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urations. Starting from the Type II theories compactified on K3, we analyze their toroidal

dimensional reductions, showing how the resulting half-supersymmetric p-branes satisfy the

wrapping rules only by taking into account all the possible higher-dimensional origins. We

then consider Type II theories compactified on the orbifold T 6/(Z2 × Z2), whose massless

four-dimensional theory is an N = 2 supergravity. Again, the wrapping rules are obeyed

only if one includes the complete orbit of the T-duality group, namely either Type IIA

or Type IIB theories compactified on either the geometric or the non-geometric T-dual

orbifold. Finally, we comment on the interpretation of our results in the framework of

the duality between the Heterotic string compactified on K3 × T 2 and the Type II string

compactified on a Calabi-Yau threefold.
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1 Introduction

BPS p-branes have played a crucial role in many of the developments of String theory [1–5].

The fact that the tension of these objects is protected from receiving quantum corrections

allows one to rely on their appearance as supergravity solutions to gain information on

their properties in the quantum theory. A BPS p-brane is electrically charged under a

(p + 1)-form potential, while its dual is the magnetically charged object, whose presence

is a manifestation of a “democracy” related to the full non-perturbative conjectured quan-

tum symmetry of the theory [6, 7]. Requiring asymptotic flatness of the semiclassical

“soliton” solutions at infinity selects p-branes with more than two transverse directions,

that are charged under the potentials of the supergravity theory and their magnetic duals.

Nonetheless, in string theory branes are also present with two transverse directions like for

instance the D7-brane of Type IIB, with one transverse direction like the D8-brane of the

Type IIA, and even with no transverse directions at all, like the D9-brane of Type IIB, that

plays a major role in the construction of the Type I string, determining the background

charge of the vacuum [8]. In D dimensions the branes with two transverse directions are

electrically charged with respect to (D − 2)-form potentials dual to the scalars, while the

branes with one and zero transverse directions are coupled to (D−1) and D-form potentials

not carrying any propagating degree of freedom and whose existence can be determined

only by requiring the closure of gauge and supersymmetry algebras.

In this paper we will study 1/2-BPS branes, preserving the largest possible fraction

of supersymmetry. Their complete classification was recently obtained for maximal super-

gravity theories in any dimensions [9–11]. A crucial ingredient to achieve this result was the

identification, as representations of the global symmetry group, of all the potentials of the

various maximal theories, including the (D−1)-forms and theD-forms. Originally, for Type

IIA and Type IIB theories the classification was obtained imposing the closure of the super-

symmetry algebra [12–14]. Later, the result was extended to all dimensions in [15, 16] using
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the E11 Kac-Moody algebra [17] and in [18] using the embedding tensor formalism [19, 20].

Within the algebraic context, the components coupled to the 1/2-BPS branes are those

associated to the longest weights [21], corresponding to the real roots of the E11 algebra [10].

The longest weight rule can be formulated in terms of simple light-cone rules for the

representations of SO(d, d) occurring in the decomposition of the global symmetry group as

G ⊃ R
+ × SO(d, d) (1.1)

in D = 10− d dimensions, where R+ is the dilaton shift symmetry and SO(d, d) is the per-

turbative symmetry whose discrete counterpart is T-duality. Denoting with i±, i = 1, . . . , d

the lightlike directions of SO(d, d), the longest weights of a given representation correspond

to the components satisfying the following light-cone rules [11, 22]:1

1. for an antisymmetric representation with n indices, one has to select the combinations

i1 ± i2 ± . . . in± with the i’s all different. This results into
(

d
n

)

× 2n components;

2. for a mixed-symmetry representation, with Young tableau made of two columns of length

m and n, with m ≥ n, the m indices satisfy the rule 1 and the n indices must be parallel

to n of the m indices. This selects
(

d
m

)

× 2m ×
(

m
n

)

components.

These rules will be used at various stages in this paper.

Due to the decomposition in eq. (1.1), the SO(d, d) symmetry does not affect the

string dilaton. As a consequence, the field representations have a definite dilaton weight

α, a non-positive integer number, and the tension T of the corresponding brane scales like

T ∼ gαS (1.2)

with respect to the string coupling gS . For instance, the fundamental string has α = 0,

while the D-branes have α = −1. In ten dimensions the NS5-brane has α = −2, common

both to Type IIA and Type IIB theories, while the Type IIB theory possesses a 7-brane

with α = −3 (the S-dual of the D7-brane) and a 9-brane with α = −4 (the S-dual of

the D9-brane). Remarkably, the number of branes with α ≥ −3 that one gets in any

dimensions using the light-cone rules can all be reproduced starting from the p-branes of

the ten-dimensional theories by means of the “wrapping rules” [23, 24]

α = 0 :

{

wrapped → doubled

unwrapped → undoubled ,

α = −1 :

{

wrapped → undoubled

unwrapped → undoubled ,
(1.3)

α = −2 :

{

wrapped → undoubled

unwrapped → doubled ,

α = −3 :

{

wrapped → doubled

unwrapped → doubled ,

1There is also a rule for the spinor representations of SO(d, d) [23] that we ignore because it will not be

needed in this paper.
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that allow to find the number of branes in a given dimension knowing the number of branes

in one dimension higher. Although for the branes with lower values of α there exists no

obvious general rule, in any dimension a specific irreducible representation of α = −4

space-filling branes carries a number of states obtainable starting from the α = −4 9-brane

of Type IIB by means of the additional wrapping rule [11]

α = −4 : wrapped → doubled . (1.4)

The final outcome is that all the branes of the ten-dimensional theories satisfy specific

wrapping rules upon torus dimensional reduction.

Among the 1/2-BPS branes of the maximal theories, the ones with two, one and zero

transverse directions exhibit the special feature that their BPS conditions are degenerate.

Therefore, two or more branes satisfy the same BPS conditions, so that bound states of

them can still be 1/2-BPS. This is actually a general feature of all the 1/2-BPS branes of

non-maximal supergravity theories. In this paper, when we refer to 1/2-BPS branes, we

always consider single-brane states, keeping in mind that one can always construct bound

states that still preserve the same amount of supersymmetry. The classification of half-

supersymmetric single-brane states in half-maximal theories was performed in [25], using

the fact that the global symmetries of these theories are orthogonal groups and thus still

allow for the application of the light-cone rules. Considering the half-maximal supergravity

theories as the low-energy actions of the Heterotic string compactified on tori, the branes

with α = 0 and α = −2 are obtained from the fundamental string and the NS5-brane of

the ten-dimensional theory using the same wrapping rules as those of the maximal theory.

In particular, on T 4, the Heterotic theory is dual to the Type IIA compactified on K3. In

the T 4/Z2 orbifold limit of K3, the duality was used in [25] to show that, again, the same

wrapping rules reproduce the branes of the Type IIA theory on K3, if one only takes into

account the so-called bulk orbifold cycles. This was then generalized to any K3 orbifold

in [26], where it was also shown that the α = −3 and α = −4 branes are derived using the

wrapping rules, by identifying the theory as the Type IIB on a non-geometric orbifold.

In the first part of this paper we will show that if one considers lower dimensional Type

II theories with the same amount of supersymmetry, that are again dual to the Heterotic

theory on a torus, the number of branes follow from the wrapping rules only if one considers

together all the possible ways in which the theory can be constructed starting from ten

dimensions. In other words, in order to complete the orbit of the T-duality group, one

has to consider the torus reduction of all possible six-dimensional theories, i.e. not only

the Type IIA on a geometric orbifold and the T-dual Type IIB on the corresponding non-

geometric one, but also the opposite, namely the Type IIB on a geometric orbifold and the

T-dual Type IIA on a non-geometric one. The latter has N = (2, 0) supersymmetry, and

its brane classification was obtained in [25].

In general, the wrapping rules encode the information that a given lower-dimensional

theory can be considered not only as arising from either Type IIA or Type IIB, but also from

either geometric or non-geometric orbifolds, and only if this information is implemented

correctly one obtains results that are in agreement with applying the light-cone rules on

the representations of the T-duality group. In the second part of the paper we will test this
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feature on theories with less supersymmetry. In [27] the branes of theories with eight super-

symmetries have been considered in general. In the case of theories possessing exceptional

global symmetries, the classification relies on studying the reality properties of the weights

of the representations, but in the particular case of orthogonal global symmetries the light-

cone rules again give the correct answer. Viewing these low-energy theories as arising from

the Heterotic theory compactified on K3 × Tn, with n = 1, 2, 3, one can then show that

the resulting brane classification is again in agreement with the wrapping rules [27]. Here

we are going to consider the same theories as arising from Type II reductions, namely

four-dimensional theories resulting from Calabi-Yau compactifications. In particular, we

will consider the orbifold T 6/(Z2×Z2). We will show that the wrapping rules exactly hold

if one considers all possible T-dual (geometric and non-geometric) orbifolds, provided each

configuration is correctly weighted in a way that will be explained in the paper.

It is well known that the Type II theory compactified on a Calabi-Yau manifold is

conjectured to be dual to the Heterotic theory compactified on K3 × T 2 [28]. For this

conjecture to hold, it is necessary that the two theories have the same low-energy effective

action, and in particular the same structure of 1/2-BPS branes. We will review some basic

facts about the duality, and we will then discuss it in the context of our results.

The plan of the paper is as follows. In section 2 we discuss the wrapping rules for the

Type II strings on K3 × Tn, for n = 1, 2, 3. In section 3 we consider the T 6/(Z2 × Z2)

orbifold. In the first subsection, we discuss how T-duality relates geometric and non-

geometric orbifolds, while in the second subsection we show how the branes can be counted

using the wrapping rules, once the relative weight of the geometric versus non-geometric

orbifolds is taken into account. In section 4 we discuss our results in the context of the

duality between the Heterotic string on K3 × T 2 and the Type II string on Calabi-Yau

threefolds. Finally, section 5 contains our conclusions.

2 Type II on K3 × T n

The reductions of the Type IIA and Type IIB theories on K3 give rise to six-dimensional

theories possessing N = (1, 1) and N = (2, 0) supersymmetry, respectively. More precisely,

one obtains a low energy effective action describing N = (1, 1) supergravity coupled to

20 vector multiplets in the Type IIA case and N = (2, 0) supergravity coupled to 21

tensor multiplets in the Type IIB case. In [25], the duality between the Type IIA theory

compactified on K3 and the Heterotic theory compactified on T 4 was discussed for what

concerns the brane counting in the particular case of the T 4/Z2 orbifold limit of K3. The

result of this analysis is that the wrapping rules satisfied by the maximal theory on the

torus can be generalized to the orbifold case, assuming that only the so called “bulk cycles”

contribute. The same analysis was refined and generalized to any orbifold in [26], where

it was also observed that the wrapping rules can be extended to the α = −3 and α = −4

branes of the Type IIB theory using T-duality, which maps a geometric orbifold to a non-

geometric one. In [25] the wrapping rules were also applied to the Type IIB theory on a

geometric orbifold, reproducing the number of 1/2-BPS branes of the N = (2, 0) theory.

In this section we want to first review how the wrapping rules give the right numbers of
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❍
❍

❍
❍
❍
❍

p

α
α = 0 α = −1 α = −2 α = −3 α = −4

0-brane 8

1-brane 1 1

2-brane 8

3-brane 24

4-brane 8 32

5-brane 8 16

Table 1. The 1/2-BPS branes of the Type II theory compactified to the N = (1, 1) theory in six

dimensions.

branes in both six-dimensional theories provided that one considers all together geometric

and non-geometric orbifolds as an orbit of the T-duality group. Then we want to consider

the dimensional reduction of these theories to five, four and three dimensions, showing

again how the wrapping rules reproduce the right number of branes provided that one

considers them as arising from both the N = (1, 1) and the N = (2, 0) theories.

We start by reviewing in detail some of the results of [26]. The low-energy theory

describing N = (1, 1) supergravity coupled to 20 vector multiplets possesses a global sym-

metry SO(4, 20) × R
+. We denote the (p + 1)-form fields associated to the p-branes as

A
(w)
p+1,A1...AnB1...Bm

, where the SO(4, 20) vector indices denote the irreducible representa-

tion whose Young tableau has two columns, one of length n and one of length m, and w is

related to the R
+ weight so that the value of α is given by2

α6A = 2w − (p+ 1) . (2.1)

The fields associated to 1/2-BPS branes are the 1-forms A
(0)
1,A, the 2-forms A

(0)
2 and A

(1)
2 ,

the 3-form A
(1)
3,A, the 4-form A

(1)
4,A1A2

, the 5-forms A
(1)
5,A1A2A3

and A
(2)
5,A and the 6-forms

A
(1)
6,A1...A4

and A
(2)
6,AB. Using eq. (2.1) and the light-cone rules reviewed in the introduction,

one obtains the numbers of 1/2-BPS branes, reported in table 1.

The branes with α ≥ −3 can all be derived from the wrapping rules observing that

T-duality relates the Type IIA theory on a geometric K3 orbifold to the Type IIB the-

ory on a non-geometric one [26]. The non-geometric nature of the IIB orbifold leads to

a non-geometric way of counting the cycles along which the branes wrap. As explained

in [26], the non-geometric homology seen by the branes in some cases are equivalent to a

change of basis in the quantum homology of K3. Considering in particular the D-branes,

it is well-known that a T-duality along a 1-cycle exchanges a direction transverse to the

brane with a direction parallel to the brane. Thus, one is mapping D-branes wrapped on

even cycles on the Type IIA side to D-branes wrapped on odd cycles on the Type IIB

side. The geometric K3 orbifold only exhibits even cycles, so the non-geometric nature

of the Type IIB orbifold is probed by the way the D-branes behave in the T-dual Type

2In the dual Heterotic theory compactified on T 4, the dilaton scaling is simply αHet = −2w.
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❍
❍
❍
❍

❍
❍

p

α
α = 0 α = −1 α = −2 α = −3 α = −4 α = −5

1-brane 1 8 1

3-brane 8 24 8

5-brane 8 8 48 8 8

Table 2. The 1/2-BPS branes of the Type II theory compactified to the N = (2, 0) theory in six

dimensions.

IIB, wrapping the “geometric cycles” of the T-dual quantum homology. In other words

one obtains the α = −1 branes of the six-dimensional theory by either considering the IIA

theory, with the Dp-branes (with p even) wrapped on the six orbifold 2-cycles, wrapped

on the whole orbifold or simply unwrapped, or considering the IIB theory, where the Dp-

branes (with p odd) wrap the four non-geometric 1-cycles or their four dual non-geometric

3-cycles. As was explained in [26], the geometric or non-geometric nature of the cycles

“seen” by the various branes depends actually on the value of α: the branes with even α

probe the same geometric cycles as in the Type IIA case, while the branes with α = −3

probe non-geometric odd cycles, exactly as the α = −1 branes.

Let us first analyze the branes with α = −3. In ten dimensions, the only existing brane

with such a value of α is the S-dual of the D7-brane of the Type IIB theory. From the

wrapping rules, one then gets 1/2 × 4 × 24 = 32 4-branes, where the factor 1/2 accounts

for its presence uniquely in the Type IIB theory, 4 is the number of non-geometric 3-cycles

and the last factor is related to the wrapping. The resulting number precisely agrees with

the α = −3 entry in table 1. The α = −4 9-brane of Type IIB, instead, wraps the whole

K3, providing 1/2 × 24 = 8 5-branes. They account only for 8 of the 16 α = −4 branes

in table 1. Finally, the α = −2 5-brane present in both Type IIA and Type IIB gives one

1-brane when it fully wraps, and 6× 22 = 24 3-branes when it wraps the possible 2-cycles.

As observed in [26], when it does not wrap it gives rise to eight 5-branes, while naively

one would expect 24 = 16 branes. The extra factor 1/2 naturally comes from the fact that

the same brane is also present in the N = (2, 0) theory with the same multiplicity eight.

Therefore, the 16 branes predicted by the wrapping rules must be evenly splitted between

the two theories, realizing explicitly the Z2 projection conjectured in [26].

The same analysis can be performed for the N = (2, 0) theory. The relevant fields, as

representations of SO(5, 21), are a 2-formA2,Â, a 4-form A4,Â1Â2
and a 6-formA6,ÂB̂1B̂2

[25],

where Â’s are indices of SO(5, 21). In order to determine the value of α for each brane, we

decompose the global symmetry as SO(5, 21) ⊃ SO(4, 20)× SO(1, 1), where the first factor

is the perturbative symmetry ad the second factor is the dilaton scaling. The value of α is

then given by

α6B = n+ − n
−
−

1

2
(p+ 1) , (2.2)

where n+ and n
−
are the number of 1+ = x+ t and 1− = x− t lightlike indices of SO(1, 1)

that occur in the decomposition of the representation. As an example, let us consider the

5-branes, corresponding to the 6-form A6,ÂB̂1B̂2
. According to the light-cone rules, at most

– 6 –
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brane field 0 −1 −2 −3 −4 −5

0-brane A
(1)
1 1

A
(0)
1,A 1 8 1

1-brane A
(1)
2,A 1 8 1

A
(0)
2 1

2-brane A
(1)
3,A1A2

8 24 8

3-brane A
(1)
4,A1A2A3

24 32 24

A
(2)
4,A1A2

8 24 8

4-brane A
(1)
5,A1A2A3A4

32 16 32

A
(2)
5,AB1B2

8 8 48 8 8

Table 3. The 1/2-BPS branes of the Type II theory compactified on K3 × S1 for the different

values of the dilaton scaling α.

one of the two B̂1B̂2 can be along 1+, while the Â index has to be parallel to either B̂1 or

B̂2. Denoting with A’s the indices of SO(4, 20), this leads to the following possibilities:

A6,1+ 1+ A → 8 branes

A6,A 1+ A → 8 branes

A6,A1A1A2
→ 2×

(

4

2

)

× 22 = 48 branes

A6,A 1− A → 8 branes

A6,1− 1− A → 8 branes . (2.3)

The number of branes are then determined using the light-cone rules on the SO(4, 20)

indices. From (2.2) the value of α of each brane can be determined. The same can be

done for the other representations. The final result is summarized in table 2. It should be

underlined that in this case the number of all the branes with α ≥ −4 can be derived using

the wrapping rules. One can view the theory as either a geometric orbifold of the Type IIB

or a non-geometric orbifold of the Type IIA, mapped one to the other by T-duality. The

D-branes probe odd bulk cycles from the Type IIA perspective and even bulk cycles from

the Type IIB perspective, both giving the numbers of α = −1 branes reported in table 2.

The α = −3 7-brane, which only exists in the Type IIB, gives rise to 3-branes by wrapping

the whole K3 manifold, and to 5-branes by wrapping the 2-cycles. Using the wrapping rules

one gets 1/2×24 = 8 3-branes and 1/2×6×24 = 48 5-branes [25]. Finally, the branes with

even α are the same as in the N = (1, 1) theory. In particular, the eight α = −4 5-branes

are given by applying the wrapping rules, while the number of α = −2 5-branes, coming

from the unwrapped NS5-branes, is halved with respect to the naive calculation due to the

split between the N = (1, 1) and N = (2, 0) theories, as mentioned before.
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brane field 0 −1 −2 −3 −4 −5 −6 −7

0-brane A1,Aa 4 16 4

1-brane A2,ab 2

A2,A1A2
1 16 26 16 1

2-brane A3,A1A2A3a 16 96 96 96 16

3-brane A4,A1...A4ab 48 128 128 128 48

A4,AB1B2B3
16 56 112 112 112 56 16

Table 4. The 1/2-BPS branes of the Type II theory compactified on K3 × T 2 for the different

values of the dilaton scaling α.

Let us pass now to consider the reduction to five, four and three dimensions. The

relevant fields and their representations under the global symmetry group are all given

in [25] (see, for instance, table 1, eq. (2.25) and eq. (2.27) of that paper for a list in

five, four and three dimensions, respectively). For simplicity, we denote with A,B, . . . the

vector indices of the orthogonal global symmetry group in all dimensions, without any risk

of confusion because we treat each dimension separately.

In five dimensions the theory possesses a global symmetry SO(5, 21) × R
+. Denoting

the fields as A
(w)
p+1,A1...AnB1...Bm

, with w the R
+ weight and indices as in the non-chiral

six-dimensional case, one gets the 1-forms A
(0)
1,A and A

(1)
1 , the 2-forms A

(0)
2 and A

(1)
2,A, the

3-forms A
(1)
3,A1A2

, the 4-forms A
(1)
4,A1A2A3

and A
(2)
4,A1A2

and finally the 5-forms A
(1)
4,A1A2A3A4

and A
(2)
5,AB1B2

. While in the Heterotic theory the value of α is simply proportional to w

being SO(5, 21) the global symmetry that arises from the five-dimensional torus reduction,

in the Type II case one has a perturbative symmetry SO(4, 20)× SO(1, 1), where the first

factor comes from K3 and the second from the circle reduction. Of course, the perturbative

SO(1, 1) symmetry is not the one contained in the decomposition SO(5, 21) ⊃ SO(4, 20)×

SO(1, 1). It is rather obtained combining the latter with R
+, so that α is given by

αD=5 = n+ − n
−
− (p+ 1) + w (2.4)

where n+ and n
−

are the number of 1+ = x + t and 1− = x − t lightlike indices of the

SO(1, 1) inside SO(5, 21). Decomposing the fields and applying the light-cone rules one

gets the branes listed in table 3 for the different values of α.

In the four-dimensional half-maximal theory the global symmetry is SO(6, 22) ×

SL(2,R). The fields are the 1-form A1,Aa, the 2-forms A2,A1A2
and A2,ab, the 3-form

A3,A1A2A3a and the 4-forms A4,A1...A4ab and A4,AB1B2B3
[25], where the notation for the

SO(6, 22) vector indices is as before, while a denotes an SL(2,R) doublet and the pair

ab is symmetrised. From the heterotic perspective, SO(6, 22) is again the perturbative

Narain symmetry arising from the six-dimensional torus reduction, while SL(2,R) acts on

the axion-dilaton, where the axion is the dual of the NS-NS 2-form. The value of α in the

Heterotic theory is related to the number of indices 1 and 2 of the SL(2,R) according to

– 8 –
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brane field 0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11

0-brane A1,A1A2
6 32 36 32 6

1-brane A2,AB 4 8 4

A2,A1...A4
1 32 148 224 310 224 148 32 1

2-brane A3,AB1...B5
32 296 672 1248 1344 1776 1344 1248 672 296 32

Table 5. The 1/2-BPS branes of the Type II theory compactified on K3 × T 3 for the different

values of the dilaton scaling α.

αHet,D=4 = n1 − n2 − (p + 1) [25]. In the Type II theory, the perturbative symmetry is

SO(4, 20) × SO(2, 2) where the first factor comes from the K3 reduction and the second

from the two-torus. There is also an additional SL(2,R) acting on the axion-dilaton sys-

tem, as in the Heterotic theory, but in the Type II case the latter SL(2,R) is contained

in the global SO(6, 22) symmetry. The value of α is thus obtained by the decomposition

SO(6, 22) ⊃ SO(4, 20) × SO(2, 2). In particular, denoting with n+ and n
−

the number of

i+ = xi + ti and i− = xi − ti indices in the lightlike directions of the SO(2, 2), one gets

αD=4 = n+ − n
−
− (p+ 1) . (2.5)

It should be observed that the SL(2,R) indices of the fields listed above do not play any

role in determining the dilaton scaling of the branes. Using eq. (2.5) and the light-cone

rules, one obtains the number of branes listed, for the different values of α, in table 4.

Finally, let us consider the reduction to three dimensions. The three-dimensional

theory possesses a global symmetry SO(8, 24), and the fields are the 1-form A1,A1A2
, the

2-forms A2,AB and A2,A1...A4
and the 3-form A3,AB1...B5

[25]. The low-energy action of the

Heterotic theory compactified on a seven-torus has a perturbative symmetry SO(7, 23),

and the value of α for the different branes is αHet,D=3 = 2(n+ − n
−
− (p + 1)), where n+

and n
−
are, again, the number or 1+ and 1− light-cone indices of the SO(1, 1) entering the

decomposition SO(8, 24) ⊃ SO(7, 23)×SO(1, 1) [25]. In the Type II theory compactified on

K3× T 3, the perturbative global symmetry is SO(4, 20)× SO(3, 3). To get the value of α,

also in this case one has to decompose the representations of the fields under SO(8, 24) ⊃

SO(4, 20)× SO(4, 4). The end result is

αD=3 = n+ − n
−
− 2(p+ 1) , (2.6)

where n+ and n
−

are the number of i+ and i− indices (with i = 1, . . . , 4) of SO(4, 4),

respectively. Using this formula together with the light-cone rules and the fields listed

above, one obtains the branes reported in table 5.

We want to show how the wrapping rules are always obeyed in theories with sixteen

supercharges, provided the orbits of the T-duality group are correctly taken into account.

We limit ourselves to list the results for all the branes with α ≥ −3 in table 6. In going

from 6 to 5 dimensions, the wrapping rules have to be applied as follows: one has to

consider only the contribution from either the N = (1, 1) or the N = (2, 0) theory if a

brane does not double (so, consistently, one gets the same number from both theories), or
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α α = 0 α = −1 α = −2 α = −3
❍

❍
❍
❍
❍

p

D
6A/6B 5 4 3 6A/6B 5 4 3 6A/6B 5 4 3 6A/6B 5 4 3

0 2 4 6 8/0 8 16 32 1 4 36 32

1 1/1 1 1 1 0/8 8 16 32 1/1 2 28 152 16 224

2 8/0 8 16 32 24 96 296 8 96 672

3 0/8 8 16 24/24 48 104 0/8 40 240

4 8/0 8 8 32/0 80

5 0/8 8/8 0/48

Table 6. Table showing that the branes with α ≥ −3 of the Type II theories with sixteen super-

symmetries in five, four and three dimensions are derived by the wrapping rules starting from the

branes of the two six-dimensional theories. We denote the six-dimensional (1,1) and (2,0) theories

as 6A and 6B to emphasise the similarity with the ten-dimensional maximal case.

one has to sum the two contributions if it doubles. This precisely mimics what happens

in the maximal theory going from 10 to 9 dimensions. The reader can appreciate that all

the numbers are precisely reproduced by the wrapping rules. We want to stress that the

space-filling branes with α = −4 always arise in reducible representations. As a result,

if one decomposes the numbers of such branes appearing in tables 3, 4 and 5 in terms of

the number of branes corresponding to each irreducible representation, one would find, in

any dimension, the presence of one representation reproducing the numbers in agreement

with the α = −4 wrapping rule. We have not included these branes in table 6, but the

consistency checks can be easily worked out.

The outcome of this section is as follows. In order to reproduce the number of single-

brane states of the Type II theory compactified on K3× Tn using the wrapping rules, one

has to consider together all the possible theories related by T-duality that give rise, after

reduction, to the same theory. In the next section we move to consider the four-dimensional

Type II theory compactified on a six-dimensional T 6/(Z2 × Z2) orbifold. In this case T-

duality merges geometric and non-geometric compactifications in a more intricate way.

Starting from a geometric orbifold and performing all possible T-dualities, one can count

the ratio of geometric versus non-geometric orbifolds. We shall show that, again, one

reproduces the number of α ≥ −3 branes using the wrapping rules, if and only if one takes

correctly into account the orbit of the T-duality group and the relative weight of geometric

versus non-geometric configurations.

3 Type II on the orbifold T 6/(Z2 × Z2)

As anticipated, in this section we want to show that the wrapping rules predict the number

of branes with α ≥ −3 in the Type II theory compactified to four dimensions on the orbifold

T 6/(Z2 ×Z2). A crucial ingredient is the observation that T-duality relates geometric and

non-geometric orbifolds. In particular, we are going to show that the wrapping rules work

perfectly after taking into account the ratio of geometric versus non-geometric orbifolds
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within the orbit of the T-duality group. The relation between T-duality and non-geometric

orbifolds is discussed in section 3.1, while in section 3.2 the branes of the theory for different

values of α are determined, together with the way in which the wrapping rules are at work.

The branes of theories with N = 2 supersymmetry were considered in general in [27].

In the same paper, it was also shown that the interpretation in terms of the Heterotic String

compactified on K3×Tn allows to reproduce the number of branes using the wrapping rules.

On the other hand, it has been conjectured [29, 30] that the Heterotic String compactified

on K3 × T 2 and the Type II theory compactified on a Calabi-Yau threefold are dual: we

shall discuss in section 4 some aspects of the relation between the duality and our results.

3.1 T-duality and non-geometric orbifolds

Type II strings compactified on a Calabi-Yau threefold of Hodge numbers (h11, h12) are

characterized by massless spectra with N = 2 supersymmetry, due to the SU(3) holonomy

of the manifold [3–5]. The universal (bosonic) sector contains the graviton, the axion-

dilaton field (where the axion is the magnetic dual of the 2-form B-field) and the 2(h11+h12)

real scalars from the fluctuations of the ten-dimensional metric and of the Kalb-Ramond

field. Adding the contributions of the R-R sector, which in the Type IIA theory consists of

2+2h12 additional scalars and 1+h11 vectors, one obtains anN = 2 supergravity coupled to

the universal hypermultiplet (containing the axion-dilaton), h12 additional hypermultiplets

and h11 vector multiplets. The moduli space is a product

M = MV ×MH (3.1)

of the special Kähler manifold MV parameterized by the scalars of the vector multiplets

and the quaternionic manifoldMH parameterized by the scalars of the hypermultiplets [31–

33]. In the Type IIB string the situation is similar, since from the R-R sector one gets

2 + 2h11 additional scalars and 1 + h12 vectors, with a corresponding moduli space of the

same form as in eq. (3.1), with the dimensions of the two spaces MV and MH obtained

swapping h11 and h12 with respect to the Type IIA string. Calabi-Yau manifolds with

interchanged Hodge numbers, if they exist, form mirror pairs. As a result, the Type IIA

string compactified on a Calabi Yau manifold X exhibits the same moduli space as the

Type IIB string compactified on the mirror Calabi-Yau manifold X̃.

As done in [26] for six-dimensional models, we would like to verify the classifications

of single-brane half-BPS states obtained in terms of the T-duality groups in an explicit

string compactification, where possibly the geometric properties, the moduli space and the

action of T-duality on the compactification manifold be under control. The simplest of

such models is the T 6/(Z2 × Z2) orbifold of the Type II in its full-fledged T-dual orbit.

In order to describe it, a necessary ingredient is the related geometry. Starting with a

six-torus of a factorized T 2 × T 2 × T 2 form, the orbifold group action is generated by

g : (z1, z2, z3) → (z1,−z2,−z3) , h : (z1, z2, z3) → (−z1,−z2, z3) . (3.2)

As a consequence, three twisted sectors are present, containing 16 fixed tori to be identified

with the untouched two-tori tensorized with the 16 four-dimensional fixed-points of each of
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the group elements. Properties of the (integer) Homology group are encoded in the Hodge

diamond. It can be easily deduced by the Hodge diamond of the covering torus

h00
h10 h01

h20 h11 h02
h30 h21 h12 h33

h31 h22 h13
h32 h23

h33

=

1

3 3

3 9 3

1 9 9 1

3 9 3

3 3

1

, (3.3)

considering the invariant (bulk) cycles and the exceptional divisors, corresponding to the

fixed tori. A small resolution of the latter singularities will provide the corresponding

smooth manifold. To find the normalized integer (co)homology, as usual, one has to intro-

duce the “fractional cycles” and to carefully choose a corresponding basis. As a result, the

“bulk” invariant cycles, connected to the untwisted sector, are given by

h00
h10 h01

h20 h11 h02
h30 h21 h12 h33

h31 h22 h13
h32 h23

h33

=

1

0 0

0 3 0

1 3 3 1

0 3 0

0 0

1

. (3.4)

In addition, there are 16 fixed tori in each of the 3 twisted sectors. The corresponding

minimal resolution of the A1 singularities, give rise to a contribution 16 to both the non-

trivial Hodge numbers. However, the group invariant part sets only one of the contributions.

The final geometric Calabi-Yau manifold is characterized by the homology

h00
h10 h01

h20 h11 h02
h30 h21 h12 h33

h31 h22 h13
h32 h23

h33

=

1

0 0

0 3 + 48 0

1 3 3 1

0 3 + 48 0

0 0

1

. (3.5)

It should be stressed that the light-cone rules select exactly those states linked to the un-

twisted “bulk” part of the cycles. The conformal field theory allows for another solution

of the same theory, connected to the previous one by the so called “discrete torsion” [34].

Indeed, the modular invariant allows a discrete deformation corresponding to a different

combination of independent modular orbits. The result in this simple case does correspond

to a compactification of the Type IIA string on the mirror Calabi-Yau, related to the pre-

vious one by the exchange of the Hodge numbers. It should be noted, however, that the
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discrete torsion selects different BPS conditions. For instance, it is well known by the anal-

ysis of D-branes in orientifolds of the Type IIB theory [35] that it forces the introduction of

“exotic” orientifold planes, with reversed tension and RR charge, and of the corresponding

anti-D-branes. Namely, the 1/2-BPS states surviving the orientifold projection in the D9

sector are orthogonal to the ones in the D5 sector. As a consequence, the corresponding

orientifolds exhibit the “brane supersymmetry breaking” phenomenon [36], with a resulting

four dimensional theory no longer supersymmetric. Another way to understand the same

issue is related to the fact that Type IIA compactified on the T 6/(Z2 × Z2) orbifold with

discrete torsion is equivalent to Type IIB on the same orbifold without discrete torsion.

Thus, in this very simple context, discrete torsion is mirror symmetry.

We should stress that, as shown in the paper [26], we need to describe a certain

compactification in the full-fledged T-duality setting. It means that we must understand

both the A- and B-type of branes present in a theory and in the mirror symmetric. The

T 6/(Z2×Z2) orbifold exhibits notably this property. Indeed, it is very easy to describe Type

IIA on the geometric orbifold and at the same time Type IIB on the T-dualized orbifolds:

some of them are non-geometric asymmetric orbifolds, others still correspond to geometric

compactifications. Of course, on a generic Calabi-Yau this would be much more difficult to

understand, even though probably more general examples can be given. Like in the case of

the orbifold limit of K3, what we have to classify are exactly the relative weights between

the different T-dual descriptions. One efficient way to understand what is the action of

T-dualities is trying to identify the cycle in the non-geometric case, namely to describe the

T-duality action on the homology. After the orbifold projection, indeed, we saw that the

Hodge diamond restricted by the light-cone rules contains one 0-cycle, one 6-cycle, three 2-

cycles, three 4-cycles and eight 3-cycles. They correspond to the supersymmetric cycles for

the corresponding D-branes. Now, one can perform a certain number of T-dualities in di-

rections that are parallel or normal to the cycles of a certain homology basis. The surviving

“non-geometric” cycles3 are now the invariants under the combined action of the orbifold

group and an involution, corresponding exactly to the T-duality. The resulting homology

changes. For instance, with a single T-duality the “non-geometric” homology consists of a

vanishing number of 0- and 6-cycles, two 1- and 5-cycles and four 2-, 3- and 4-cycles.

Let us analyze what are the resulting configurations, taking into account that an odd

number of T-dualities maps Type IIA in Type IIB and vice-versa, while an even number

of them does not change the theory, being equivalent to a redefinition of some moduli.

Starting, for instance, from a Type IIA geometric configuration, one or five T-dualities

result into six different non-geometric configurations of the Type IIB. There are 15 options

to perform a pair of T-dualities. The three related to T-dualities along two directions

of the same two-torus give rise to three geometric Type IIA configurations, while the

remaining twelve yield as many Type IIA non-geometric configurations. T-dualizing

the complementary directions, the same result is obtained with four T-dualities. The

options for a T-duality along three directions are 20. Eight of them result in geometric

Type IIB, recognizable as compactifications on the mirror symmetric manifold [37], while

3It means that they are “geometric” in terms of the T-dual coordinates.
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twelve correspond to non-geometric compactifications. Finally, six T-dualities are just

redefinition of the Type IIA orbifold radii.

To summarize, starting from a Type IIA geometric configuration and acting with T-

dualities one gets eight geometric Type IIA and eight geometric Type IIB models, together

with 24 non-geometric Type IIA and 24 non-geometric Type IIB models. It should be

noticed that the same orbits are obtained starting from a geometric Type IIB compactifi-

cation. The net result is that, by considering all the configurations as different components

of a unique theory invariant under T-duality, one may appreciate how the weight of geo-

metric versus non-geometric configurations is exactly 16:48, namely 1:3. As we will see in

the next section, this ratio corresponds exactly to what is needed to verify how the wrap-

ping rules are perfectly at work if one considers in a correct way the “stringy geometry”

of configurations. Of course, it would be very interesting to extend the counting to more

complicated realizations of Calabi-Yau manifolds than the T 6/(Z2 × Z2) orbifold.

3.2 Wrapping rules of Type II on T 6/(Z2 × Z2)

The analysis of the previous subsection allows us to count properly the geometric and non-

geometric cycles that each brane of the Type IIA and Type IIB ten-dimensional theories

probe upon reduction on the T 6/(Z2 × Z2) orbifold. The aim of this subsection is to

show that the number of branes with α ≥ −3 in the resulting four-dimensional theory is

reproduced by the wrapping rules provided that the mentioned counting of cycles is taken

into account. We first review the analysis of [27] that classifies the 1/2-supersymmetric

branes in symmetric four-dimensional ungauged theories with N = 2 supersymmetry, then

we determine the value of α for each brane in the Type II theory. Finally, we discuss the

wrapping rules.

The classification of branes in theories with eight supersymmetries performed in [27]

is based on the reality properties of the weights of the representations to which the brane

charges belong. In particular, one can consider the model in which the global symmetry of

the low-energy action is SO(2, nV − 1) × SL(2,R) × SO(4, nH), where nV and nH are the

number of vector multiplets and hypermultiplets, respectively. The aforementioned reality

properties of the weights select the components of the charges that satisfy the light-cone

rules. Denoting with A,B, . . . the vector indices of SO(2, nV − 1), with a, b, . . . the doublet

indices of SL(2,R) and with M,N, . . . the vector indices of SO(4, nH), the fields associated

to 1/2-BPS branes are the 1-forms A1,Aa, the 2-forms A2,ab, A2,A1A2
and A2,M1M2

, the 3-

forms A3,M1M2Aa and the 4-forms A4,M1M2A1A2ab, A4,MN1N2N3
and A4,ABM1M2

[27]. Using

the light-cone rules, one can then derive the number of 1/2-BPS branes (see tables 5 and

10 of [27]).

In the Heterotic theory, this model can be thought of as a compactification on K3 ×

T 2, where SO(4, nH) is the global symmetry of the moduli from the K3 reduction and

SO(2, nV −1) comes from the torus reduction, assuming a phase where the surviving gauge

group is broken to its maximal abelian subgroup. Finally, the string dilaton together with

the dual of the NS-NS 2-form parametrize the coset SL(2,R)/SO(2). Since SO(4, nH) and

SO(2, nV − 1) are both perturbative symmetries, the value of α of the various branes can

only depend on the rank of the form and on the SL(2,R) indices. The precise relation is
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brane field α = 0 α = −2 α = −4 α = −6

0-brane A1,Aa 4 4

1-brane A2,ab 1 1

A2,A1A2
4

A2,M1M2
24

2-brane A3,M1M2Aa 96 96

3-brane A4,M1M2A1A2ab 96 96

A4,MN1N2N3
96

A4,ABM1M2
96

Table 7. The 1/2-BPS branes of the Heterotic theory on K3× T 2.

α = n1−n2−(p+1) for each p-brane [27], where n1 and n2 are the numbers of up and down

indices of SL(2,R). The resulting number of branes is reported in table 7. As shown in [27],

the columns with α = 0 and α = −2 can also be derived applying the wrapping rules.

We now want to consider the same model from the Type II perspective. In particular,

we restrict ourselves to the analysis of the Type II theory compactified on the orbifold

T 6/(Z2×Z2) corresponding, as seen in section 3.1, to a Calabi- Yau compactification with

(h11 = 51, h12 = 3). As it is well-known, for a generic Calabi-Yau compactification one has

nV = h11 and nH = h21+1 in the Type IIA case and nV = h21 and nH = h11+1 in the Type

IIB case. Since in Type II strings the dilaton belongs to a hypermultiplet, the symmetry

SO(2, nV ) × SL(2,R) of the vector-multiplet sector is perturbative. The symmetry of the

hypermultiplet sector SO(4, nH), instead, is broken at the perturbative level to SO(2, nH −

2)×SO(2, 2), where SO(2, 2) is isomorphic to SL(2,R)×SL(2,R). One of the two SL(2,R)

can be identified with the symmetry group that transforms the axion-dilaton complex

scalar. As a consequence, the value of α is only a function of the rank of the form and of

the numbers n+ and n
−
of light-cone indices of SO(2, 2). In particular, one obtains

α = n+ − n
−
− (p+ 1) . (3.6)

This formula implies that all the p-branes whose charges do not carry indices in the

hypermultiplet sector have a value of α which is simply −(p + 1). The branes associated

to the field A2,M1M2
, corresponding to defect 1-branes magnetically charged under the

hypermultiplet scalars, split as

A2,1+ 2+ → 1 brane

A2,i+ m → 2× 4 = 8 branes

A2,m1m2
→

(

2

2

)

× 22 = 4 branes

A2,i+ j− → 2 branes

A2,i− m → 2× 4 = 8 branes

A2,1− 2− → 1 brane , (3.7)
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brane field 0 −1 −2 −3 −4 −5 −6 −7

0-brane A1,Aa 8

1-brane A2,ab 2

A2,A1A2
4

A2,M1M2
1 8 6 8 1

2-brane A3,M1M2Aa 8 64 48 64 8

3-brane A4,M1M2A1A2ab 8 64 48 64 8

A4,MN1N2N3
8 12 24 8 24 12 8

A4,ABM1M2
4 32 24 32 4

Table 8. The 1/2-BPS branes of the Type II theory compactified on the orbifold T 6/(Z2 ×Z2) for

the different values of α.

where i± (i = 1, 2) are the light-cone directions of SO(2, 2), m’s take values along the

light-cone directions of SO(2, nH − 2) and the number of corresponding branes has been

derived using the light-cone rules. The same decomposition can be performed for all the

other fields, i.e. the 3-form A3,M1M2Aa and the 4-forms A4,M1M2A1A2ab, A4,MN1N2N3
and

A4,ABM1M2
. The value of α of each brane is determined using eq. (3.6). The resulting

numbers are listed in table 8.

Let us show how the number of all the branes with α ≥ −3 in table 8 are derived using

the wrapping rules by the weighted inclusion of geometric and non-geometric contributions.

It is useful to recall that branes with even α probe always geometric cycles, while branes

with odd α probe the non-geometric cycles in the corresponding non-geometric orbifolds.

• α = 0 branes. The ten-dimensional fundamental string can never wrap, so it never

doubles. The only α = 0 brane in four dimensions is the unique fundamental string.

• α = −1 branes. The Type IIA theory in ten dimensions contains Dp-branes, with p even.

The geometric orbifold in four dimensions exhibits eight 0-branes, one corresponding to

the unwrapped D0-brane, three from the D2-brane wrapped on 2-cycles, three from the

D4-brane on 4-cycles and one from the D6 on the whole orbifold. Similarly, there are

eight 1-branes, all coming from the D4-brane wrapped on 3-cycles. In the same way,

more eight 2-branes and eight 3-branes can be obtained. The non-geometric orbifold

contains the same number of branes, but obtained in a different fashion. Indeed, four

out of eight 0-branes come from the D2-brane wrapped on the four non-geometric 2-

cycles, the other four from the D4-brane wrapped on the four dual 4-cycles. The eight

1-branes arise from the D2-branes wrapped on the two 1-cycles, the D4-branes on the

four 3-cycles and the D6-branes on the two 5-cycles. Similarly, one gets again more eight

2-branes and eight 3-branes. A completely equivalent analysis can be carried out for the

Type IIB theory, starting of course from the ten dimensional Dp-branes with p odd. It

should be stressed that we always get eight α = −1 p-branes for any p, as reported in
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table 8, due to the fact that the wrapping rules for these branes never give any doubling.

In other words, one can think of α = −1 branes as coming from either the Type IIA

or the Type IIB theory in higher dimensions, and from either a geometric orbifold or a

non-geometric one, getting always the same result.

• α = −2 branes. These branes always probe geometric cycles, and they double if they

do not wrap. There is a NS5-brane in both the Type IIA and the Type IIB theory

in ten dimensions. By wrapping a 4-cycle, it gives rise to a four dimensional 1-brane.

The wrapping rules predict 3 × 22 = 12 such branes, where the 22 comes from the two

directions of the orbifold which the 5-brane does not wrap, in a precise agreement with

the result in table 8. Similarly, the number of 2-branes is 8×23 = 64, again as in table 8,

being 8 the number of 3-cycles and 23 the wrapping rules doubling. Finally, the number

of 3-branes is 3× 24× 1
2 = 24. The naive result has thus to be modified by the extra 1/2

factor. We have already discussed a similar phenomenon for the α = −2 5-branes that

occur in the compactification on the orbifold T 4/ZN to six dimensions in the previous

section, with the the extra factor 1/2 arising because the branes split evenly between the

N = (1, 1) and N = (2, 0) theories. This halving is essential to get the right counting

also after the further dimensional reduction on T 2. The T 6/(Z2 × Z2) orbifold can be

thought of as a Z2 projection acting on the orbifold (T 4/Z2) × T 2, and therefore the

extra factor 1/2 is inherited from the half-maximal theory.

• α = −3 branes. In this case the wrapping rules always give a doubling, and since α is

odd we have to consider both geometric and non-geometric cycles. The only α = −3

brane present in ten dimensions is the 7-brane of the Type IIB theory, that is the S-

dual of the D7-brane. When it wraps a geometric 6-cycle, the number of resulting

1-branes is 1
4 × 26 × 1

2 = 8, where the first factor is the relative weight of the geometric

orbifold, the second comes from the wrapping rules and the last from the fact that the

7-brane is present only in the Type IIB theory. The result agrees with table 8. The
3
4 × 2× 26 × 1

2 = 48 2-branes derive from the 7-brane wrapping non-geometric 5-cycles.

Again, 3
4 is the relative weight of non-geometric orbifolds and there are exactly 2 non-

geometric 5-cycles to reproduce the number present in the table. Finally, the 3-branes

result from the 7-brane wrapping 4-cycles, which can either be geometric (three) or non-

geometric (four). In the geometric case one gets 1
4 × 3× 26× 1

2 = 24 branes, while in the

non-geometric case one gets 3
4 × 4 × 26 × 1

2 = 96 branes. A comparison with the table

shows that the 24 branes from the geometric cycles correspond A4,MN1N2N3
, while the

96 branes from the non-geometric cycles are associated to the remaining 4-forms.

• α = −4 branes. We limit ourselves to some comments on these branes. As in the

maximal and half-maximal case, indeed, we do not expect to derive all of them from the

wrapping rules related to the α = −4 9-brane of Type IIB. This is obvious by looking

at table 8, where the presence of 1-branes and 2-branes cannot be justified in terms of

the 9-brane that, being space-filling, can only give rise to 3-branes. The wrapping rules

give back 26 × 1
2 = 32 3-branes, associated to the field A4,M1M2A1A2ab. To be precise,

decomposing the indices as done in eq. (3.7) for the A2,M1M2
field, and using eq. (3.6),
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one obtains the α = −4 components

A4,i+ j− A1A2ab → 2× 22 × 2 = 16 branes

A4,m1m2A1A2ab → 22 × 22 × 2 = 32 branes . (3.8)

Both components form an irreducible representation of the perturbative symmetry

group, but the last correspond to the 32 branes predicted by the wrapping rules.

It should be stressed that, although the wrapping rules do not determine the full

content in the α ≤ −4, the branes related to reductions of the ten-dimensional ones fit

exactly inside certain irreducible representations, analogously to what happens in more

supersymmetric theories [11].

4 Comments on N = 2 string-string duality

There exist many ways to get theories with eight supercharges starting from compact-

ifications of String/M/F-theory. All of them should be equivalent, being connected by

(perturbative or non-perturbative) string dualities. In section 3.2 we have considered a low

energy supergravity, assuming a massless spectrum and analyzing it in terms of a heterotic

perspective as well as of a Type II perspective. In a sense, assuming it as a Heterotic string

compactified on K3 × T 2 or as a Type II string compactified on a Calabi-Yau threefold,

we have checked that the wrapping rules perfectly hold and we have also made explicit the

mapping among branes, dictated by the conjectured string-string duality. Of course, while

we have explicitly indicated the Type II model as a Z2 × Z2 orbifold of the Type IIA, the

same is not equally evident from the heterotic perspective. Actually, it is well known that

Type II-Heterotic duality is very well established in six dimensions, where it is an S-duality

between the Heterotic on T 4 and Type IIA on K3. It is relatively easy to exhibits checks

on both sides of the duality, once one sits at a generic point in the moduli space where the

non-abelian gauge group of the Heterotic string is broken to its maximal abelian subgroup.

There are also clear indications on how to deal with the point of enhanced non abelian sym-

metry in connection with K3-orbifold singularities, not visible in perturbation theory [38].

The situation is much more involved for what concerns the four dimensional duality

connecting the Heterotic string on K3× T 2 with the Type IIA on a Calabi-Yau threefold,

whose root seems to be, however, exactly the mentioned six-dimensional case. First of all,

the K3 manifold is basically unique while, on the contrary, there exist a very large number

of classes of Calabi-Yau threefolds. Of course, the difference is balanced, on the heterotic

side, by the huge number of ways related to the choice of the gauge bundle with base the

K3× T 2 manifold. However, it is exactly the properties of the gauge bundle together with

the presence of the B2 field that make the duality quite subtle to check. Indeed, due to the

anomaly cancellation, the gauge bundle is not flat and must have instanton number equal

to 24. Moreover, in six dimensions nH − nV = 244, and a remnant of these numbers still

survives in four dimensions: for instance, performing first a K3 compactification and then

a further reduction on T 2, the number of hypermultiplets does not change and at least

three vector multiplets are expected, coming from the toroidal reduction of the heterotic
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geometric moduli. Dual Type II models, in this case, require at least h11 ≥ 3 on the Type

IIA side and h12 ≥ 3 on the Type IIB side. The gauge bundle does contribute both to the

vector multiplet moduli space, a special Kähler manifold, and to the hypermultiplet moduli

space, whose generic structure is actually more difficult to characterize [39]. Moreover, the

duality is no longer an S-duality. Indeed, the fact that the heterotic dilaton is part of a

vector multiplet while the Type II dilaton is in a hypermultiplet, characterizes the quantum

corrections. For instance, the corrections to MV in the Heterotic compactification come

from target space instantons, while on the Type II side they come from world-sheet

instantons [30]. To compare the two vacua, one has to require that the Heterotic string be

weakly coupled, namely the heterotic dilaton must approach −∞ and, simultaneously, its

dual field, the size of a holomorphic curve of the Calabi-Yau, must be very large. In order

for this phase to exists, the Calabi-Yau threefolds X and its mirror X̃ on which the Type

II are propagating must be K3 fibrations over P
1 [40, 41], and the modulus dual to the

dilaton is the size of the base manifold P
1. If also K3 is fibered over P

1 (with fiber T 2),

the duality can be interpreted as the six-dimensional one acting fiber-wise between K3

and T 4, at least when adiabatic arguments can be invoked [42]. Starting from the seminal

proposal in [29, 30], several examples of (chains of) dual pairs have been found (see, for in-

stance, [42–44]). The strategy consists typically in analyzing an Heterotic compactification

by choosing the realization of K3× T 2 and the gauge bundle on it with instanton number

24. Looking at the surviving gauge group (possibly after compatible Higgsing or breaking)

and considering the phase where the group itself is reduced to the Cartan component, one

gets the number nV of vector multiplets and the number nH of hypermultiplets. Type II

candidate dual pairs are then compactifications on Calabi-Yau owning the same Hodge

numbers (excluding in the counting the universal hypermultiplet). The comparison of the

moduli space on the two sides of the duality is indispensable to support the existence of

the conjectured pairs. Many checks regarding the vector moduli space have been realized,

because of the special Kähler structure allowing a description of the low energy effective

action in terms solely of the prepotential [41]. For the moduli in the hypermultiplet sector,

there have been recently many progresses [45, 46], even though the map is less understood.

Other instances are related to M- or F-theory realizations of the duality.

A crucial point, however, is that the conjectured duality holds independently on the

checks that can be done searching for dual pairs by matching the spectra, the moduli

spaces and the quantum corrections, and also independently on the geometric realization

of the four-dimensional string vacua. Actually, some of the dual pairs are built using freely

acting orbifold without a geometric interpretation. In section 3 our Type II (geometric and

non-geometric) orbifold model is related to a compactification on a Calabi-Yau manifold

with Hodge numbers (51, 3), and its mirror. It falls within the class of K3 fibrations, as

can be verified in [47]. We did not search for the explicit geometric Heterotic dual, that

would require a careful study of the gauge bundle and of the moduli potential in the low

energy approximation, to check the existence of suitable flat direction that allow to properly

break the gauge group to its maximal abelian subgroup, keeping the N = 2 supersymmetry

unbroken. Assuming the effective supergravity spectrum we checked, instead, the validity

of the wrapping rules. It comes from an average on the T-duality group orbit, merging
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both geometric and non-geometric compactifications. This fact should be understood,

in our opinion, as a clear indication that the duality is at work in the moduli space of

String/M/F-theory, avoiding the construction of explicit geometric dual pairs where it can

be verified. In other words, the validity of the wrapping rules is a necessary condition

once one assumes an underlying unique theory, being referred to the classification of single

brane states rather than to (bound state) configurations. The possibility of analyzing the

whole orbit of the T-duality group clearly depend on the simplicity of the Z2×Z2 orbifold.

It would be obviously very interesting to extend the same control over other, more general,

orbifolds, and in general over Calabi-Yau and flux compactifications, as well as to theories

with less than eight supercharges. We postpone the discussion of these issues to future work.

5 Conclusions

In this paper we have shown that the wrapping rules, satisfied by the branes of the ten-

dimensional Type IIA and Type IIB string theories upon torus dimensional reduction, are

also valid for the compactification on the orbifold T 6/(Z2 × Z2). A crucial ingredient is

the observation that the lower-dimensional theory must be considered not only as arising

from either Type IIA or Type IIB theories, but also from either geometric or non-geometric

T-dual orbifolds. Only if this information is implemented correctly, the wrapping rules give

the right number of branes. This generalizes the results of [26], showing how the branes

of the six-dimensional theory in the compactification of Type IIA on the orbifold T 4/ZN

satisfy the wrapping rules, provided that one also considers the same theory as arising from

Type IIB on the non-geometric T-dual orbifold.

As already mentioned in the previous section, it would be interesting to generalize

this procedure to other six-dimensional orbifolds in analogy with what was done in [26],

where the T 4/Z2 analysis of [25] was extended to any four-dimensional ZN -orbifold. The

difference with respect to the four-dimensional case is that the resolution of the singularities

of six-dimensional orbifolds leads to Calabi-Yau manifolds, whose topology is far from being

unique and whose structure of the T-duality group orbit is very difficult to determine. We

hope to report on these generalisations in the near future.

The consistency of the wrapping rules, verified in these simple settings both in heterotic

and in Type II compactifications, is a clear indication of the validity of string-string duali-

ties, independently of the explicit checks on dual paired theories. Indeed, the classification

of 1/2-BPS single p-brane states is universal and holds regardless of the compactification

details. In other words, assuming an underlying unique theory, the validity of the wrapping

rules is a necessary condition, once taken correctly into account the T-duality group orbits.

In the paper we have derived for various theories, namely Type II theories compactified

on (T 4/Z2) × Tn and on T 6/(Z2 × Z2), the value of the dilaton weight α of each brane

as a function of the rank and the number of specific lightlike internal indices of the

corresponding field potential. In each theory, the relation between this value of α and the

one that results in the Heterotic theory exploits the nature of the duality relating the two

theories. In [27] it was observed that the general brane classification in N = 2 theories,

as well as in theories with sixteen supersymmetries (derived in [25]), allows to determine
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all the branes in the Heterotic theory that support vector multiplets. Using the definition

of the value of α in the Heterotic theory and the one in the dual Type II theory, one

can determine what are the values of α of the vector branes in both cases. While on the

heterotic side the vector branes have α = −4 or more negative [25], in the Type II case the

maximum value of the same α is −1 corresponding, as expected, to D-branes, end points

of fundamental strings. This result can be appreciated by comparing tables 7 and 8. The

vector branes correspond to the potential A4,MN1N2N3
leading, in the Heterotic theory,

to 96 α = −4 3-branes. They split, as shown in table 8, in Type II branes with different

values of α including, in particular, 8 D3-branes.

To conclude, we would like to stress that the universality of the wrapping rules intro-

duced in [23, 24] cannot be just considered as a numerical coincidence, but rather as an

information on the different type of generalized geometry that each brane with different

α probes. In determining the number of 1/2-supersymmetric branes, the geometry of the

compactification space is only relevant in giving the number of various geometric super-

symmetric cycles, where each brane has a universal behavior under reduction, depending

only on the value of α. This is still true in the case of non-geometric orbifolds arising from

merging T-duality transformations with the orbifold group acting simultaneously on both G

and B. However, in the non-geometric T-dual setting, the branes with α = −1 and α = −3

probe effective cycles that are not geometric, in the sense that they are not cycles of the orig-

inal orbifold [26], but only of the T-dual one. Once these cycles are determined, the number

of 1/2-supersymmetric branes again follows from the wrapping rules. It would be inter-

esting to investigate how this can be understood in the context of double field theory [48],

where the background fields G and B are treated on the same footing from the start.
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