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1. Introduction

A micropolar body is a continuous collection of material particles whose con-

figuration is given by a placement and an orientation [5] in the three-dimensional

Euclidean space. This formal structure is shared by theories of thin bodies which

take into account both bending and shearing, such as the Timoshenko beam and

the Reissner-Mindlin plate. Timoshenko’s theory pictures an elastic beam as a one-

dimensional collection of two-dimensional sections, whereas Reissner-Mindlin’s theory

pictures an elastic plate as a two-dimensional collection of one-dimensional fibers; in

both cases, the configuration of the body is assigned by prescribing the displacement

and the rotation of, respectively, the sections and the fibers. This similarity is at

the basis of the conjecture [6] that three-dimensional micropolar elasticity might be

effectively used as starting point for a “rational” deduction of theories of shearable

beams and plates by some dimension reduction process.

No matter whether the “target” theory describes a beam or a plate, the dimension

reduction may be achieved starting from a three-dimensional body having the shape

of a right-cylinder and then appropriately scale geometry, loads, and possibly material

moduli by multiplying each datum by some power of a small parameter [7]. The choice

of the scaling laws, if done appropriately, leads in the limit to the energy functional

of the target structural theory. For elastic plates, this program has been carried out

[1, 8, 9]. For rods, it seems to us that much has to be done.
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This paper constitutes a first step towards building the Timoshenko’s beam the-

ory from micropolar elasticity. We take a linearly elastic, homogeneous micropolar

body having the shape of a right cylinder of fixed height and cross section a disk of

radius h. Equilibrium configurations for such a body are pairs of displacement u and

microrotation ω which minimize a suitable quadratic energy functional. Following

the same line of reasoning as [9], we are able to identify the Γ limit, as h tends to zero,

of the energy functionals, and we show that this functional is “one dimensional”, in

the sense that its effective domain consists on pairs (u, ω) that depend on the axial

coordinate only. The interpretation of this result and its connection with existing

structural theories is going to be scrutinized in a forthcoming paper.

2. Notation

We denote by e1, e2, z the standard orthonormal basis of R
3. For h > 0, we set

B(h) := {(x1, x2) ∈ R2 : x2
1 + x2

2 < h} and, for L > 0, we consider domains Ω(h) ⊂ R3

having the following form:

Ω(h) = B(h) × (0, L). (2.1)

The lateral mantle of Ω(h) is:

Γ(h) = ∂B(h) × (0, L) .

Moreover we set:

B := B(1), Ω := Ω(1), Γ := Γ(1) .

If x ≡ (x1, x2) belongs to B(h), we denote by (x̃, ζ) and (x, ζ) the elements of

Ω(h) and Ω respectively; in particular we regard x̃ as the result of the scaling:

x1 = x̃1/h , x2 = x̃2/h , (2.2)

which maps Ω(h) one–to–one onto Ω.

We denote by | · | the Euclidean norm in Rn. For a,b ∈ Rn, a ·b is the Euclidean

scalar product of a and b and a⊗b ∈ R3×3 is the matrix whose entries are (a⊗b)ij =

aibj . For a,b ∈ R3, a × b denotes the vector product of a and b. The space of

symmetric 3 × 3 matrices will be denoted by “Sym”.

Given a matrix T ∈ R
3×3, we denote by T

⊥
the R

3×2 matrix obtained from T by

removing the third column:

T
⊥

=







T11 T12

T21 T22

T31 T32






.
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With a slight abuse of notation, we also set

T
⊥

+ a⊗ z =







T11 T12 a1

T21 T22 a2

T31 T32 a3






. (2.3)

Likewise, if v is a vector field defined on Ω
⊥

or Ω(h), we define the surface gradient

of v as:

∇
⊥
v =







∂x1v1 ∂x2v1

∂x1v2 ∂x2v2

∂x1v3 ∂x2v3






.

If v is a vector field defined on Ω(h), we define the scaled gradient of v as:

∇(h)v =
1

h
∇

⊥
v + ∂ζv ⊗ z . (2.4)

Given ω ∈ R3, we denote by Aω the unique skew–symmetric matrix such that Aω v =

ω × v for all v ∈ R3. Note that

|Aω| =
√

2|ω|. (2.5)

If U is an open subset of R2, we denote by L2(U ; R3) and H1(U ; R3) the usual Hilbert

(respectively Lebesgue and Sobolev) spaces of functions defined on U and taking

values on R3, and we set:

L2(U) := L2(U ; R3) × L2(U ; R3) and H1(U) := H1(U ; R3) × H1(U ; R3) .

We moreover define the spaces of kinematically admissible fields :

K(Ω(h)) := {(u, ω) ∈ H1(Ω(h)) : u = ω = 0 on B(h) × {0, L}} ,

K
⊥
(Ω) = {(u, ω) ∈ K(Ω) : ∇

⊥
u = ∇

⊥
ω = 0 in Ω} .

Given a differentiable function σ : R3×3 × R3×3 → R, we shall denote by ∂σ : R3×3 ×
R3×3 → R3×3 ×R3×3 the differential of σ, and by ∂Eσ and ∂Gσ the matrices of partial

derivatives of σ(E,G) with respect to E and G respectively.

3. A family of equilibrium problems for micropolar rod–like bodies

In linear micropolar elasticity the kinematics of a body, occupying in its reference

shape a region U ⊂ R3, is described by a displacement field u : U → R3 and a

microrotation field ω : U → R
3 [5]. The ordinary stress tensor, denoted by S, is

accompanied by a couple stress tensor, denoted by C. Moreover, the loads applied

to the body consist not only in a distance force and a contact force (as in standard

elasticity), but also in a distance couple and a contact couple.
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In the sequel in order to simplify notation, we set W := Aω.

The strains relevant to the theory are the tensor fields defined by:

E = E(u, ω) = ∇u −W,

G = G(ω) = ∇ω .
(3.1)

The stress descriptors S and C depend on the strains by means of constitutive equa-

tions of the form:

S = S[E], C = C[G],

where S : R3×3 → R3×3 and C : R3×3 → R3×3 are linear functions (called constitutive

mappings) that carry the relevant information on the composition of the body. We

assume that the constitutive mappings do not depend on the position x ∈ U . In this

case the body is said to be homogeneous.

Let σ : R3×3 × R3×3 → R be the function (called stored–energy density) defined by

σ(E,G) =
1

2
S[E] · E +

1

2
C[G] ·G. (3.2)

The linear mappings S and C satisfy:

S[A] · B = S[B] · A, C[A] · B = C[B] ·A for all A,B ∈ R
3×3, (3.3)

and are such that σ is positive definite, i.e.:

σ(E,G) ≥ C(|E|2 + |G|2) for all E,G ∈ R
3×3. (3.4)

3.1. Micropolar rod–like bodies. We restrict our attention to homogeneous rod–

like bodies, i.e. homogeneous bodies whose undeformed shape is a region Ω(h) having

the form specified in (2.1). Let σ be a function fulfilling (3.4) and, for each h > 0, let

(̃f (h), c̃(h)) ∈ L2(Ω(h)) be a pair of distance loads. We define the total energy as:

Π̃(h)(ũ, ω̃) =

∫

Ω(h)

σ(E(ũ, ω̃),G(ω̃)) −
∫

Ω(h)

{f̃ (h) · ũ + c̃(h) · ω̃} (3.5)

and, for each h > 0, we look for a solution (ũ(h), ω̃(h)) of the following equilibrium

problem:

min
(u,ω)∈K(Ω(h))

Π̃(h)(u, ω). (3.6)

Remark 3.1. Applying the Direct Methods of Calculus of Variation (see for instance

[3]), we get existence and uniqueness. In fact the convexity of σ implies existence

and uniqueness of the solution of the equilibrium problem (3.6). In fact, convexity

ensures the lower semicontinuity of the functional (with respect to the strong topology

of L2(Ω(h))) and inequality (3.4) allows us to get compactness (with respect to the

strong topology of L2(Ω(h))) for sequences having bounded energy.
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We study the asymptotic behavior of the minimizers (ũ(h), ω̃(h)) as h tends to 0.

To work with functions defined on the same space for all h, we blow up the domain

Ω(h) using the change of variable (2.2). Thus, to each pair (ũ, ω̃) ∈ K(Ω(h)) we

associate the pair (u, ω) ∈ K(Ω) defined by:

u(x, ζ) := ũ(hx, ζ), ω(x, ζ) := ω̃(hx, ζ), ∀(x, ζ) ∈ Ω. (3.7)

We shall study the scaled functional Π(h) : K(Ω) → R defined by the requirement

that

Π(h)(ω,u) =
1

h2
Π̃(h)(ω̃, ũ)

whenever (ω,u) is related to (ω̃, ũ) by (3.7). The introduction of the scaling factor
1
h2 is essential. Without this factor, the Γ-limit in Theorem 4.7 would be the null

functional.

It is immediate to see that the pair (u(h), ω(h)), corresponding to the solution

(ũ(h), ω̃(h)) of the equilibrium problem (3.6), is the unique minimizer of Π(h). We now

provide the explicit representation of Π(h). For every (u, ω) ∈ K(Ω) we set

E
(h)(u, ω) = ∇(h)u− W, G

(h)(ω) = ∇(h)
ω . (3.8)

Then (3.7) implies:

E
(h)(u, ω) = E(ũ, ω̃), G

(h)(ω) = G(ω̃).

Therefore, by defining the scaled stored–energy density as:

σ(h)(E,G) = σ(
1

h
E

⊥
+ Ez ⊗ z,

1

h
G

⊥
+ Gz ⊗ z),

we have:

σ(E(h)(u, ω),G(h)(ω)) = σ(h)(E(ũ, ω̃),G(ω̃)).

It is easy to check that

Π(h)(u, ω) = Σ(h)(u, ω) − Λ(h)(u, ω), (3.9)

where

Σ(h)(u, ω) :=

∫

Ω

σ(h)(E(u, ω),G(ω)), Λ(h)(u, ω) :=

∫

Ω

{f (h) ·u+ c(h) ·ω}, (3.10)

with

f (h)(x1, x2, ζ) := f̃ (h)(hx1, hx2, ζ), c(h)(x1, x2, ζ) := c̃(h)(hx1, hx2, ζ), ∀(x, ζ) ∈ Ω,

(3.11)

the scaled loads.
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4. Asymptotic behavior of minimizers

We assume that the family {(f (h), c(h))} satisfies:

(f (h), c(h)) → (f , c) in L2(Ω). (4.1)

Let us introduce the limit stored–energy density σ
⊥

: R3×3 × R3×3 → R defined by:

σ
⊥
(E,G) := min

A
⊥

,B
⊥
∈R3×2

σ(A
⊥

+ Ez ⊗ z,B
⊥

+ Gz ⊗ z), (4.2)

and the limit loads :

f
⊥
(ζ) =

∫

B

f(x, ζ)dx1dx2, c
⊥
(ζ) =

∫

B

c(x, ζ)dx1dx2. (4.3)

Remark 4.1. It follows from the definition of σ⊥ that:

σ
⊥
(E,G) = σ

⊥
(Ez ⊗ z,Gz ⊗ z).

Furthermore σ
⊥

is a positive-definite quadratic function if it is restricted to the ele-

ments of Ez and Gz (see also [9]) and this ensures existence and uniqueness for the

solution of the limit equilibrium problem (4.7).

We define the limit functional Π
⊥

: K
⊥
(Ω) → R by setting:

Π
⊥
(u, ω) := Σ

⊥
(u, ω) − Λ

⊥
(u, ω) ∀(u, ω) ∈ K(Ω

⊥
), (4.4)

where

Σ
⊥
(u, ω) :=

∫ L

0

σ
⊥
(E(u, ω),G(ω)), Λ

⊥
(u, ω) :=

∫ L

0

{f
⊥
· u + c

⊥
· ω}. (4.5)

4.1. Γ–convergence. In order to describe the convergence of minimum problems, we

will use the notion of Γ-convergence. We recall its definition and the main properties

we will use. For more details see for instance [2, 4]).

Definition 4.2. Let X be a metric space 1. For n ∈ N let Fn and F be functionals

defined on X and taking values on R ∪ {+∞}.
We say that Fn Γ-converges to F if the two following conditions are satisfied for

each x ∈ X:

(i) for every sequence {xn} converging to x, there holds:

lim inf
n→∞

Fn(xn) ≥ F (x);

(ii) for every η > 0 there exists {xn} converging to x such that:

lim sup
n→∞

Fn(xn) ≤ F (x) + η .

1Actually, this requirement can be weakened taking on X a topology fulfilling the first axiom of

countability
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Usually conditions (i) and (ii) are respectively referred to as Liminf Inequality

and Approximate Limsup Inequality. The latter is indeed equivalent to the standard

Limsup Inequality [2, §1.2].

Definition 4.3. A sequence of functionals Fn : X → R ∪ {+∞} is said to be se-

quentially equi-coercive if, for any sequence {xn} such that supn Fn(xn) < +∞, there

exists a convergent subsequence.

Theorem 4.4. Let {Fn} be a sequence of sequentially equicoercive functionals defined

on X and Γ-converging to F . Then there exists min
X

F and min
X

F = lim
n→∞

inf
X

Fn.

Moreover, if xn is a minimizer of Fn, then every limit of a subsequence {xnk
} of {xn}

is a minimizer of F .

Theorem 4.5. Let {Fn} be a sequence of functionals Γ-converging to F and {Gn}
be a sequence of continuous (with respect to the same topology for which the Γ-limit

is computed) functionals uniformly converging to G. Then the family {Fn + Gn}
Γ-converges to F + G.

Definition 4.6. Let {Fh}h>0 be a family of functionals labeled by a continuous param-

eter h. We say that {Fh}h>0 Γ-converges to F as h goes to 0, if {Fhn
}n∈N Γ-converges

to F for every subsequence {hn}n∈N converging to zero as n goes to +∞. In sim-

ple way the statements of Theorem 4.4, and Theorem 4.5 can be rephrased in this

framework.

We now state our main results.

Theorem 4.7 (Γ-convergence for the total energies). Let us consider the extended

functionals Π
(h)

, Π
⊥

: L2(Ω) → R ∪ {+∞} defined as:

Π
(h)

(u, ω) :=

{

Π(h)(u, ω) if (u, ω) ∈ K(Ω)

+∞ otherwise

Π
⊥
(u, ω) :=

{

Π
⊥
(u, ω) if (u, ω) ∈ K

⊥
(Ω),

+∞ otherwise.

Then Π
(h)

Γ-converges to Π
⊥

with respect to the strong topology of L2(Ω).

Theorem 4.8 (Compactness for the total energies). Let {(u(h), ω(h))} ⊂ K(Ω) be a

sequence such that

sup
h>0

Π(h)(u(h), ω(h)) < +∞.

Then there exist a subsequence of {(u(h), ω(h))} (not relabeled) and (u, ω) ∈ H1(Ω)

such that (u(h), ω(h)) converges to (u, ω) with respect to the strong topology of L2(Ω).
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Corollary 4.9. Let assumptions (3.4) and (4.1) hold. Then, as h tends to 0, we

have:

min
(u,ω)∈K(Ω)

Π(h)(u, ω) → min
(u,ω)∈K

⊥
(Ω)

Π
⊥
(u, ω), (4.6)

and the solutions (u(h), ω(h)) of problems min
(u,ω)∈K(Ω)

Π(h)(u, ω) converge, strongly in

H1(Ω), to the unique solution (u, ω) of the limit equilibrium problem:

min
(u,ω)∈K

⊥
(Ω)

Π
⊥
(u, ω). (4.7)

Proof. By Theorems 4.4, 4.7, 4.8 it immediately follows that (4.6) holds. Moreover,

arguing as in [9, §6.3] (with some minor modification), the convergence of the solutions

of minimum problems with respect to the strong topology of H1(Ω) is achieved.

4.2. Proof of Theorem 4.7. Since the sequence Λ(h) converges to Λ
⊥

uniformly

with respect to the strong topology of L2(Ω), recalling Theorem 4.5, it is enough to

study the Γ–limit of Σ(h).

We here introduce some additional notation. To avoid nested subscripts, we

replace hn with h in the following statement and, as a rule, we do not relabel subse-

quences. Positive constants are denoted by C or by Ci. For {ω(h)} ⊂ H1(Ω; R3) we

set W
(h) := A

ω
(h) . Moreover we use the shorthand notation: E

(h) = E
(h)(u(h), ω(h)),

G
(h) = G

(h)(ω(h)) (cf. (3.8)). Then, recalling (2.4), we write:

E
(h) =

1

h
∇

⊥
u(h) + ∂ζu

(h) ⊗ z − W
(h), G

(h) =
1

h
∇

⊥
ω

(h) + ∂ζω
(h) ⊗ z,

and

E
(h)
⊥

= ∇
⊥
u(h) −W

(h)
⊥

, G
(h)
⊥

= ∇
⊥
ω

(h).

Let us consider the extended functionals Σ
(h)

, Σ
⊥

: L2(Ω) → R ∪ {+∞} defined

as:

Σ
(h)

(u, ω) :=

{

Σ(h)(u, ω) if (u, ω) ∈ K(Ω)

+∞ otherwise

Σ
⊥
(u, ω) :=







2

∫

Ω
⊥

σ
⊥
(E

⊥
(u, ω),G

⊥
(ω))dx1dx2 if (u, ω) ∈ K

⊥
(Ω),

+∞ otherwise.

Then the family {Σ(h)} Γ-converges to Σ
⊥

with respect to the strong topology of

L2(Ω). The proof of the Liminf Inequality closely follows the steps in [9, §6.2] and

we omit it. We now prove the Approximate Limsup Inequality, which takes the form:

for every (u, ω) ∈ K
⊥
(Ω) and for every η > 0 there exists a sequence {(u(h), ω(h))} ⊂

K(Ω) such that

(u(h), ω(h)) → (u, ω) in L2(Ω)
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and

lim sup
h→0

Σ(h)(u(h), ω(h)) ≤ Σ
⊥
(u, ω) + η.

Let (u, ω) ∈ K
⊥
(Ω) and η > 0 be fixed, E = ∇u − W and G = ∇ω. For every

(x, ζ) ∈ Ω, let (A
⊥
(x, ζ),B

⊥
(x, ζ)) be the unique pair such that the minimum in (4.2)

with E ≡ E(x, ζ) and G ≡ G(x, ζ) is attained. We have

Σ
⊥
(u, ω) = σ(A

⊥
+ Ez ⊗ z, B

⊥
+ Gz ⊗ z). (4.8)

For every ε > 0, let (Aε,Bε) ∈ H1(Ω; R3×2) × H1(Ω; R3×2) be such that

||(Aε − A
⊥
,Bε − B

⊥
)||L2(Ω;R3×2)×L2(Ω;R3×2) ≤ ε. (4.9)

Actually, u does not depend on x, thus we shall henceforth write, with abuse of

notation, u(ζ) in place u(x, ζ). We shall adopt such convention for ω, A
⊥
, B

⊥
, Aε,

and Bε as well. For every (x, ζ) in Ω we define

u(h)
ε (x, ζ) := u(ζ) + h (x1Aε(ζ)e1 + x2Aε(ζ)e2 + ω(ζ) × z)

and

ω
(h)
ε (x, ζ) := ω(ζ) + hx1Bε(ζ)e1 + hx2Bε(ζ)e2.

We claim that for ε small enough the sequence {u(h)
ε , ω

(h)
ε } satisfies the Approximate

Limsup Inequality. This sequence converges to (u, ω), moreover, for suitable E1,E2

belonging to L2(Ω; R3×3) we have

E
(h)(u(h)

ε , ω(h)
ε ) =

1

h
∇

⊥
u(h)

ε + ∂ζu
(h)
ε ⊗ z − A

ω
(h)
ε

=Aε + Ez ⊗ z + hE1 + h2
E2,

and

G
(h)(ω(h)

ε ) = Bε + ∂ζω ⊗ z.

Since σ is a quadratic function, it immediately follows:

Σ(h)(u(h)
ε , ω(h)

ε ) =

∫

Ω

σ(Aε + Ez ⊗ z,Bε + Gz ⊗ z) + oh(1), (4.10)

where lim
h→0

oh(1) = 0. Moreover, we have

∫

Ω

σ(Aε + Ez ⊗ z,Bε + Gz ⊗ z) ≤
∫

Ω

σ(A
⊥

+ Ez ⊗ z,B
⊥

+ Gz ⊗ z) +
η

2
+

+ Cη||(Aε − A
⊥
,Bε −B

⊥
)||L2(Ω;R3×2)×L2(Ω;R3×2)

for Cη > 0 large enough. Therefore, selecting ε ≤ C−1
η η/2 and passing to the limit in

(4.10), we obtain:

lim
h→0

Σ(h)(u(h)
ε , ω(h)

ε ) =

∫

Ω

σ(A
⊥

+ Ez ⊗ z,B
⊥

+ Gz ⊗ z) + η,

and the thesis follows from (4.8).
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4.3. Proof of Theorem 4.8. First we show that, if {(u(h), ω(h))} is such that

sup
h>0

Π(h)(u(h), ω(h)) < +∞, then it holds:

sup
h>0

Σ(h)(u(h), ω(h)) < +∞. (4.11)

To this aim, we note that:

Π(h)(u(h), ω(h)) ≤ Π(h)(0, 0) = 0, (4.12)

and therefore recalling (3.9), (3.10) and using Hölder’s inequality, we get:

Σ(h)(u(h), ω(h)) ≤ ‖(f (h), c(h))‖L2(Ω)‖(u(h), ω(h))‖L2(Ω) ≤ C‖(u(h), ω(h))‖L2(Ω), (4.13)

where the last inequality follows from assumption (4.1). Moreover, using Poincaré’s

inequality, equation (2.5) and the inequality |A−B|2 + |B|2 ≥ C(|A|2 + |B|2) (holding

for all 3 × 3 matrices A and B), we get:

Σ(h)(u(h), ω(h)) ≥ C1

∫

Ω

|∇(h)u(h) − W
(h)|2 + |∇(h)

ω
(h)|2

≥ C2

∫

Ω

|∇(h)u(h) − W
(h)|2 + |W(h)|2

≥ C3

∫

Ω

|∇(h)u(h)|2 + |W(h)|2

≥ C4||(u(h), ω(h))||2
L2(Ω).

Hence, using the so–called Young’s inequality with ε, we obtain:

C5||(u(h), ω(h))||L2(Ω) −
1

2ε
||(f (h), c(h))||L2(Ω) −

ε

2
||(u(h), ω(h))||2

L2(Ω) ≤ Π(h)(u(h), ω(h)).

Choosing ε > 0 small enough and using (4.12), we have:

‖(u(h), ω(h))‖L2(Ω) ≤ C.

The last inequality combined with (4.13) yields (4.11). By (4.11), using the coercivity

condition (3.4), we get:

sup
h>0

(

||E(h)||2L2(Ω;R3) + ||G(h)||2L2(Ω;R3)

)

< +∞.

Hence 1
h
∇

⊥
ω

(h) and ∂ζω
(h) are bounded in L2(Ω; R3×2) and L2(Ω; R3) respectively;

thus, by extracting a subsequence (not relabeled), we get:

∇
⊥
ω

(h) ⇀ 0,
1

h
∇

⊥
ω

(h) ⇀ B in L2(Ω; R3×2).

By Poincaré’s inequality, ω
(h) is bounded in H1(Ω; R3) and, by extracting a further

subsequence, it follows:

ω
(h) ⇀ ω in H1(Ω; R3) with ∇

⊥
ω = 0. (4.14)

By definition:
1

h
∇

⊥
u(h) + ∂ζu

(h) ⊗ z = E
(h) + W

(h) . (4.15)
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The right–hand side of (4.15) is a bounded sequence in L2(Ω; R3×3) and, arguing as

in the derivation of (4.14), we have:

u(h) ⇀ u in H1(Ω; R3) with ∇
⊥
u = 0 .

Finally we observe that, by well known results of functional analysis, the selected

subsequence converges with respect to the strong topology of L2(Ω).

Remark 4.10. Since 1
h
(∇

⊥
u(h),∇

⊥
ω

(h)) is bounded in L2(Ω), we have that

(∇
⊥
u(h),∇

⊥
ω

(h)) → 0 in L2(Ω) .
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