results. While such Grouped-Muscle criteria ensure that the
muscles with the highest amplitude are reasonably reconstructed, we
found that often many other muscle EMGs were poorly estimated. For
instance, when using a Grouped-Muscle criterion to select the number
of task-specific modules for forward walking we found that on
average 40% of the individual EMGs were poorly reconstructed (R2 �
0.8), which would likely cause substantial degradation at the func-
tional level of task performance (Alessandro et al. 2013; de Rugy et
al. 2013). Therefore, we concluded that Grouped-Muscle criteria tend
to underestimate the number of modules needed to reconstruct muscle
activity during locomotion. Furthermore, we recognized that even
Individual-Muscle evaluations could underestimate the number of
neural modules needed if the “good enough” threshold were too low
to ensure that individual EMGs were reasonably reconstructed, an
issue addressed in Assumptions and Limitations below and in DISCUS-
SION.

Modular Control Ratio

For each task we defined the modular control ratio (MCR) as the
minimum number of neural control modules needed divided by the
number of muscles being controlled (Fig. 1A). During performance of
a task there is a one-to-one correspondence between patterns and
synergies. Thus MCR can also be thought of as the minimum number
of patterns or synergies divided by the number of muscles being
controlled. The lower the ratio, the greater the reduction in dimen-
sionality compared with controlling each muscle individually. An
MCR equal to 1 corresponds to the dimensionality of independently
controlled muscles (i.e., no simplification of control). The benefit of
using MCR is that by comparing the dimensionality of neural control
directly to the dimensionality of muscle activations we can assess
each modular architecture independently.

We estimated the numerator of the MCR as the minimum number
of modules needed to reconstruct EMGs from each task. We estimated
the denominator, the number of muscles being controlled, as the
number of Active muscles per task, again defined as those muscles
with peak EMG activation above 20% of maximum.

MCR �
no. of modules

no. of muscles controlled

�
no. of modules needed to reconstruct Active muscle EMGs

no. of Active muscles

(2)

The benefit of this formulation is that it evaluates the neural control-
ler’s ability to generate the largest, and presumably most important,
muscle activations. But the drawback is the need to set an arbitrary
threshold to define which muscles are “Active.”

Therefore, we also computed the MCR using an alternate, comple-
mentary estimation that does not require a distinction between “Ac-
tive” and “Inactive” muscles. This alternate estimate inverts the
approach used to identify modules. Rather than asking how many
modules are needed to reconstruct the measured EMG signals, we
formulate the question: given N number of modules, how many
muscle EMGs can be reconstructed? We refer to this alternate defi-
nition as MCRA. For a task-dependent architecture, factorization was
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performed on each task using N modules, where N was varied from 3
to 9. Then the MCRA was computed for each value over this range. In
this case, the number of modules was assumed to be N, and then the
number of muscles controlled (modularly) was estimated as the
number of EMGs that were adequately reconstructed (R2 � 0.8) by
those N modules. Similarly, for task-independent architectures, fac-
torization of the combined set of EMGs from all tasks was performed
with 3 � N � 19 factors, and MCRAs were computed. Here N
indicates the total size of the shared library (i.e., the number of
modules needed to reconstruct all tasks). Therefore, the minimum
number of control modules needed for each individual task was less
than or equal to N. This number of modules per task was computed
with a greedy search algorithm, similar to that described above. We
systematically removed shared modules that did not increase the
number of well-reconstructed EMGs, yielding the minimum subset
of modules necessary for a given task. We used this number of
modules as the numerator. The number of muscles controlled by
the task-independent architecture (i.e., the denominator) was again
estimated as the number of EMGs that were adequately recon-
structed (R2 � 0.8).

MCRA �
no. of modules

no. of muscle EMGs reconstructed
(3)

A benefit of computing MCRA is that it does not require a control
strategy to reconstruct any preset percentage of muscle EMGs. How-
ever, as a consequence, some of the muscle activity that is recon-
structed may be small in magnitude, and potentially less functionally
relevant. Nevertheless, despite the limitations, the use of this metric in
conjunction with the previous estimate of MCR provides some insight
into dimensionality reduction, especially in instances when both
metrics yield similar results.

To supplement the interpretation of MCRA, which is defined for all
values of N, we also computed the percentage of muscle EMGs that
were well-reconstructed. Therefore, if MCRA was low for a given N,
but only a small fraction of the EMGs could be reconstructed, then
this would be clearly evident. To assess the sensitivity of this measure
to the subset of muscles analyzed we also performed these computa-
tions on 1) the 20 nonfoot muscles and 2) a set of 12 muscles
commonly recorded in the literature on modular control (gluteus
maximus and medius, tensor fasciae latae, vastus medialis and late-
ralis, rectus femoris, biceps femoris, semitendinosus, tibialis anterior,
medial and lateral gastrocnemius, and soleus).

Statistics

Statistical comparisons between the number of fixed synergies and
the number of fixed patterns were made by paired t-tests with
significance level 0.05 and Bonferroni-Holm correction for multiple
comparisons. Adjusted P values are reported. All EMG processing
and factorizations were performed on a subject-specific basis. Sum-
mary measures in Figs. 2, 4, 5, 6, 7, and 9 were reported as
intersubject means and standard deviations. Statistics were then com-
puted on these summary measures.

Assumptions and Limitations

There are various limitations to inferring neural control strate-
gies from EMG signals. While similar factorization methods have
been used in the majority of studies on modular control (d’Avella
and Bizzi 2005; Chvatal and Ting 2012; Ivanenko et al. 2004;
Overduin et al. 2012; Ting and Macpherson 2005), these only
provide an indirect indication of neural activity and are sensitive to
many physiological and nonphysiological factors (Farina et al.
2004). A key assumption of this methodology is that neural
modularity can be inferred from the common features extracted
from muscle activity during movement, irrespective of their

source. Prior studies that have found low-dimensional representa-
tions of EMG data sets (Ivanenko et al. 2004; Ting and Macpher-
son 2005) suggest that this assumption may be reasonable. None-
theless, factorization analysis is not able to dissociate feedforward
from feedback contributions to EMGs, nor does it explicitly
account for confounds due to muscle dynamics or presuppose
functional significance to the modules extracted. Thus if task-
specific sensory feedback or muscle dynamics substantially affect
muscles independently, then the ability to extract shared modular
building blocks from EMGs would be jeopardized (Steele et al.
2013). Ultimately, more direct measures of neural activation are
needed to reinforce or clarify interpretation of results from these
EMG-based analyses. In addition, the neurophysiological basis of
the control scheme, encompassing how precisely neural outputs are
generated and adjusted, is not addressed by this factorization
approach.

In this study we considered dimensionality, one aspect of
control. Other considerations, such as the flexibility of motor
outputs or how a control strategy affects learning (Jacobs and
Jordan 1993; Mussa-Ivaldi 1999), may provide additional con-
straints on what types of control architectures are feasible or
useful. Furthermore, our approach does not exhaust the issue of
dimensionality. We defined dimensionality in terms of control
modules needed for performance of a single motor task, but the
total number of modules across all tasks (reflecting the overall
parsimony of a strategy) may also be pertinent to control, and is
indeed discussed as a trade-off for some architectures. There may
also be alternative dimensionality metrics that provide complemen-
tary perspectives. For instance, the number of temporal patterns
could be assessed as a ratio of time domain (muscle waveform)
dimensionality, effectively the minimal set of patterns capable of
reconstructing any arbitrary signals of similar bandwidth and
duration. Finally, we defined low dimensionality as beneficial;
however, there may also be drawbacks to such architectures. The
interdependence of muscles in a synergy, for instance, could
actually complicate the performance or learning of certain tasks,
and perhaps even result in certain combinations of muscle activa-
tions being unattainable (McKay and Ting 2008; Tresch and Jarc
2009).

We also recognize the difficult and subjective nature of assessing
“good enough” EMG reconstructions. Whenever the number of mod-
ules (k) is less than the number of muscle EMGs (m), there will always
be a residual error associated with the EMG estimates (Eq. 1). Clearly
there is a trade-off between the reduction in dimensionality (k/m) and
the ability to account for the data (R2, VAF). Therefore, it is not
surprising that more stringent evaluation criteria necessitate more
modules to reconstruct the EMGs. Likewise, it is not surprising that a
lower number of modules can be said to account for muscle EMGs if
the evaluation criterion is more lenient. This reflects the classic
trade-off between type I and type II errors when setting a threshold.
Thus evaluation criteria must be carefully selected and assessed to
avoid experimenter bias and results that are inextricably linked to
specific methodological choices. To address these limitations, we
checked the sensitivity of our methods by varying our Individual-
Muscle reconstruction criterion from R2 � 0.8 to R2 � 0.7 and the
Active muscle threshold from 20% to 10%. We found that within a
reasonable range these parameters had little effect on our qualitative
findings. Nevertheless, the impact of imprecise EMG reconstruction
on functional performance remains unclear because of the highly
nonlinear mapping from muscle activity to movement dynamics. On
one hand, even small errors in muscle activity could result in dramatic
consequences in task performance (Alessandro et al. 2013; de Rugy et
al. 2013). On the other hand, the possibility exists that a fairly crude
approximation of EMG activity may be sufficient to provide basic
functionality (Kargo et al. 2010).
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There are also trade-offs to methodological choices made for
extracting modules. For instance, we chose to extract modules from
stride-averaged EMG data, similar to many previous studies on
modularity (d’Avella et al. 2013; Cappellini et al. 2006; Ivanenko et
al. 2004; Overduin et al. 2008, 2012; Torres-Oviedo et al. 2006). The
benefit is that the averaging process acts as a low-pass filter to remove
stride-specific noise and transient artifacts in EMG. The trade-off is
that potentially relevant stride-to-stride variability in muscle activa-
tions is also reduced (see Table 1). Extracting modules from individ-
ual stride EMGs could overcome this this limitation; however, studies
that have used this approach have also needed to use simplifying
assumptions that affect variance, such as condensing the EMG pat-
terns into down-sampled time bins (Chvatal and Ting 2012; Safavynia
and Ting 2012). Furthermore, the latter approach would require us to
introduce an additional analysis step to condense the extracted mod-
ules from each stride into the single consolidated set of shared
modules used by the neural controller. When we did experiment with
extracting synergies from individual strides we found, as expected,
that they were similar to those extracted from stride-averaged EMG.
Also as predicted, when EMGs were reconstructed for individual
strides the quality of reconstruction was slightly degraded. For in-
stance, when five modules were extracted from forward walking
EMGs, the Grouped-Muscle R2 decreased from 0.94 � 0.02 to 0.87 �
0.04. However, since individual stride EMGs exhibit both physiolog-

ically relevant and irrelevant variability (e.g., due to measurement
noise), it is only possible to speculate about the source and signifi-
cance of this difference.

RESULTS

EMG

EMGs were comparable to prior literature. Average EMG
envelopes (Fig. 2) appeared qualitatively similar to published
recordings of forward walking (Ivanenko et al. 2004; Winter
and Yack 1987), backward walking (Cappellini et al. 2010;
Ivanenko et al. 2008), and stepping in place (Grasso et al.
2004). We are unaware of published EMGs for sideways
walking. Our foot muscle recordings also appear qualitatively
consistent with published data (Courtine et al. 2007; Gray and
Basmajian 1968; Perry 1992; Reeser et al. 1983; Saraswat et al.
2010).

Task-Dependent Architectures

Task-dependent patterns and synergies were qualitatively
similar to those found in prior studies (Fig. 3). However,

Table 1. Variance of normalized EMG signals from entire 30-s muscle recordings and from stride-averaged waveforms used in
factorization analysis

Muscles

FW BW LS RS SIP

All Avg All Avg All Avg All Avg All Avg

Erector spinae 0.033 0.025 0.027 0.015 0.028 0.015 0.047 0.026 0.056 0.011
Iliopsoas 0.005 0.003 0.019 0.012 0.032 0.022 0.011 0.005 0.036 0.015
Gluteus maximus 0.011 0.008 0.006 0.001 0.033 0.021 0.016 0.006 0.002 0.001
Gluteus medius 0.010 0.008 0.008 0.004 0.084 0.061 0.050 0.025 0.009 0.006
Tensor fasciae

latae 0.003 0.002 0.008 0.006 0.036 0.022 0.016 0.009 0.013 0.008
Adductor magnus 0.006 0.004 0.012 0.008 0.016 0.002 0.005 0.002 0.011 0.007
Adductor longus 0.003 0.002 0.004 0.002 0.008 0.004 0.004 0.002 0.012 0.008
Sartorius 0.001 0.001 0.014 0.008 0.069 0.025 0.018 0.007 0.012 0.007
Vastus medialis 0.009 0.008 0.028 0.018 0.045 0.028 0.026 0.019 0.007 0.004
Vastus lateralis 0.011 0.009 0.029 0.020 0.034 0.023 0.026 0.020 0.007 0.005
Rectus femoris 0.001 0.001 0.012 0.007 0.037 0.026 0.009 0.005 0.004 0.002
Biceps femoris

(long) 0.007 0.006 0.014 0.009 0.009 0.005 0.008 0.004 0.005 0.002
Biceps femoris

(short) 0.006 0.005 0.015 0.011 0.009 0.006 0.006 0.004 0.014 0.009
Semitendinosus 0.005 0.004 0.014 0.010 0.007 0.004 0.008 0.004 0.011 0.007
Tibialis anterior 0.020 0.014 0.042 0.019 0.095 0.078 0.056 0.030 0.020 0.009
Medial

gastrocnemius 0.039 0.035 0.034 0.022 0.103 0.082 0.033 0.021 0.015 0.008
Lateral

gastrocnemius 0.014 0.012 0.019 0.013 0.095 0.075 0.010 0.005 0.009 0.005
Soleus 0.030 0.027 0.030 0.021 0.099 0.080 0.019 0.011 0.017 0.010
Peroneus longus 0.013 0.011 0.017 0.009 0.062 0.050 0.007 0.003 0.007 0.003
Peroneus brevis 0.006 0.003 0.015 0.005 0.057 0.042 0.008 0.003 0.006 0.002
Extensor hallucis

longus 0.014 0.009 0.027 0.011 0.052 0.036 0.030 0.015 0.012 0.005
Extensor hallucis

brevis 0.012 0.005 0.023 0.011 0.031 0.017 0.030 0.015 0.007 0.002
Extensor digitorum

brevis 0.023 0.012 0.021 0.008 0.035 0.016 0.054 0.025 0.003 0.000
Flexor hallucis

longus 0.028 0.024 0.055 0.034 0.079 0.058 0.019 0.012 0.027 0.016
Flexor digitorum

brevis 0.020 0.010 0.025 0.015 0.063 0.048 0.067 0.028 0.015 0.007

Subject-averaged means are reported for variance of normalized EMG signals from entire 30-s muscle recordings (All) and from the stride-averaged waveforms
(Avg) used in factorization analysis. FW, forward walking; BW, backward walking; LS, sideways walking to the left; RS, sideways walking to the right; SIP,
stepping in place.
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because of the Individual-Muscle criterion used in this analysis
the number of modules extracted tended to be slightly higher
than typically reported in the literature with less stringent
criteria (e.g., Ivanenko et al. 2004). Nevertheless, the charac-
teristic patterns were still evident in our subjects. For example,
forward walking results from the representative subject in Fig.
3A show the typical patterns immediately before and after heel
strike (patterns 1 and 6), as well as the three characteristic
patterns (2, 3, and 5) from midstance to midswing, similar to

previous studies (Cappellini et al. 2006; Ivanenko et al. 2006).
An additional pattern (4) reflects the activation of intrinsic foot
muscles that have not traditionally been recorded in studies of
modular control.

A task-dependent architecture was found to reduce control
dimensionality by roughly 65% compared with controlling
each muscle individually. A relatively low number of task-
dependent modules were sufficient to reconstruct EMGs for
each task. On average 5.8 � 0.7 modules (Fig. 4) reconstructed
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Gait Cycle (%)0 100
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Fig. 2. Task-specific EMGs. Average EMGs
for the right leg are depicted for each task
along with standard deviation across subjects
(n � 8). EMGs are plotted across a gait cycle
from 0 to 100%, with 0 corresponding
roughly to right foot strike (see METHODS for
details). EMGs are plotted in normalized units
as a fraction of maximum activation magni-
tude. Average stance durations were similar
between tasks (58–62%) and are shown for
reference.
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Fig. 3. Representative task-dependent patterns
and synergies. Temporal patterns (A) and the
corresponding muscle synergies (B) are shown
for a representative subject for each task. For
visualization purposes each pattern and synergy
is normalized to unity. Average stance and
swing durations are depicted for reference. In A,
5 of the 6 forward walking patterns were in
strong agreement with patterns from prior liter-
ature (gray dashed lines; Ivanenko et al. 2006).
The remaining pattern (4) reflects activation of
intrinsic foot muscles, which were not recorded
in previous studies.
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�90% of the Active muscles (15.4 � 2.8) for each task,
yielding an MCR � 0.38. The alternative estimate, MCRA,
yielded a similar value of �0.35 (Fig. 5). This was largely
independent of the number of control modules, although

roughly 7 modules were needed in order to reconstruct 90% of
all muscles recorded.

The total number of task-specific modules scaled roughly
linearly with the number of tasks. This qualitative trend was
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Fig. 4. Number of task-dependent patterns and synergies. A: the results here show the minimum number of modules (patterns and synergies) needed to reconstruct
EMGs for each task, determined with an Individual-Muscle evaluation criterion. B: for reference, we also show results obtained with a Grouped-Muscle criterion
(overall R2 � 0.9) to extract modules (see METHODS). The number of modules is lower with the Grouped-Muscle criterion because it is a less stringent assessment
criterion. Irrespective of evaluation criteria, muscle activity from each task could be reconstructed with a relatively small number of modules, on average �6.
A scale for MCR is also provided, indicating the number of modules relative to the number of Active muscles per task. Depicted are means and standard
deviations across subjects (n � 8).

2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

M
C

R
A

0

20

40

60

80

100

E
M

G
s 

R
ec

on
st

ru
ct

ed
 (

%
)Forward Walking

2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

M
C

R
A

0

20

40

60

80

100

E
M

G
s 

R
ec

on
st

ru
ct

ed
 (

%
)Backward Walking

2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

M
C

R
A

0

20

40

60

80

100

E
M

G
s 

R
ec

on
st

ru
ct

ed
 (

%
)Left Sideways Walking

2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

M
C

R
A

0

20

40

60

80

100

E
M

G
s 

R
ec

on
st

ru
ct

ed
 (

%
)

Right Sideways Walking

2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

M
C

R
A

0

20

40

60

80

100

E
M

G
s 

R
ec

on
st

ru
ct

ed
 (

%
)

Stepping in Place

# Modules in Library
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reconstructing �90% of the muscles. Depicted are means and standard deviations across subjects (n � 8).
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independent of the precise criterion used to select the number
of modules. With the Individual-Muscle criterion, a total of
28.9 � 3.4 modules were extracted across tasks (i.e., the sum
of the 5 task-dependent libraries).

Task-Independent Architectures

The number of modules in the shared library increased with
the number of locomotor tasks analyzed (Fig. 6A). The size of
the shared synergy library increased from 5.8 � 1.0, when only
extracted from forward walking, to 14.5 � 1.9, when extracted
from all tasks. Thus the size of the shared synergy library was
roughly equivalent to the number of Active muscles per task
(15.4). The size of the shared pattern library also increased
with tasks but leveled off at 9.9 � 1.1 patterns (Fig. 6A). When
modules were extracted from three or more tasks the number of
shared synergies needed was significantly higher than the
number of shared patterns needed to reconstruct EMGs (P �
0.036).

An architecture using task-independent patterns was
found to reduce dimensionality by 45%. A subset of the
shared pattern library was required to reconstruct EMGs for
each task. On average, 8.3 � 0.2 of the shared patterns were
needed to control the roughly 15 Active muscles per task
(Fig. 6B). The MCR of 0.54 was slightly higher than the
MCRA estimate of 0.41, given reconstruction of 90% of all
EMGs (Fig. 7A). MCRA was found to decrease when more
muscles were analyzed (Fig. 7), for instance, from 0.68 to
0.41 when computed from 12 vs. 25 muscles. It is also worth
noting one qualitative observation, namely, that the library
of shared patterns tended to look like a sequence of roughly
equidistant impulses (Fig. 8A).

An architecture using task-independent synergies was found
to reduce dimensionality during each task by �35%. We found
that not all synergies in the shared library needed to be
recruited for each task. A subset of the modular library, 9.7 �
1.1 of the shared synergies (Fig. 6B), were required to control
�15 Active muscles per task, yielding an MCR � 0.63. This
was in agreement with the alternate estimate MCRA � 0.65
when 80% of all muscles were well-reconstructed (Fig. 7A).
This 80% threshold was selected here because, on average,

even a library of 19 shared synergies was unable to reconstruct
90% of muscle EMGs. When computed from the 20 nonfoot
muscles and 12 commonly recorded muscles, MCRA was
found to be similar, 0.64 and 0.71, respectively (Fig. 7, B and
C). Because the number of synergies in the shared library was
still increasing when the fifth task was added (Fig. 6A), and a
large subset of the library was consistently needed for each
task, it is likely that the MCR estimates presented here are
underestimates. Nevertheless, a few of the shared synergies did
suggest functional significance, the coupled activation of mus-
cles that perform similar biomechanical function (e.g., adduc-
tor magnus and longus, soleus and peroneus muscles; Fig. 8B).
However, many “single-muscle” synergies were also found
within the shared library (Fig. 8B). Typically more than one-
third of the extracted synergies were dominated by a single
muscle weighting.

Neither patterns nor synergies extracted from forward walk-
ing were able to satisfactorily reconstruct EMGs during other
modes of locomotion. When applied to the other four tasks, the
forward walking patterns yielded an overall Grouped-Muscle
R2 of 0.75 � 0.05. On average, only 28 � 12% of the
individual EMGs were well-reconstructed (R2 � 0.8). Allow-
ing patterns to shift together by up to 10% of the gait cycle
improved reconstructions slightly, increasing Grouped-Muscle
R2 by �0.04 to 0.79 � 0.05. EMG reconstructions from
forward walking synergies resulted in a lower Grouped-Muscle
R2 of 0.61 � 0.12, and only 22 � 9% of the individual EMGs
were well-reconstructed.

Extracting shared modules from unidirectional locomotion
(self-selected cadence, fast cadence, slow cadence, tiptoe, and
20%-incline walk) yielded results similar to those found during
multidirectional locomotion (Fig. 9). For example, we found
that 9.3 � 0.9 shared synergies and 8.4 � 0.7 shared patterns
were needed to reconstruct EMGs for each variation of forward
walking (compared to 9.7 synergies and 8.3 patterns for each
multidirectional task). Again, we found that roughly one-third
of the shared synergies appeared to be “single-muscle” syner-
gies. The average MCRs of 0.53 for shared synergies and 0.48
for shared patterns were slightly lower than the 0.63 and 0.54
estimates from multidirectional locomotion.
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Fig. 6. Number of task-independent patterns and synergies. A: the number of shared patterns and synergies (i.e., library size) needed to reconstruct EMGs
increased with the number of tasks from which they were extracted. Results are plotted in cumulative fashion, showing the total number of modules needed to
reconstruct forward walking only, then forward and backward walking, etc. The average number of Active muscles per task is designated by the dashed line.
EMGs for individual tasks were then reconstructed using a subset of modules from each shared library. B: the results here summarize the number of modules
from each library that were needed to reconstruct 90% of the Active EMGs for each task. On average, these corresponded to an MCR for shared patterns of 0.54
and for shared synergies of 0.63. *Statistical significance (P � 0.05) between the number of shared synergies vs. patterns.
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DISCUSSION

We found that while simple modular architectures could
theoretically reduce dimensionality compared with indepen-
dent muscle control, controllers relying on shared neural prim-
itives may be limited in their ability to coordinate muscle
activity for various tasks. The efficacy of shared primitives
may thus depend on how they can be adapted by or embedded
within the sensorimotor control system. The results obtained
here based on simple neural architectures highlight the need for
more sophisticated formulations of modular control or alterna-
tive motor control hypotheses and motivate future research to
identify specific, testable neural mechanisms that can accom-
modate muscle coordination for disparate locomotor tasks.

Simple Modular Architectures

Primitives extracted from individual tasks were found to
reduce dimensionality substantially (Fig. 4, Fig. 5), indicating
the potential utility of neural modularity. However, this task-
specific architecture represents a best-case scenario for reduc-
ing dimensionality with fixed modules, and there are trade-offs
to this specificity. For instance, if these task-specific modules
were interpreted in the strictest and simplest sense, then they
would be indistinguishable from strategies involving stored
motor programs, requiring an ever-increasing number of mod-
ules to perform additional tasks. Thus they would have little

predictive value as a theory of motor control (de Rugy et al.
2013).

Various interpretations of task-specific modules might ad-
dress this issue. First, each library of modules might support a
limited subset of behaviors, perhaps different from those tested
in this study. For example, analysis of eight muscle EMGs
suggested that modules might be used for a range of level-
ground, forward walking speeds (Clark et al. 2010). Second,
some literature has suggested that an overcomplete represen-
tation of neural control may actually be an efficient strategy for
motor learning (Flanders 2011; Lewicki and Sejnowski 2000),
which could potentially constitute a different benefit. This
would perhaps be consistent with previous observations that
the number of modules extracted from muscle EMGs during
locomotion increases throughout adolescent development in
several animal species including the human (Dominici et al.
2011). However, the overcomplete representation might also
suggest that muscle activity is the result of synergies that are
dynamically constructed (and then deconstructed) by the ner-
vous system, rather than neural primitives that are stored and
then recruited (Llinás and Roy 2009). This interpretation
would differ from the hypothesis that a finite number of
building blocks might be flexibly recombined to generate
muscle activations for disparate motor behaviors. Third, the
apparent need for an ever-increasing number of task-specific

12 muscles

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

M
C

R
A

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

E
M

G
s 

R
ec

on
st

ru
ct

ed
 (

%
)

12 muscles

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

M
C

R
A

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

E
M

G
s 

R
ec

on
st

ru
ct

ed
 (

%
)

# Modules in Library # Modules in Library

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

M
C

R
A

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

E
M

G
s 

R
ec

on
st

ru
ct

ed
 (

%
)

20 muscles20 muscles

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

M
C

R
A

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

E
M

G
s 

R
ec

on
st

ru
ct

ed
 (

%
)

25 muscles

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

M
C

R
A

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

E
M

G
s 

R
ec

on
st

ru
ct

ed
 (

%
)

Task-Independent Synergies

1

25 muscles

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

M
C

R
A

2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

E
M

G
s 

R
ec

on
st

ru
ct

ed
 (

%
)

Task-Independent PatternsA

C

B

Fig. 7. MCRA for task-independent architec-
tures. MCRA (black line, dark shading) and
the percentage of EMG signals that were
well-reconstructed (gray line, light shading)
are plotted as a function of the number of
shared control modules. MCRA is defined as
the number of modules recruited to perform a
task divided by the number of muscles being
controlled, approximated as the number of
well-reconstructed EMG waveforms (R2 �
0.8). Left: results for a control strategy using
a shared library of fixed neural patterns as its
building blocks. Right: results for a strategy
using a shared library of fixed muscle syner-
gies. Results were computed using all 25 of
the EMGs recorded (A), all 20 of the nonfoot
muscle EMGs (B), and EMGs from 12 com-
monly recorded leg muscles (C) (see METH-
ODS for details). Depicted are means and
standard deviations across subjects (n � 8).
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modules might simply be a result of limitations in our extrac-
tion methodology. These task-dependent modules might in-
stead represent shared primitives that are adapted by sensory
feedback (Cheung et al. 2005; Lacquaniti et al. 2012; Ting
2007) and are thus difficult to discern with conventional
statistical analyses, which describe commonalities in EMG due
to both feedforward and feedback contributions. While afferent
feedback is known to contribute to neural activity during
locomotion (Duysens et al. 1998; Grey et al. 2001; Sinkjær et
al. 2000;), few studies have tried to account for this feedback
in the extraction of neural primitives (but see Kargo and
Giszter 2008). Further study is required to evaluate these

possibilities, in particular studies that can discriminate modu-
larity adapted by sensory feedback from other possible mech-
anisms.

When shared temporal patterns were extracted they were
found to reduce dimensionality (Fig. 6, Fig. 7) but nonetheless
may have practical limitations for controlling disparate motor
behaviors. The shared library was relatively small (�10 mod-
ules), suggesting a parsimonious solution to motor control.
However, the pattern library itself appeared to be a sequence of
time-shifted impulses (Fig. 3A), similar to that found in a
previous study (Safavynia and Ting 2012). This perhaps re-
flects rhythmic generators in the nervous system (Giszter et al.
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Fig. 8. Representative task-independent patterns and synergies. Shared patterns (A) and shared synergies (B) are shown for a representative subject (same as Fig.
3). These depict the minimum set of shared patterns (10) and the minimum set of shared synergies (17) needed to reconstruct activity from this subject’s 24
EMGs, recorded during the 5 multidirectional tasks. For visualization purposes each pattern and synergy is normalized to unity. In B, over one-third of the
synergies exhibited a dominant single-muscle weighting (shown as a darkened bar).
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2007; Ivanenko et al. 2004; McCrea and Rybak 2008; Patla et
al. 1985; Zehr 2005). Alternatively, this solution may simply
reflect mathematical convergence of the pattern library toward
maximum temporal dimensionality, the set of temporal basis
functions capable of reconstructing any arbitrary signals of
similar filtering and duration. This brings into question the
usefulness of this strategy for dimensionality reduction be-
cause tasks involving higher-frequency muscle contractions
or cycle durations longer than those tested (�0.9 –1.2 s)
would require substantially more patterns.

Shared muscle synergies also provided some reduction in
dimensionality but exhibited characteristics that may be unde-
sirable as a basis for controlling various motor behaviors. For
instance, we found that the number of shared synergies needed
was roughly as large as the number of muscles controlled (Fig.
6A). Also, the modest reduction in dimensionality was likely an
overestimate of the benefit, as it was only applicable to a subset
of the 25 muscles recorded (roughly 15–19 based on estimates
of MCR). Furthermore, we found that many synergies were
characterized by a dominant weighting (Fig. 8B), suggesting
individual muscle control. We found similar results when
considering a set of unidirectional locomotor tasks, which also
required a relatively high number of synergies to reconstruct
EMGs (Fig. 9B). We did observe a mild improvement in MCR
(0.53 unidirectional vs. 0.63 multidirectional); however, this
may simply be due to anatomically related muscles (e.g.,
gastrocnemius and soleus) that function similarly during for-
ward-direction gait but whose activations are known to disso-
ciate during other tasks such as curvilinear walking (Courtine
et al. 2006) and cycling (Wakeling and Horn 2009). Thus our
findings appear consistent with previous studies that have
questioned the compatibility or utility of muscle synergies for
explaining empirical data (Flanders 2011; Giszter et al. 2007;
Kutch et al. 2008; Macpherson 1991; de Rugy et al. 2013;
Soechting and Lacquaniti 1989; Wakeling and Horn 2009) and
contrary to the hypothesis that fixed synergies are the building
blocks of movement. A full discussion of the competing
evidence is beyond the scope of this article but is summarized

in various reviews (e.g., Alessandro et al. 2013; Tresch and
Jarc 2009).

Beyond Simple Modular Architectures

While the simple control architectures tested in this study
may be considered naive or oversimplified models of modu-
larity, they bring to bear several important questions. In par-
ticular, if these architectures are too simplistic, then what
specific modular extensions or motor control alternatives are
proposed? The principal benefit of these simple models is that
they are well-defined, testable, and computationally tractable.
While the inclusion of additional complexity (e.g., sensory
feedback) may seem obvious and necessary, the precise imple-
mentation within a modular control architecture remains non-
trivial in the absence of well-understood neural mechanisms
underlying sensorimotor integration (Giszter et al. 2007;
Tresch and Jarc 2009). Thus the scientific challenge remains:
can more sophisticated models be formulated in ways that are
specific and falsifiable? Some such alternatives have already
been proposed (with varying levels of specificity), and below
we discuss our findings in the context of these hypothesized
neural architectures.

Modular architectures could potentially simplify locomotor
control further and address limitations observed with shared
primitives but may require more complex organizations or
building blocks. For example, an alternative modular strategy
might involve a “mixed” architecture, comprised of both
shared and task-specific modules. For instance, d’Avella and
Bizzi (2005) found that muscle activations in various types of
frog locomotion (walking, swimming, jumping) could be re-
produced using mostly shared synergies and a few task-depen-
dent synergies. In contrast, Chhabra and Jacobs (2006) found
that human reaching could be explained by principally task-
dependent synergies, with a small number of shared ones.
Other plausible architectures might use time-varying synergies
(d’Avella et al. 2003), multilevel hierarchical structures (Gisz-
ter et al. 2007; McCrea and Rybak 2007, 2008; Tessitore et al.
2013), modularity within neuronal networks (Grillner 2011;
Hart and Giszter 2010; Stein 2008), sensory feedback adapta-
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Fig. 9. Number of task-independent patterns and synergies for unidirectional locomotion. In A the size of each shared library is shown. Similar to multidirectional
locomotion (Fig. 6), the number of modules increased with the number of tasks from which they were extracted. Results are again plotted in cumulative fashion,
showing first the number of modules needed to reconstruct self-selected forward walking only (FW), then progressing incrementally to include each of the other
tasks: fast step frequency walking (Fast Freq), slow step frequency walking (Slow Freq), tiptoe walking (Tiptoe), and walking up an incline (Incline). In B the
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tion (Cheung et al. 2005; Duysens et al. 1998, 2013; McCrea
and Rybak 2008), or perhaps muscle synergies that are modi-
fiable within a limited vector space rather than fixed (Drew et
al. 2008). However, it is worth noting that some of these
possibilities begin to touch upon the difficult practical question
of what actually constitutes neural or biological modularity
(Lacquaniti et al. 2013).

Although explicitly testing a “mixed” modular strategy
was outside the scope of our study, the MCRA metric
provides one way to assess such architectures. Since MCRA
is computed over a wide range of library sizes, we can
evaluate the consequences of using a smaller number of
shared modules (i.e., not capable of reconstructing the
majority of muscle activations). For synergies we observed
roughly constant MCRA (�0.6; Fig. 6A). Thus, for instance,
a library of 6 shared synergies could theoretically control 10
muscles, leaving the remaining 15 muscles recorded in this
study to be controlled by task-specific modules or by other
nonmodular neural processes. MCRA for shared patterns
was also roughly constant, 0.4 for all library sizes except the
very smallest (�5). Thus “mixed” architectures may offer
limited benefits in reducing control dimensionality for a
subset of muscles but would also exhibit drawbacks asso-
ciated with a task-specific organization. Nevertheless, fur-
ther investigation is required to understand the full impli-
cations of “mixed” architectures, as well as to address
technical challenges related to extracting shared vs. task-
specific primitives.

The results presented here might also be interpreted as
consistent with other neuromotor control theories. For in-
stance, some researchers have suggested that task-specific
modules may be a by-product of biomechanical constraints
(Kutch and Valero-Cuevas 2012) or regularities in learned
muscle patterns (de Rugy et al. 2012) or emerge from
optimal control theory (Chhabra and Jacobs 2006; de Rugy
et al. 2013; Todorov 2004) rather than reflect tangible
modules employed by the neural controller. Others have
interpreted the extracted primitives as indications of a dis-
tributed motor control organization, noting that even higher-
order primitives that account for increasingly smaller
amounts of variance in data reconstruction may still repre-
sent important features of the behavior (Flanders 2011;
Santello et al. 1998). Thus a small number of shared
synergies might be employed broadly, while additional
task-specific mechanisms (perhaps modular or not) would
provide finer motor control. This bears some similarities to
the “mixed” modular strategy discussed above, which would
be predicted to have limited benefits for reducing dimen-
sionality when using a small number of shared primitives.
However, it is also possible that the principal benefit of
modularity or other neural control strategies is actually
unrelated to dimensionality reduction during performance of
a task. For instance, modularity might be more pertinent to
the initial learning of a motor task (Berger et al. 2013;
Bernstein 1967; Dominici et al. 2011).

Further Methodological Considerations

Various methodological considerations are detailed in As-
sumptions and Limitations above. There we address limitations
related to the inference of neural control strategies from EMG

signals, the measurement and use of dimensionality as an
indicator of motor control complexity, the definition of EMG
reconstruction criteria, and the extraction of neural primitives
from stride-averaged EMG data. For brevity, we do not redis-
cuss these topics here but rather address further methodological
considerations related to the interpretation of results.

It is worth noting that our results and conclusions may differ
from some prior experimental studies using similar EMG
decomposition methods. Here we speculate as to methodolog-
ical reasons why some previous findings may have been
interpreted in stronger support of simple shared building blocks
that can reduce dimensionality and accommodate various mo-
tor tasks. First, we used a more stringent EMG reconstruction
criterion to identify the number of neural primitives required.
This is because we discovered that conventional Grouped-
Muscle criteria fail to reconstruct many EMGs (e.g., 40% of
EMGs during forward walking), which likely results in sub-
stantial errors in kinetics (Alessandro et al. 2013; de Rugy et al.
2013). Thus, for example, 5 synergies that were conventionally
believed to reconstruct 12 EMGs may only reproduce about 7
of them well. Therefore, we introduced the MCR, the ratio of
neural control modules to muscles, to help discern practical
implications of dimensionality. We also found that similar
issues exist if the Individual-Muscle criterion is too lenient, in
which case critical features of EMG may be poorly recon-
structed or completely missing (Fig. 10A). The use of less
stringent Individual-Muscle criteria (e.g., R2 � 0.6 or VAF �
75%) may underlie more favorable interpretations of shared
primitives for explaining empirical muscle activity. Choosing a
“good enough” threshold for EMG reconstructions is admit-
tedly a difficult and subjective decision (as detailed in METH-
ODS). Thus Fig. 10A is principally presented to facilitate the
reader in forming his/her own opinion as to what constitutes
“good enough,” and to make transparent the challenge of
selecting evaluation criteria.

Our results may also differ from previous studies because of
the techniques used for identifying shared modules. Post hoc
statistical techniques, such as Monte Carlo simulation or Pear-
son correlation, have commonly been employed to identify
synergies that appear similar. These techniques compare mod-
ules that are extracted separately from different tasks or sub-
jects. While these may be useful techniques for comparing
similarities between subjects, we found that they may be
misleading for intrasubject analysis. For a single subject, a
shared neural primitive is defined as one that is used to
generate muscle activity for multiple tasks. In this study we
enforce this definition by extracting modules from combined
sets of EMG data (from all tasks). However, a statistical
comparison of modules that are extracted independently can
circumvent this definition and can result in mildly correlated
modules being statistically defined as identical. For instance, if
we applied this statistical comparison to a pair of moderately
correlated synergies (R2 � 0.27; Fig. 10B) from two separate
tasks, then we would conclude that these synergies were the
same and thus shared (based on critical values for Pearson
correlation coefficient with significance level of 0.01). How-
ever, this contradicts the qualitative, intuitive assessment that
these synergies appear to be quite different. Furthermore, even
if there were a method to resolve the quantitative differences
(e.g., by computing an average) and to create a shared library
of synergies, then it would degrade their ability to generate the
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empirical EMG profiles observed during each task, thus un-
dermining the original purpose of the shared primitives. In
summary, correlating modules extracted from different tasks in
order to identify the shared library (as opposed to testing the
ability of the shared modules themselves to reconstruct muscle
activity) likely overestimates the utility of the shared primi-
tives.

Conclusions

We assessed simple modular strategies during multidirec-
tional locomotion and introduced a new metric (the modular

control ratio) to evaluate their abilities to simplify control. We
found that modularity offers the potential to reduce dimension-
ality for individual tasks but that shared neural primitives have
practical limitations in generating muscle activity for diverse
locomotor behaviors. Thus, while it is conceivable that prim-
itives adapted by task-specific sensory feedback or incorpo-
rated into a higher-dimensional control strategy might pro-
vide an effective basis for coordinating muscle activity, the
challenge remains to identify more sophisticated, yet test-
able formulations of motor control that address these limi-
tations.
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Fig. 10. Methodological considerations. A: selecting an EMG reconstruction criterion. Example reconstruction estimates (dashed gray line) of varying quality
(0.6 � R2 � 0.9 and 74% � VAF � 93%) are shown for a representative EMG envelope (solid black line). R2 and variability accounted for (VAF) were computed
via centered and uncentered Pearson correlation, respectively. Each column, from right to left, corresponds to decreasing quality of EMG reconstructions. The
top row roughly corresponds to degrading the fit of the first EMG activation peak and the bottom row to degrading the second peak. We selected an
Individual-Muscle evaluation criterion (R2 � 0.8) to subjectively identify individual EMGs that were adequately reconstructed, considering the noise and
variability inherent in surface EMG measurements. EMG estimates with correlations below this criterion tend to be missing important features of the muscle
activity (e.g., the absence of first EMG peak in top row when R2 � 0.8) or exhibit additional bursts of activity (not shown) that are inconsistent with empirical
recordings. B: identifying shared synergies. Muscle weightings (1–24) are depicted for hypothetical synergies from 2 different tasks (depicted as black and gray
bars). Thus each pair of bars represents a weighting for the same muscle. According to conventional post hoc statistical techniques these synergies (which are
moderately correlated with R2 � 0.27) would be defined as the same, shared synergy, since they exhibit similarity above random chance (e.g., based on critical
value of Pearson coefficient with significance level 0.01). However, trying to reconcile the differences between these synergies degrades their abilities to generate
the measured muscle activity, thus undermining the proposed benefits of shared primitives. In this study we present an alternative method for identifying shared
modules, which avoids this issue.
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