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1. Introduction

Magnetization dynamics in ferromagnetic solids is a very complex phenomenon. Most
expositions, especially in the mathematically-oriented literature, cover only par-
ticular physical aspects and, with few exceptions, assume that the body is held at
constant temperature. In Ref. 21 a continuum model describing the evolution of the

29


http://dx.doi.org/10.1142/S0218202511004976

Math. Models Methods Appl. Sci. 2011.21:29-55. Downloaded from www.worldscientific.com
by UNIVERSITY OF ROME “"TOR VERGATA™ LIBRARY FOR THE SCIENTIFIC-TECHNOLOGICAL AREA on 11/02/12. For personal use only.

30 T. Roubicek € G. Tomassetti

magnetization has been proposed which differs from previous expositions in two
aspects: first, the saturation constraint is suppressed, and a Landau-type term is
included in the free energy so as to allow the magnetization intensity to depend on
temperature; second, a thermodynamically-consistent coupling mechanism between
the Gilbert equation and the heat equation is envisaged. Using this model as starting
point, an initial-boundary value problem for the magnetization and temperature
fields has been formulated and the existence of weak solutions has been proved in the
same paper.

The mathematical analysis carried out in Ref. 21 covers viscous-type dissipation
mechanisms. Yet, in ferromagnetic solids other dissipation mechanisms may be
important. At very low frequencies, hysteretic response is observed in magnetization/
applied field diagrams (this happens when temperature is stabilized, whereas a more
complex response is expected for fast anisothermal processes®”). Crystal imperfec-
tions are deemed to be responsible for this phenomenon by raising energy barriers
that pin domain walls, with de-pinning taking place only when the external driving
force exceeds a threshold. Viscous-like damping cannot account for dissipation
mechanisms that persist under slow motions (an analytical argument supporting this
statement may be found in Ref. 23). This fact motivates the proposal (see Refs. 4 and
28) of adding a dry-friction-like term to the standard viscous-like damping in the
Gilbert equation. Analytical results for a model with dry friction may be found in
Ref. 26, where, however, temperature is assumed to be constant.

In this paper we illustrate what changes are needed in the mathematical analysis
carried out in Ref. 21 to cover dissipation mechanisms associated to domain-wall
pinning and eddy currents. Of course, other effects are neglected. In particular, we
neglect magnetostriction. We also neglect displacement current and use so-called
eddy-current approximation of the full Maxwell system, and we also neglect the
electromagnetic field outside the body, cf. Remark 5.2. We also neglect thermo-
electrical cross-effects, cf. Remark 5.3.

The paper is organized as follows. In Sec. 2, we formulate an initial-boundary-
value problem that captures the phenomenology of interest. In Sec. 3, we specify data
qualification, give a notion of weak solution, and state our existence theorem. In
Sec. 4, we prove existence of a weak solution by a carefully selected succession of
approximations. In Sec. 5, we discuss possible extensions of the model.

2. Problem Formulation

We consider the following system of partial differential inclusions/equations:

mm X [+ AAM — h(m) — 605 (M) + po(h + ) — am € (), (2.1a)
¢(0)0 — div(k(9) V) = o (0)|e|? + a|m|? + o(m) + O’ (m) - m, (2.1b)
po(h -+ m) + curle = 0, (2.1¢)
curlh — o(f)e = 0. (2.1d)
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For Q a domain of R® and T >0 a time, the unknowns are: magnetization
m: [0, T] x Q — R3, temperature 0 : [0, T| x Q — R*, self-induced magnetic field
h: [0, 7] x Q — R3 and electric fielde : [0, T] x Q — R3. A superposed dot denotes
differentiation with respect to time, the symbol “x” denotes the vector product in
R3 X\ > 0 is the exzchange constant, p, > 0 is the permeability of vacuum, and h, :
[0, T] x Q — R3 is the applied field. Furthermore, ¢(6), x(0) and o(6) are, respec-
tively, the heat capacity, the thermal conductivity and the electric conductivity, here
allowed to depend on temperature, and required to be strictly positive. The functions
g:RT = RT ¢, : R? = R, ¢, : R? — R must comply with certain assumptions that
we shall specify later in Sec. 3. Finally, ¢ stands for the derivative of ;.
We complete (2.1) with the boundary conditions:

Oym =0, (2.2a)
K(60)Onb = Ky, (0, — 0), (2.2b)
hxn=0, (2.2¢)
and the initial conditions:
m(07 ) = m07 6(07 ) = 00v h(oa ) = h07 (23)

where J,, denotes the directional derivative along the outward unit normal n and &, is
a strictly positive constant. Before passing to the weak formulation, several remarks
are in order.

Remark 2.1. Equations (2.1a) and (2.1b) are obtained from

1 . /
SmD m x m + AAm — po(m) — 0p’ (M) + po(h, +h) —r =0, (2.4a)

¢(0)0 + divg = d + 6o} (m) - m, (2.4Db)

a system proposed in Ref. 21 to describe the ferro/paramagnetic transition'® that
takes place in a homogeneous ferromagnetic body when its temperature approaches
the Curie point. A distinguishing feature of this model is the fact that the saturation
constraint |m| = 1 is dropped, and the underlying free energy

A
(M, Vm, 0) = Z{Vm[? + pp(m) + Opy (M) + 1 (6)

contains a Ginzburg—Landau penalization term. The thermal part of the free energy
@y (0) determines the heat capacity c(0) = —0p7(0). In (2.4a), r is a dissipative force
associated to the evolution of m. Typically, r is taken to be proportional to m.
However, this choice is inappropriate to capture rate-independent dissipation due to
pinning effects. Following Ref. 28, we augment the standard viscous-like dissipation
with a rate-independent term. Precisely, we require that

r—am € do(m), (2.5)

with « a strictly positive constant and ¢ a convex continuous degree-1 positively
homogeneous function.
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In (2.4Db), the scalar field d : [0, T] x 2 — R and the vector field q : [0, T] x 2 —
R? are, respectively, the dissipation density and the heat flur. We assume that the
body carries a conduction current |. Accordingly, the dissipation density is given by
the sum of microscopic heating r - m and Joule heating ) - € (cf. Ref. 13). We assume
that the conduction current satisfies Ohm’s law:

] =o(f)e. (2.6)
By (2.5) and (2.6), and by the degree-1 homogeneity of o(-), we have:
d = o(6)le]? + am|* + o(m). (2.7)

Equation (2.1b) is obtained by combining (2.4b), (2.7), and by assuming that the
heat flux depends on the temperature gradient in the manner prescribed by Fourier’s
law:

q = —k(0)V0. (2.8)

Equations (2.1c) and (2.1d) are the eddy-current approximation of Mazwell’s
equations (cf. Remark 2.4 below), namely:

pio(h + 1) + curle = 0, (2.9a)
curlh —) = 0. (2.9b)

Remark 2.2. According to a well-established phenomenological model first proposed
by Landau and Lifshitz,'® the evolution of the magnetization in saturated ferro-
magnets is ruled by the so-called Landau—Lifshitz—Gilbert (LLG) equation® %%

vy Im+mxr=mx (AAm — ¢’(m) + h), (2.10)

with r = am. The LLG equation has been the subject of extensive mathematical
investigation.>0%16:1927 Ap important property of (2.10) is that it preserves the
modulus of the magnetization. In particular, if the initial datum m, satisfies the
saturation constraint |mgy(z)| = 1, then so does the solution at all times. The constraint
|m| = 1 leads to the following (natural) boundary condition for (2.10):

m x d,m = 0. (2.11)

When the aim of the model is to describe the ferro/paramagnetic transition, the
underlying evolution law, that is (2.4a), must allow the modulus of magnetization
vector to change both in space and time, and, due to the suppression of the saturation
constraint, the boundary condition (2.11) must be replaced by (2.2a). A connection
between (2.10) and (2.4a) is established by observing that if m satisfies (2.4a) with
boundary condition (2.2a) and, in addition, it fulfills the saturation condition |m| = 1,
then it also satisfies (2.10) with boundary condition (2.11). This can be readily seen
by noting that [m| =1 implies m - m = 0 and by using the identity m x (m x m) =
(m-m)m — |m|%m.

Remark 2.3. The boundary condition (2.2¢) obtains by imposing the standard
transmission condition at the boundary: (h* —h~) x n =0, with superscripts +
denoting limiting values from the exterior and from the interior of the body, and by
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setting to null the magnetic field outside the body. In Sec. 5, we present a brief
explanation of what fails in our proof if one had to consider electric and magnetic
fields outside the body. For boundary conditions alternative to (2.2c), the reader may
consult Chap. 7, Sec. 3 of Ref. 11. A consequence of (2.2c) (along with (2.1d)) is that

o(f)e-n=0 (2.12)

holds on 952, that is to say, the outward current flux at the boundary vanishes. Indeed,
by (2.1d) we have [,(curlh — o(6)e) - Vv,dz = 0 for all v € C''(£2). Moreover, from
Stokes’ formula, and from the boundary condition (2.2¢) it follows that:

/cur1h~Vvda?:/h~cur1Vvdx+ hxn-VudS =0,
Q Q 0

since curl Vo = 0. Thus, [;,0(f)e - Vudz = 0 for all v € C'(£2), which entails (2.12).
Remark 2.4. System (2.9) is obtained from Maxwell’s system

pio(h + M) + curle = 0, (2.13a)
eé —curlh+) =0, (2.13Db)

(here £ > 0 is the electric permittivity) by neglecting the displacement current cé.
Justifications of the eddy-current approximation when the dependence of all involved
fields with respect to time is harmonic may be found in Refs. 1 and 3, where it is
shown that the eddy-current approximation can be applied when the characteristic
frequencies of the involved fields are small in an appropriate sense. We also remark
that from (2.1c) it follows that if the initial conditions are consistent with Gauss’ law,
that is to say, div(hy + my) = 0 in the sense of distributions, then the solution in {2 is
consistent with Gauss’ law at all times.

Remark 2.5. The positivity assumption on k, o, «, along with the convexity of g,
guarantee consistency of (2.5), (2.6), and (2.8) with the Second Law of Thermo-
dynamics, which is locally expressed by the following version of the Reduced
Dissipation Inequality'®:

0<—-07'q-VO+r-m+j-e. (2.14)
Here we also used positivity of temperature 6, which can indeed be shown under some

assumptions, cf. Remark 4.1 below. With only a small loss of generality, we will just
consider (cf. also Ref. 22 and references therein):

o(v) = plv[, p>0. (2.15)

3. Weak Formulation, Data Qualification, Existence Result

We consider the above formulated initial-boundary-value-problem with a finite time
horizon T' > 0. Welet I := (0, T), X := I x 9Q, and @ := I x Q. We use the standard
notation C*(-) for the space of smooth (vector- or tensor-valued) functions, L?(-) for
p-power Lebesgue integrable functions, W*?(.) for the Sobolev space of functions
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whose kth derivatives are in L?(-), and (W*?(-))* for its dual space. Also, we make use
of the Hilbert space®’:

Lgurl’O(Q;R3) = {v e L4 R3); curlv € L2(Q;R3),v x njygg =0} (3.1)

Moreover, for X a Banach space, we denote by L?(I; X) the LP-Bochner space of
X-valued functions, by W*?(I; X) the corresponding Sobolev—Bochner space, and by
M(I; X) the space of X-valued measures on I = [0, T|. The scalar product of vectors
from R? and the matrices from R3*3 will be denoted by “-” and “:”, respectively. As
usual, p’ = p/(p—1).

We make the following assumptions:

g,k : Rt — R* continuous, (3.2a)
c,o :RTY = R*, p,¢;:R> =R continuously differentiable, (3.2b)
3 90,91 > 0:g(m) > gy + g1m, (3.2¢)
3 Cax = Cuin > 0, W > 3/2 1 cpn (1 4+ 0971) < ¢(0) < e (1 + 0971, (3.2d)
3 Kpax = Bmin > 0 Kpin < K(0) < Kiags (3.2e)
3 0 = Tuin > 02 i < 0(0) < 0o, 107(0)] < s (3.2f)
3¢>0, Cux€R:c(0)< . 0 (3.2¢)
‘ (14 6)1H<
31<¢<4, Cun>0:Cpunlm|? < go(m), (3.2h)
3 gy <3, Cuux €R:|po(mM)| < Cpae(1 + M%), (3.2i)
3> win( 255 M0) Gu R M < oL+ a(m), (2)
h. € WHH(I; L2(Q; R?)), (3.2k)
0. € LX), 6,>0, (3.21)
my € WH(Q;R?), 6, € L¥(Q), ey, hy € L2 (Q;R?), 6, > 0. (3.2m)

Definition 3.1. (Weak solutions) Let
m € WL(I; L2(S;R3)) N Loo(I; WH2(; R3)),

0 € L"(I; Whr(Q)) N L>(I; L¥(R?))  with r € [1,w>,
w+3
h € L(I; L* (4 R?)),
e € L*(Q:R?),
with 0 > 0 a.e. in Q. We say that the quadruple (m,d,h,e) is a weak solution to
system (2.1) with boundary conditions (2.2) and initial conditions (2.3) if:

(i) m(0,-) = my and there exists r € L2(Q;R?) such that for a.a. t € I and for all
ze W2(Q;R3) and w € L2(Q; R?),

/r-z+>\Vm:Vz+<p6(m)-zdx
Q

m x m
= [ —/——-z—0p(m)-z+ py(h +h,) - zdz, 3.3a
[ 2= teim) 2+ m(h+h) (330)
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/QQ(W) —o(m) — (r—am) - (w—m)dz > 0; (3.3b)
(ii) for all z € C(Q) such that 2(T,-) =0,

/ —¢(0)-z+ k(O)VO - Vadadt
Q
- / (0(6)[e]2 + 1 - i + 6, (m) - ) zdzdt
Q

+ /E (0, — 0)2dSdt + /Q &(0y)2(0, ) daz, (3.4)

where ¢(+) is a primitive of ¢(+);
(iii) for all u € CY(I; L3(;R?)) N C(I; L2,,0(92;R?)) such that u(T,-) =0

/ e-curlu — pg(h +m) - udadt = /,uo(ho +my) - u(0, -)dz; (3.5)
Q Q
(iv) for all v e C(I; Wh2(Q;R?))

/ h - curlv — o(f)e - vdzdt = 0. (3.6)
Q

Note that the above definition reflects that, in contrast to m, the time derivative of
6 and h is estimated only poorly, cf. (3.7), and thus, in contrast to (3.3), the by-part
integration has been employed for (3.4) and (3.5), while e has no time derivative
considered at all; in fact, e.g. if o is constant, then we would have & = %curlﬁ €
L2(I; W22(Q;R3)"). We also note that from the boundedness of o(-) imposed by
(3.2f) and from (3.6) it follows that h € L2(I; L2, ,(Q;R?)).

Now we state the analytical result whose proof will be given in Sec. 4:

Theorem 3.1. (Existence of weak solutions) Under the assumptions (3.2), the
ingtial-boundary-value problem (2.1)—(2.3) admits at least one weak solution (M, 0,
h,e) in accord to Definition 3.1. Moreover, 0 > 0 and

0 € M(I; W32(Q)), (3.7a)
(e(0)) € LY(I; W32(Q)), (3.7b)
h € L2(I; L2, 0 (4 RPY). (3.7¢)

The proof of this theorem is performed by a quite constructive way in the
following Sec. 4, in particular it follows from Proposition 4.2, and the estimates (3.7a)
and (3.7b) follows as in Proposition 3.10 of Ref. 21 while the estimate (3.7¢) is due to
the Eq. (2.1¢) and the a priori estimates (4.21a) and (4.21c¢).

4. Proof of Existence of Weak Solutions

In our proofs, positive constants dependent only on the data will be denoted by C.
When two or more constants appear in the same formula, they will be denoted by a
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progressive integer subscript (Cj, C,, etc.). We will prove Theorem 3.1 by several
carefully assembled steps:

(A) we modify the original problem by a suitable extension for § < 0 and then we
build a discrete Galerkin approximation of the modified problem. We use the
index k € N to enumerate the Galerkin approximation steps for the unknowns m,
h and e, and the index I € N to enumerate the Galerkin approximation steps for 6.
Moreover, we replace dry friction with a smooth viscosity by approximating o
with smooth convex functions p,. We also use the index n to enumerate a
sequence of monotone terms having a p-growth to compensate the growth of the
non-monotone terms. By doing so, we can prove existence of an approximate
solution in the time interval [0, T| by using standard existence theory for ordinary
differential equations (or rather differential-algebraic equations), a priori
estimates, and prolongation arguments (cf. the proof of Lemma 4.1);

(B) we let I — +oo, thus passing to the limit with respect to the Galerkin
discretization for # in the heat equation, which allows for proving non-negativity
of the approximated temperature, cf. the proofs of Lemmas 4.1 and 4.2;

(C) we perform the physically relevant a priori estimates (i.e. “real” energy bounds),
cf. (4.19a)—(4.19f);

(D) using the L!-theory for heat equation together with Gagliardo—Nirenberg
interpolation made simultaneously for the thermal and magnetic parts, we
derive estimate on the temperature gradient, cf. (4.21a), and estimates on
dissipation, cf. (4.21b) and (4.21c);

(E) we let n — +oo and we show that o), (M) + am;, — r, weakly in L2(Q;R3),
where r;, satisfies the differential inequality (3.3b) with m = m,, cf. Lemma 4.4
and in particular (4.47b);

(F) we perform the final limit passage by letting k¥ — +oo, cf. Proposition 4.2.

To perform the Galerkin procedure, let us take an increasing sequence {V}} ey of
finite-dimensional subspaces of W1>°(Q) such that Ucy V}, is dense in W12(Q). We
approximate M with elements from {V}},cy, and  with elements from {V} };cn. Note
that Upey V;, is therefore also dense in L¥(€2). Moreover, we take an increasing sequence
{U} ren of finite-dimensional subspaces of W12°(£2;R?) such that h, x n =0 on 99
for all h, € Uy, and {U}};ey is dense in L2, o(©2; R?). This choice of the basis guar-
antees that the following “curl-cancellation” property holds:

/cur1h~efh~curledx:0 V(h,e) € U, x V§. (4.1)
Q

Furthermore, we consider an approximation p,, of ¢ satisfying, for n — oo,

0,:R3> = R* isa convex Cj-function with o, : R?* — R? bounded, (4.2a)
on(m)-m>0, 0,(0)=0, (4.2b)
0, — o uniformly on R?, (4.2¢)
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0, — o' pointwise on R3\ {0}, and (4.2d)
0, — o uniformly on R?® with 5, (m) := mg/,(m). (4.2¢)

This is satisfied e.g. by the Yosida approximation of p from (2.15) or just by taking
0.(m) = prlm[/(njm|? +1).

The following lemma states the existence of a solution to a semi-discrete
regularized system, namely Galerkin approximation for Gilbert’s and Maxwell’s
equations, and continuous version of the heat equation, while the full Galerkin
approximation advertised in (A) is “hidden” in its proof.

We also approximate the initial data mg, ,, and hy and the boundary datum 6, by
choosing appropriate sequences Mg, 0 , o, and 6, ;, such that

Mo € V,g and ]}erolc My =My in WL2(Q;R3), (4.3a)
Oor € Vi and ]}13)10 0o, =0y in L¥(), (4.3b)
hox € Uy and klgIglo hyr=hy in L‘Z,luﬂ‘o(Q;]R?’), (4.3¢)
b € WH(LL¥(I)) and  lim G =6, in (D). (4.3d)

The approximation of 6, and 6, will allow, in particular, for usage of the conventional
L2-theory for the approximated heat equation.

Lemma 4.1. (Regularization and semi-Galerkin approximation) Let the exponent p
be chosen large enough to satisfy

2(1 1 1 1
SALEW) b o<1, (4.4)
w 14w ¢ p

Let also the function c(-) be extended to negative arguments by defining c(0) = c¢(—0)
for all 0 <0. Then, there exist my, € WY(I; V}?), 0, € L*(I; W'2(Q))N
WLL(T; L3(2)), ey, € L2(I; VE), and hy, € Whe(I; Uy) such that

. . 1. 5.
/ <amk’n + an(mlm) + wé(mk’n) + E'mkn|p_2mkn) "Z+ /\vmkn : Vzdz
Q
m;,, X M
= / (M - 0Zn90l1(mlm) + /J'Ohkn + M()hc) : dev (453)
o\ g(Img,|)
/ c(Gkn)éknz + k(0y,)VOy, - Vadz
Q
= /Q(J(gkn)|ekn|2 + a|mkn|2 + :an(mkn) : mkﬂ + QZnQP/l(mIm) : rhkn)z
+ / Kb (Ocp — O1)2dS, (4.5Db)
N

/,Uohkn U+ ey, - curl U + pom,, - udz = 0, (4.5¢)
Q

1
/Q (g|ekn|p2ekn + U(ekn)ekn) V= hkn -curlvdz =0 (45d)
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forallz,v € V3, uc Uy, and 2 € WY2(Q) and for a.a. t € I, and satisfying the initial
conditions

mkn(ov ) = Mo, ekn(oa ) = GO,kv hkn(oa ) = hO,k' (46)

Sketch of the Proof. We use essentially the technique from Ref. 21 and thus we
present only main steps and modifications.

We still perform the Galerkin approximation of (4.5b) by using the finite-
dimensional space Vj, [ € N, [ > k. Thus we obtain the initial-value problem for a
system of ordinary differential-algebraic equations, let us denote its solution by
(Mt Oy Nieni» €1n1) - More precisely, we can see the so-called underlying ODE-system
by differentiating (4.5¢) once in time and combining it with (2.1c), which leads
formally to

(0(Op) + (P — 2)l€4ul?*) 4 + 0 (Op) Ot + M + iCUﬂZ € ~ 0; (4.7)
in the Galerkin scheme, the right-hand side of (4.7) is not zero but just the residuum
orthogonal to V. Existence of such a solution then follows by standard arguments:
first one can show this locally, and then successively prolong when using the
L>(I)-estimates. These estimates can be obtained by testing the equations respect-
ively by My, O3, N and €. Let us introduce the auxiliary potential € : R — R
defined by €(0) := foeﬁc(ﬁ)dﬁ. Note that 6¢(6)8 = (€(6)) " and that (3.2d) ensures

1

1 1
—|9|”“> < €(0) < ax (592 +—w|el+w). (4.8)

1
. _92
Cmm(z +1+w 1+

Note also that p satisfying (4.4) can be chosen by virtue of (3.2j). The above-mentioned
test gives, after summation and by using the curl-cancellation fQ curley,; - hy,—
curl hy,,; - €, dz = 0, the following identity:

d

A iz
— [ VM) + 0o(Mpy) + €(Op0) + 2| ? dz
at Jo 2 2

. . . 1. 1
+ / oMyl + 05 (My) - My + —[Mga]? + —|e,|?
o) n n
+ £(Op) [V Ojout]* + 0 (Op0) €4 * dz + / K0 udS
o0

= / Mt Ot + 00 (M) Ot + (0750) %01 (Myg) - My
Q
- eznl@,l(mknl) Mg+ pro My - Ny + J(eknl)|eknl|29knl

+ HoMpy - Nedz + / Ko kO d S- (4.9)
o0

The terms on the right-hand side of (4.9) are to be treated by the Holder, Young and
Gronwall inequalities. The difficult terms are o|My,,|%0;,; and 6%,;0% (M) - My, and
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they require the regularizing term in the Gilbert equation with p considered sufficiently
large as in (4.4), cf. Ref. 21 for details. Another difficult term is o/(0},;)|€ 4|20 Which
can be estimated and then handled by the Gronwall inequality due to the regularizing
term in the Maxwell equation as

/U(ekn1)|eknz|29knzd$ < Omaxll €t | 111700 1Ol 1)
Q

= UmaxHekan %2+2/w((2;R3) ||9knl||L1+“’(Q)

HekanLp ars) T Cono Ol 10 ) (4.10)

provided p > 24 2/w, as we indeed assumed in (4.4). All these terms make the
obtained estimates n-dependent. The other terms have lesser growth and can thus
be treated more easily and we thus skip the details. Altogether, we thus obtain the
estimates

Ml lwierwrz@msynL=rro@rs) < Clins (4.11a)
||mknl||LP(Q;R3) < CQJma (411b)

1Okl 2o (1 @2 w2 (@) < Cans (4.11c)
Heknl||LP(Q;R3) < C4,kn7 (411d)
Ikl L (122 (m3)) < Cs ne (4.11e)

We still need some estimate on é,ml, which can be obtained by testing the Gilbert
equation by m;,; and the heat equation by éknlv for details see Lemma 3.6 of Ref. 21 and
reahze the estimate for the additional term [, 0(04)|€4ul* O dt < Como,.. +
5 ||e,ml||Lp @rs) T i ||9kanLg provided p > 2 4 2/w. Thus we obtain

H‘gknl”Ll(I;v;) < G n- (4.12)

These a priori estimates then allow for the limit passage for [ — oo when a converging
subsequence of {(Myu1, Oty Nints €1n1) e 18 selected, benefiting from the fact that V7, is
kept finite-dimensional, so we have strong convergence in my,,;. In particular, my,,; —
m;,, strongly in L>(Q;R?) and then also

©i(Mp) — @i(my,)  strongly in L*(Q;R?)  for i =1,2. (4.13)

This result allows us to cope with the nonlinearity on the right-hand side of the
discretized version of (3.3a).

Further, we have —(curl ey, + M) /1o € LP(I; V), hence hy,, € L?(I; U}). The
passage to the limit in hy,, is easy because it appears linearly. In order to pass to the
limit in the discretized versions of (3.4) and (3.6), we need to establish strong con-
vergence of 0, The L*(I; W12(Q)) bound for 6;,; given by (4.11c), the L(I; V)
bound for 6y, given by (4.12), and a generalization of the Aubin—Lions lemma to
locally-convex-space valued time derivatives (cf. Ref. 24, Lemma 7.7) imply that

O — Opn  strongly in L2(1; L*(Q2)) (4.14)
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for every sufficiently small e > 0. By standard interpolation results (cf. Lemma 7.8 of
Ref. 24), the strong convergence (4.14) combined with the L>(I; L*%(Q2)) bound
provided by (4.11c) yields the “isotropic” estimate (cf. Ref. 21, Eq. (3.32)):

Ot — Opn  strongly in LEH29)/3=¢( Q) (4.15)

for every sufficiently small € > 0. For limit passage in the heat equation, it is also
important to have strong convergence of my,; — my, and of e,,; — €y, in L?(Q;R?).

The former convergence can be obtained by testing the discretized Gilbert
equation by My, — My, which is a legal test since the space V} is the same for all [.
This gives

. . C . .
aHmknl - mkn||%2(Q;R3) + Zp ”mknl - mkn”ip(Q;]Rs.)

. . . 1 . o

< allmy, — mkn”%Z(Q;Rf‘) "’/ (an(mknl) +E|mknl|p My

Q
TN TP L
- Qn(mkn) - E‘mkn| My, | - (mlml - mkn)dxdt
< / | 00(Mpg) - (Mg — My, )| ddt
Q

dadt

. 1. o . . .
+ / ‘ <O‘mkn + E|mkn|p 2mkn =+ Q/n(mkn)) ' (mknl - mkn)
Q
+/ |01t (M) - (M — 0,) [dadt
Q

dzdt

M . . .
+/ ‘ka'l‘(mkl_mk’)
olg(myl) — 7 = '

= ILknl =+ I?.knl + I3.knl + I4Jml (416)

for some (small) constant c, > 0 of the uniformly monotonicity of the map m —
|[m[?~2m (it needs p > 2, which indeed is implied by (4.4). From (4.13), from the
strong convergence of 6,;, and from the weak convergence of my,; it follows that
L gy — 0, I gy — 0 and Iy 3, — 0. From the identity my,, x My, - My, = 0 and the
weak convergence of My, we obtain

My . .
In:/‘ixmn-mndmdt—m. 417
= gty e o

Altogether, the right-hand side of (4.16) indeed converges to zero, which proves the
needed strong convergence My, — My, even in L?(Q;R3).

To show that ey, — €, in L2(Q;R3), we use a similar argument: we test the
approximated Maxwell system by h;,,; — h;,, and €;,; — €;,, benefiting from the fact
that we have k fixed so that these test functions are admissible. Benefiting also from
the smoothness of these test functions, we can use the curl-cancellation identity
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Jocurl(€p —ey,) - (hyy—hy,) — curl(hy, —hy,) - (€, —€y,)dz = 0. Then, proceed-
ing as in (4.16), we show that

I
m 70 Iz = Nl e (220m3)) + / o (Orn) €1 — €l
Q
1
+ E (‘ek’nl‘p_Qeknl - |ekn|p_2ekn) : (eknl - ekn)dzdt = 07 (418)

so that ey,; — €y, in L2(Q;R?3) is proved, and the limit passage in the heat equation
is then easy.

Lemma 4.2. (Non-negativity of temperature) It holds 0;,, > 0 and thus, in fact, 03,
in (4.5) can be replaced by 0,,.

Proof. As standard, we exploit that 6,(t,-) € W2(Q2) and we test (4.5b) by 6}, to
show that 0, = 0. We show that all the right-hand side terms in (4.5b) either vanish
or are negative under this test. O

Lemma 4.3. (4 priori estimates) There exists a constant C not dependent on k and
n such that

Ml w12m3)) < C, (4.19a)
o (M)l 2 (1:01(2)) < C, (4.19b)
Ikl L (122 (R3R3)) < O, (4.19¢)
10kl L (.o < C, (4.19d)
and also the estimates which are not uniform in n:
1Mol Loy < Cn Y2, (4.19¢)
€l o(irz) < Cn~VP. (4.19f)

Proof. It follows immediately by using my,, 1, h;, and e;,, as tests respectively for
particular equations in (4.5). Integrating over a time interval [0, {], summing it up,
and using the curl-cancellation fQ curley, - hy, — curlhy, - €;,dz = 0 in the Maxwell
system itself, and also the cancellation of the adiabatic term 6} ' (my,) - My, (now
written as 0,01 (My,) - My, in view of Lemma 4.2) between the magnetic and the
heat equation, and further the cancellation of all the dissipative terms o(6;,,)|€5.|%,
almy,|? and o/,(My,) - My,, we obtain the identity

[ 812+ (1) + 519 (1) + )

//‘mkn|p+|ekn|pdm+// KO dSdt
0o \Jon
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Ho
+/—h
[ o

t .
= / (/ kp0.dS + / Hohe - mkndx) d? +/ %|ho.lc|2 + ©o(Mg 1)
0o \Joo Q Q

A .
+ §|Vmo,k\2 + ¢(0 1) + 110he(0,-) - Mg i — pohe (2, -) - My, (¢, -)dz.  (4.20)

A R
2+ @p(Mp ) + §|Vm0,k\2 + ¢(bp)dz

Then we estimate the term | [, tiohe - My, dz| < u0||ﬁc||Lq/(Q;R3)||m;m||Lq(Q;R3) and treat
it by the Gronwall inequality, relying on the coercivity of ®:m — [,@o(m)+
2/Vm|? dz and the qualification of h. € L1(I; L*(Q;R?)), cf. (3.2k). The last term can
be estimated as [, pohe(t,+) - My, (¢, -)dz < pollhe (2, )l 2@z [Min(t, )l 220ms) and
then treated by Young’s inequality, relying on the coercivity ® and on (3.2k). Thus
we obtain (4.19). |

The next step is to derive a bound for V6,,.

Proposition 4.1. (Further estimates) There exists 1 < r < %“:;’, and a constant
C > 0 such that

IVOinllrors) < C, (4.21a)

Ml z2orsy < O, (4.21Db)

€rnllz2(Qrs) < C, (4.21c)

”éanLl(I:(WDl‘”‘(Q))*) <C. (4.21d)

Proof. For the reader’s convenience, we organize the proof in successive steps.

Step 1. Nonlinear test of the heat equation. In the heat equation (4.5b) we choose as
test function

1

P(On) =1 — [(EY S5 (4.22)
where ¢ > 0. Such a test yields the estimate (see Ref. 21 for details):
| 0190 drat < OO+ Bilia). (423)
where
Ry, = alMy,|* + 05(My,) - My, + 0(0pn) €] > + Opnip1 (My) - Mgy
Step 2. Interpolation. We show that for
C:2w—|—3—r(w—|—3) (4.24)

3

the following estimate holds:

||V0kwn||zr(Q;R3) < C/Q¢’(9kn)|V9kn2d:cdt. (4.25)
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Note that the restriction r < 2“”'3 guarantees that ¢ from (4.24) is positive, as
required in Step 1.
To begin with, we apply Holder’s inequality to obtain

|¢ 0kn T/2|vekn|r
| (61)| "2

/|V0kn| dzdt = dzdt

1-r/2 r/2
s( / |¢'<okn>|#dxdt> (/ qs’(ekn>|vem|2dxdt> . (4.26)
Q Q

Then, we observe that, since ¢’(0;,,) = W,

CC,?“ = C_ﬁ7
/Q|¢/(9kn)| “7rdadt = Cerlll + aanIzp(Q)a where b r(1+¢) (4.27)
2—r

Moreover, by (4.24) we have ( = (2 —r)(w/3+ 1) — 1, and thus from (4.27) we
obtain p/r = w/3 + 1, that is to say,

A 1=A
_f+7:0, whereAzzG (071)7
3 w p

whence

1A 1 1-A
—=—=A—-—= —_— 4.28
p T (r 3>+ w ( )

Furthermore, by (4.28) and by Gagliardo—Nirenberg’s interpolation inequality
between L“(Q) and W17(Q), we have

1L+ O (8, )1y < CIL A+ O, M) I+ Ot M i) (4:29)
for a.e. t € (0, T). From (4.29) and (4.19d) we obtain

11+ 4l ) < 0<1+ /Q |vekn|fdxdt>. (4:30)

Finally, on combining (4.26), (4.27) and (4.30) we obtain (4.25).

Step 3. Estimation of the right-hand side R;,,. We prove the following estimate:

T 2q
IRiallzia < O( 1+ [ | at], si= 20 (4.31)
0

¢ =2
with ¢; as in (3.2)).
To show that (4.31) holds, let us abbreviate

Ilm = / O‘|mkn|2 =+ an(m]m) ' rhlm + U(akn)|ekn|2 dxdt,
© (4.32)
Jkn = A‘eknwa(mkn) : mkn| dzdt.
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Using Holder’s inequality, (3.2j) and (4.19b), and Young’s inequality, we obtain

T
T < / 105 (M)t o 10 22y Lt
0
T .
< C/ )Ml 220 dt
0
T
< C&/ Do) At + 81, (4.33)
0

where 6 > 0 can be arbitrarily small and Cs > 0 depends on 8. Testing the discrete
Gilbert’s equation and the two discrete Maxwell’s equations (4.5a), (4.5¢) and (4.5d)
respectively, by my,,, h;,, and e;,,, and summing them we obtain, by curl cancellation,

I A
_0|hkn(T7 )‘2 + SDO(mkn(T> )) + _‘vmkn<T7 )|2 dz
qQ 2 2
1 . . . .
+ z/ |mkn|p + |ekn|p + O‘lrnkn‘2 + an(mkn) * Miy, + U(ekn)|ekn|2 dzdt
Q

L A .
- /sz 70|ho.k|2 + @o(Mg ) + E\Vmoﬁk|2 + (6o )de

+ / 9k7L<p/1(mk7L)mkndzdt +/ Mohe ' mkndmdt'
Q Q
In particular, we have

Ikn S C+ J]m + / :U’Ohe . m;mdacdt
Q

We can treat the term f 0 tohe - My, dzdt by Holder’s and Young’s inequalities, and
then by absorption of m on the left-hand side, we obtain

Iy < C(1+ Jy). (4.34)
Taking 6 small enough in (14) and using (4.34), we eventually arrive at (4.31).

Step 4. Further interpolation. (This step is to be skipped if w > 3.) We prove the
following: if w < 3 and the exponent s defined in (4.31) satisfies s < 24, then there
exist 7 € [1,2253) and X € (0,7/2) such that

I

By direct computation we verify that if w < 3, then

1-— 1 1
inf )\+)\(———):w+3.

1<7<2“'+r; w T 3 6w

2)\

Q]R*)r'

o(

(4.35)

0<A<r/2
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Hence we can select r € [1,2453) and A € (0,7/2) such that
1_1-2AX 1 1
—>——FA——=). 4.36
s w i (r 3) ( )

By (4.36) we can interpolate between L“(2) and W17 (Q) and we can use the bound
in L*((0, T); L¥(Q)) for 6}, (see (4.19d)) to obtain, for a.e. t € (0, T),

10k (t, Lo () < CllOra(2, I 5= Q)”ekn( M3 Wir(Q)
< Co(1+ VO (t, )l (QR?))- (4.37)
Thus,
o di < 0(1+/ 196,12 dt) (4.38)

Since r/(2X) > 1, we now use Holder’s inequality to obtain the bound (4.35)
from (4.38).

Step 5. “Isotropic”’ estimate for temperature. We collect the inequalities (4.23),
(4.25) and (4.31) to obtain

T
Lrgry) < CL(1+ | Bllpig) < G <1 +/ 16kl 7502 dt>7 (4.39)
0
and we prove the estimate (4.21a) by showing that
T
/ 161all 7o) dE < C. (4.40)
0

To prove (4.40), we consider two cases, according to whether w < 3 or w > 3.

(a) Case w < 3. In this case 24 > 5% thus by (3.2j) and (4.31) we have that
s < %2 and hence we can use the result proved in Step 4. By (4.35) and (4.39) we

T 2y T
([ alioar) < o1+ [Culioar). @
0 0

Now recall from Step 4 that A € (0,7/2), hence (4.41) implies (4.40).
(b) Case w > 3. In this case 2% < 5% thus (3.2j) implies - ql < w, and therefore
s <w by (4.31). Hence, from (4. 19d) we obtain again the estlmate (4.40).

have

Step 6. Boundedness of heat sources. We now prove (4.21b) and (4.21c). From
(4.39) and (4.40) we have

[ Binll ) < C. (4.42)

Moreover, by the linear growth of o(-), by (4.2), and by the assumption that o(-) is
bounded from below (cf. (3.2f)) it follows that

||manL2(Q;]R3) + ||eanL2(Q;]R3) < C”Rkn”Ll(Q) (443)
The estimates (4.21b) and (4.21c) follow immediately from (4.42) and (4.43).
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Step 7. Time-derivative of temperature. In this final step we prove the estimate
(4.21d). Let w € L>(I; W, ™(Q)). By (3.2b) and (3.2d) we can take z = w/c(6},) as
test function in (4.5b) to obtain:

/akn'LUdl'dt _/ Ryw — K(0),) VO, - Vw

(Orn) (Orn)
c (Gkn)’%<9kn)vekn : Veknw
e dadt. (4.44)

By (3.2d), (4.42) and (4.21a) we have

le’w fﬁ(@kn)VGkn -Vw .
/ 0 ) dzdt < CHw||LOC<I;W01.aC(Q)), (4.45)
moreover, by (3.2g), (4.22) and (4.23),
/ ¢ (ekn)n(ekn)vikn vekn dzdt < Cl ¢ ekn |V9kn| wdiﬂdt
0 c(&kn) okn)
< CZHwHLx(Q)- (4.46)

From (4.44)—(4.46) we conclude that sup {fQ Oy w dadt : lwll 1. Wi @) = 1} <,
whence (4.21d). O

Lemma 4.4. (Passage n — o0) A selected subsequence {(My,, 01y, Nin,s €10) Fnen does
exist such that it converges weakly* in the topologies indicated by (4.19a)—(4.19¢) and
(4.21) to a limit (my,0;, €., hy) satisfying the initial conditions (4.6) such that
h, € L2(I; (V})*). Moreover, there exists r, € L*(Q;R3) such that

1) fora.a. t€ 1, forallz € and all W € ;
i) f I, f Il V,f d all L2(OQ;R3

mk X rhk,
/ (rk + po(my) — 974' 0501 (M) — pohy — Hohe> "z
0

(M)
+AVM, : Vzdz =0, (4.47a)
/ﬂ o(w) — o(thy) — (1 — arny) - (w — rhy) dz > 0; (4.47D)

(ii) for all z € C1(Q)

_ / £00)2 + #(0,)V0, - Vadadt
Q
= /Q(U(@k)|ek|2 + almy|* + o(my))z + 00" (M) - My zdadi

+ / (0 — 0)2dSdE + / é(0.) (0, ) dz; (4.47¢)
¥ Q
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(iii) for a.a. t € I, for allu € Uy, andv € V}

/,uoﬁk-u—l—ek-curlu—&—uorhk.'udx:O, (4.474d)

Q

/ hy, - curlv — o (0 )e;, - vdz = 0. (4.47¢)
Q

Sketch of the Proof. The passage to the limit from (4.5) to (4.47) is the same as we
did in the proof of Lemma 4.1, since k is still constant. One difference is that we first
introduce ry, := amy, + o,,(My;,) € L2(Q;R3). The a priori estimate (4.21b) yields
boundedness of {r;, },cx s0 that we can also rely on ry,, — rj, weakly in L%(Q; R3) for a
selected subsequence. Realizing convexity of g,, we can thus rewrite (4.5a) into

My, X mk
/ <rkn + @é(mkn) - + Gkncp/l(mkn> - /loh/m
Q

1. .
— pohe + nmlm|p_2mkn) -Z4+AVmy, : Vzdz =0, (4.48a)
[ 0aW) = a(ti) = (1 i) (w = g )do > 0 (4.48)
Q

The estimate (4.19¢) is now used to show that the regularizing term in the
magnetic part vanishes in the limit. Indeed, we have

1. . 5.
/Qn|mk"|p_2mkn'Zdl'dt !

1. _
< E Hmknngy(Q;Ra)HZHLP(Q;]R3)

1
< C% ||Z||LP(Q;]R3) — 0 (449)

for any z € L?(Q;R?). This allows us to pass from (4.48a) to (4.47a) if integrated
over time because the other terms can be converged easily.
Now we want to estimate limit superior in (4.48b) if integrated over time. Using
(4.2¢) and (4.2a) we get
liminf/ 0y (M, )dzdt = lim [ o,(My,) — o(My,)dzdt
Q

+liminf/g(mkn)dxdt2/,Q(rhk)da:dt. (4.50)
Q

n—00 Q

The only difficult term ry, - My, remains to be treated by using (4.48a) tested by
z = m,, and further using the already proved limit in (4.48a), namely

lim sup / M, - My, dzdt
Q

n—oo

. My, X rhkn / !
:hmsup/ (-sﬁ My,) — O (Myy
n—00 Q g(‘mknD 0( ' ) ’ 1( * )

1. . . .
+ pohgy + pohe — E|mlm|p ka’n> “My, — AVmMy, : Vmy, dadt
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n—oo

< lim . (P + 1ohe — ©0(My) — O (My,)
. rh]m — )\mGn : mGndmdt

= /Q(Mohk + pohe — @o(My) — Orp1(My)) - My — AVmM, : Vi dzdi

m; x m
— /Q <kk + pohi + pohe — wo(my) — 9k90/1(mk)>

g(|myl)
= / - mkdflfdlf'7 (451)
Q

where we benefited from having the finite-dimensional approximation of
My, (t,+) € Vj. Thus the limit passage from (4.48b) to (4.47b) if integrated over time
is done.

For limit passage in the heat equation, we need to improve m;, — m; strongly in
L2(@Q;R3). To this goal, we modify the procedure (4.16) and (4.17) by omitting the
L?-term in (4.16) and, since now g, is not fixed, by handling the g-term as follows: for
any &, € L2(Q;R?) such that &, € do(m;,) a.e. on Q, we have

lim 1nf/ (:Q/n(rhkn) - fk) ' (mkn - mk)dxdt
Q

n—00

T /Q (0 (M) — 0(y) - (g, — )

n—00

+ (on(my) — &) - (my,, — my)dadt

n—00

> lim nf /Q (ol (i) — &) - (Fy, — )l

= liminf (0% (my) — &) - (Mg, — my)dzdt

n—eo /{(t,z)eQ;mk(t,z)aéO}

+ lim (0n(my) — &) - (My, — my)dzdt, (4.52)
0 J{(ta)€ Qg (L) =0}

where we also used that g/, is monotone since g,, is convex, cf. (4.2a).

Due to (4.2d), we have o/,(m;) — &, — 0 pointwise on {(¢,z) € Q; m,(t,z) # 0}
since &, = o/(M;) on this set. Then the functions |o/,(M;) — &;|?, being bounded due
to (2.15) and (4.2a) on @, have certainly a common integrable majorant and, by
Lebesgue theorem, o/, (M;) — &, — 0 in L?(Q). The last but one term in (4.52) thus
converges to 0. The last term in (4.52) simply equals to _-f{(t,;c)eQ;mk(tﬁx):O} &
my,dzdt due to (4.2b) and, as such, it obviously converges to 0 for n — oo, too.
Hence, the first term in (4.52) can be forgotten for the procedure (4.16) and (4.17),
which then again shows that m, — m, in L2(Q;R3).
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Like before, we can execute the procedure like (4.18) which, however, now
must be modified by replacing the term 2 (|€,|” €5 — [€4n] " *€4n) - (€41 — €1n) by

L

L(lex|?2ey,) - (er, — €;), which can further be treated as

n—oo

1
Jim inf / " (lewl ™1 - (64, — e)drdr
Q

1
< lim [ —(|lew|? e, - epdzdt = 0, (4.53)
n

n—oo Q

where we also used (4.19f) to get

1 B 1 1
‘/Q E\ean’ 2ekn : VdZL‘dt‘ < E||ekn||II),P(Q;R5)”VHL"(Q;R:;)

1
<C \J/ﬁ ||V||LP(Q;]R3) — 0, (454)

to get for any v € L?(Q;R?) and in particular for v = e; here it is important that e,
is not only in L?(Q;R?) as seen from (4.21c) but indeed even in L?(Q;R?). This last
fact follows from that e, (¢, -) ranges the finite-dimensional space V} and, by (4.47e),
a(0r)e, € L>(I; (VE)*) so that

T
[ Jeutasae < 6 [ (o@le?amt < G [ Notaen et
0 ,

T
< 03/ lewl2dt < 04/ e, |2dadt, (4.55)
0 k Q

where we have used the fact that o(6;) > 0,5, > 0. Since e, € L*(I; V}}), we have that
o(f;)ey, is in duality with |e,|%e;, and we can repeat the argument to obtain
ey, € L8(I; V), and after another finite number of boot-strapping steps we get the
integrability better than p. Thus, from (4.18) modified as described above, we even-
tually get ey, — e in L2(Q;R3).

Using (4.2¢), we also get o},(My,) - My, — o(M;) in L2(Q). Thus we can see that
all terms on the right-hand side of the heat equation (4.5b) converges in L'( Q). Thus
the limit passage from (4.5b) to (4.47c) can be accomplished.

Moreover, (4.54) can be used for a general v to pass to the limit from (4.5d) to
(4.47e) if integrated over time.

Proposition 4.2. (Passage k — oo0) A selected subsequence {(my, 05, hy, €;)}ien
does exist such that it converges weakly* in the topologies indicated by (4.19a)—
(4.19¢) and (4.21). Its limit, denoted by (m, 0, h, e), is a weak solution in accordance to
Definition 3.1 satisfying also (3.7).

Sketch of the Proof. The main scenario as far as the Gilbert and the heat equation
one concerned is as in Proposition 3.10 of Ref. 21 and we outline only the differences
and expansions in successive steps.
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Step 1. Passage to the limit in (4.47a). For s in the unit ball of L?(@Q;R3), we
choose W = 1, — s as a test in (4.47b). This choice gives [,,r; - sdzdt < [, am; s+
p(s)dzdt < C(1+ ||mk||2L2(Q;R3)). Hence by (4.21b), r, is bounded in L?(Q;R?) and
(up to a subsequence) has a weak limit r € L2(Q;R?). The passage to the limit in the
other terms is possible, thanks to the uniform bounds (4.19a), (4.19¢), (4.19d) and
(4.21a), (4.21b), (4.21d). In fact, by the estimate (4.19a), Vm,, converges weakly in
L2(@Q;R3*3). Furthermore, in view of (4.21b), m; converges weakly to m in
L2(@Q;R3), whereas m;, converges strongly in L?*(I; L4 (Q2;R?)) for all p* € [1,00)
and ¢* € [1,6) by Aubin—Lions’ theorem. Thus, by (3.2b), ¢(m;) converges to
wo(m)in L(Q;R3) and, by (3.2¢), g~*(|m;])m; x m; converges to g~ (Jm|)m x m in
LY(@Q;R3). By (4.19¢), h; converges weakly” to a limit h in L>(I; L2(;R3)). By
(4.19d), 0 converges weakly™ to a limit § in L>(I; L¥(Q2)), respectively. From the
weak convergence of 0, the strong convergence of my, and the continuity of ¢/ () we
obtain the convergence of 0,01 (m;) in L'(Q;R?). We thus conclude that the weak
limits r, m, 6 and h satisfy (3.3a).

Step 2. Passage to the limit in (4.47b). We choose z = m;, as test function in (4.47a).
By the convergence results established in Step 1, and by the weak-lower semi-
continuity of the L? norm, we obtain

lim sup/ re - mydzdt
Q

n—oo

) m, x m
= lim Sup/ (u — @o(my) — 001 (M) + pohy, + Nohe)
k—o0 Q g(|mk|)

. mk — /\mG : mGdmdt

= lim [ (uohy + pohe — po(My) — o (My)) - Mydadt

n—0o0 Q

A A
- limsup/ §|mG(T,~)|2dm+ lim §|mG(0,-)|2dx
Q )

n—00 n—00 J¢

< / (oh + pohe — 0o (M) — 67 (m)) - dadt
Q
)\ 2 )\ 2
— [ 2 9m(T, )2 - 2]vm(0, )| %dz. (4.56)
o 2 2

It follows from (3.3a) that Am € L2(@Q; R3). Moreover, sincem € L2(I; W12(Q;R?))N
WL2(I; L2(2;R?)), the function [0, T] 2 t — Vm(t, ) € L?(2; R?*3) is weakly con-
tinuous. Thus, the following by-parts integration formula holds:

%/|Vm(T,~)|2—|Vm(O, ~)\2dx:/Am~rhdmdt. (4.57)
Q Q
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Combining (4.56), (4.57) and (3.3a) we obtain

hmsup/ r, - m dzdt
Q

k—o0

S/ (M+uoh+uohe—<p6(m)—9<P'1(m)> -+ AAm - M dad?
o \g(Iml)

_ / - rhdadt. (4.58)
Q

Taking the limsup of both sides of (4.47b) and using (4.58), we arrive at (3.3b).

Step 3. Passage to the limit in (4.47d)—(4.47¢). We pass to the limit in the Maxwell
equations, i.e. from (4.47d) and (4.47e) to (3.5)—(3.6). This step is also straightfor-
ward since the only nonlinearities in these equations involve 6, for which we have
compactness by Aubin—Lions’ theorem. Having (3.5) and (3.6) at our disposal, we
can extract the important information that

he L3 (I; L2, 0 R?) and  h e L3I L2, (4 R?)Y) (4.59)

because, in the sense of distributions on @, we have curlh = o(f)e € L?(Q; R?) and
h = —(curle + m)/p with e € L?(Q;R?) and m € L?(Q;R?).

Step 4. Strong convergence of €, and my, in L?(Q;R?). This result is preliminarily
needed to pass to the limit in the heat equation, a step that we will complete later. To
prove that e, — e in L2(Q; R?) we test the difference of the Galerkin Maxwell equations
(4.47d) and (4.47¢) and the limit Maxwell equations (3.5) and (3.6) respectively by the
difference e, — e and h;, — h, similarly how we did it in (4.18). However, to use the
Galerkin identity (4.47d) and (4.47¢) we should now rather approximate e and h into
the finite-dimensional subspaces V} and Uy by a pair of sequences €™ and h}* which
converge strongly to € and h, respectively, so that

Ay’ e+ culel™ =rl) 0 in L2(1; L2 (R, (4.60a)
—curlh?™ 4 o(0)e™™ =r? — 0 in L2(Q;R), (4.60b)

where we used (4.59). Then we test the difference of the approximated Maxwell

equations (4.47d) and (4.47e) and the approximated Maxwell equations (4.60)
respectively by the difference e} — e, and hi*” — h;. Taking benefit from smoothness
of the approximation ;" and h}"™, we still have the curl-cancellation [, curl(e, —
e ™) - (hy — hi?) — curl(hy — hi™) - (e —e}™)dz = 0. In this way, like in (4.18)

after integration over [0, T], we obtain

/ O'(ek)|ezpp — ek|2 dazdt
Q

< [ (0(01) ~ 0@ @™ ~ ) — (e — i) - (07 — )
Q
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+ rgj) (R —hy) + rf) (e —ep)dadt

+/%|h2pp(0,-)—hk(0,-)|2dx. (4.61)
Q

Let us emphasize that these arguments do not rely on that hi™(T,-) —hy(T,-)
would have a good sense in the limit and on the curl-cancellation property in the
limit. By Aubin—Lions’ theorem, #;, — 6 in L!(Q) and thus (o(6;) — o(0))e}™ — 0
in L?(@Q; R3), and by using that e} — e, is certainly bounded in L?(Q; R?), we have
(0(6;) —o(0))ei™ - (e —e;) — 0in L(Q). As we already proved m; —m — 0 in
L?(@;R?) and as hi®® — h;, is certainly bounded in L?(@Q;R3), we have (m; —m) -
(hi?* —h;) — 0 in L'(Q). Now an important point is that the residuum rg) €
L3(I; L2 o (5 R3)) s in duality with hi™ — hy € L2(I; L2, o(2; R?)) so that the
term r;gl) - (hi? —h;) converges to zero in L!'(Q). Similarly, the residuum r,(f) €
L2(Q;R3) is in duality with ™™ — e, € L2(;R?) so that the term rl”) . (e — e,
converges to zero in L'(Q). Here, in both of these last terms, we essentially benefit
from the eddy-current approximation. Thus, (4.61) gives ;" —e;, — 0 in L%*(Q)
(here we used o(-) > oy, > 0, cf. (3.2f)) and, since €™ — e in L?(Q), we eventually
obtain the desired convergence €, — € in L?(Q).

We omit the proof of the strong convergence of My, which can be performed in the
same manner as in Egs. (3.68) and (3.69) of Ref. 21 (using very subtle arguments, in
particular Vm € L?(Q; R3*3) which needs (3.2¢) etc.) modified here by adding the

inequality fQ o(m)dzdt < lim inf,Hoon o(m;)dadt.

Step 5. Passage to the limit in (4.47¢). By (4.19d), (4.21a) and (4.21d), we have weak”
convergence of 0 in L>(I; L*(Q)) and weak convergence of V0, in L"(Q;R?). Then,
by Aubin—Lions’ theorem, 6, converges strongly in L'*2%/3(Q). The strong conver-
gence of §;, along with the weak convergence of its gradient allow us to pass to the limit
on the left-hand side of (4.47¢). We then consider the right-hand side of (4.47¢). By
Step 4, the term o(6},)|e|? + a|m;|? converges strongly to o(8)|e|? + a|m|? in L}(Q);
by the continuity and the degree-1 homogeneity of p, the strong convergence of m;
guarantees that p(m;,) converges strongly to p(m). The passage to the limit in the term
Orp(m;) - My, follows from the strong convergence of 6, m; and m;, L?(Q;R?). The
remaining terms in the last line of (4.47c) converge because of (4.3).

Remark 4.1. (Positivity of temperature) If (3.2j) and (3.2m) are strengthened by
requiring ¢} bounded and inf §, > 0, one can also strengthen Lemma 4.2 to obtain
even positivity of 6 by a comparison argument as devised in Sec. 4.2.1 of Ref. 12.
Knowing already 0;,, > 0 from Lemma 4.2, we deduce from (4.5b) that

C(akn)ékn - dlv(ﬁ(ekn)vakn) > O‘|rhlm|2 + ekngoll(mkn) ! mkn

v

1
- E'gkn(p/l (mkn) | ?

_supgi()
da

Y

61 (4.62)
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We compare the solution to (4.5b) with the solution to the ordinary-differential

equation ¢(x)x + %fj”m? = 0 which, for x(0) = inf 6, > 0, gives a sub-solution of
the heat equation (4.5b), exploiting also the fact that 0, ; > 0 a.e. in 9€2. Taking also

into account (3.2d), we have

sup 1 ()Ix|® _ _ supi()Ix|?
4OLC(X) o 4acmin<1 + |X|W71)

(4.63)

and thus we can still estimate 0, (¢, z) > x(t) if x solves the initial-value problem

sup ' () [x|?
4acIIliIl(]‘ + |X|w71)

=0, x(0)=inf6, > 0. (4.64)

This problem possesses a unique solution which is decreasing in time but ever
positive; here it is important that the nonlinearity £ — |x|?/(1 + |x|“~!) is Lipschitz
locally continuous. Thus 6y, > ming 71x(-) > 0. This positivity is “uniform” and is
thus preserved under the limit for & — oo and n — oo.

5. Concluding Remarks

In this last section we briefly comment some possible generalizations and modifi-
cations, and also those generalizations that seem to bring serious difficulties.

Remark 5.1. (Temperature dependent coefficients) One can consider temperature-
dependent coefficients o = a(6), p = p(d) in (2.15), and g = g(m, ) in addition to
already considered temperature-dependence of x and o. Under a suitable
qualification, this generalization is relatively routine because there is a compactness
by Aubin—Lions’ theorem in 6.

Remark 5.2. (Electromagnetic field outside) Considering the full Maxwell system,
i.e. with £yé added in (2.1d), would make the whole problem hyperbolic/parabolic
and bring substantial difficulties. For example, there would not be any estimate on
curlh in L2(Q;R?) and the argument used to limit (4.61) would fail. This is also why
we confined ourselves only on the magnet itself where the eddy-current
approximation of the Maxwell system is well acceptable and why we neglected the
electromagnetic field outside which otherwise would standardly be considered as the
full Maxwell system, cf. Sec. 5 of Ref. 29.

Remark 5.3. (Thermoelectrical effects) Interesting generalization would be to
consider Thomson’s thermoelectrical effect, see e.g. Sec. 3.2.2 of Ref. 20. Instead of
(2.6), one then considers

q=—r(0)Vo+ Bs(0)e,

)= o(6)e + Bp(6) V. (5-1)
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The coefficient (q is related to Seebeck’s cross effect and (p is responsible for Peltier’s
effects. It is physically well justified to impose the following (Nobel-prize awarded)
Onsager symmetry condition (see also Ref. 17):

Bs(0) = 05p(6). (5.2)
The system (2.1) would then become

1 . . .
———m x M+ AAmM — po(m) — 0p1(M) + po(h + h,) — am € dp(m),  (5.3a)

g(|mf)
0(9)6" —div(k(0)VO — Bg(0)e)

=a(0)|e|® + Bp(A)VO - & + a|m|? + o(m) + O] (M) - m, (5.3b)
po(h 4 ) + curle = 0, (5.3¢)
g€ — curlh + o(0)e + p(0)VO = 0, (5.3d)

with boundary conditions (2.2). Thanks to (5.2), the system (5.3) enjoys formally a
lot of various cancellation properties: in addition to curl-cancellation in the Maxwell
system (5.3¢) and (5.3d) under the test by h and e and the cancellation of the
dissipative and adiabatic terms under the test of the whole system (5.3) by m, 1, h
and e as before, also the cross-coupling terms in the heat equation (5.3b) itself
mutually cancel when tested by 1/6, and still we have the cancellation of the Joule
heat and Peltier’s terms when tested (5.3b)—(5.3d) by 6, h and e.

Under suitable qualification of g and (p, a lot of the above considerations seem
possible to be expanded for these cross-terms, too. However, e.g. the strategy (4.61)
would augment by the term (8p(0;)V0, — Bp(0)V0) - (€3 — e;) which does not
seem possible to push to zero for k — oc.
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