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We consider a micropolar, linearly elastic plate–like body, clamped on its boundary and subject to a
system of distance loads. We characterize, by means of Γ–convergence, the limit behavior of the solutions
of the equilibrium problem when the thickness of the body vanishes. We show that, for the special
case of isotropic mechanical response, the equilibrium problem described by our Γ–limit coincides with a
boundary–value problem obtained in a recent deduction of a theory for shearable plates from micropolar
elasticity.
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1. Introduction

In the Reissner–Mindlin plate theory a body may be regarded as a continuum collection
of fibers occupying, in their reference configuration, a flat region of the three–dimensional
Euclidean space. Its kinematics is described by a scalar field w (the transverse displace-
ment) and a planar vector field ϕ (the in–plane rotation). This theory presents some
analogies with three–dimensional micropolar elasticity, where bodies are collections of
oriented material particles undergoing a displacement u and a microrotation ω. This fact
motivates recent investigations on the connections between the two theories [1, 7].

In [1] Aganović et al. consider a family of equilibrium problems for three–dimensional
micropolar bodies whose reference configurations are right cylinders Ω(h) = {(x1, x2, ζ) ∈
R

3 : (x1, x2) ∈ Ω
⊥
, ζ ∈ (−h,+h)} having cross–section Ω

⊥
⊂ R

2 and thickness 2h > 0.
The bodies are all made of the same linearly elastic, isotropic material. Aganović et al.
show that, as h goes to 0, the solutions (u(h),ω(h)) of the equilibrium problems converge
(with respect to a suitable topology) to the weak solution (u,ω) of a limit boundary–value
problem. They also prove that, if the following expansion holds:

(u(h),ω(h)) = (u,ω) + h(u(1),ω(1)) + o(h),
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then the out–of–plane component of the displacement has the following representation:

u(h)(x1, x2, ζ) = v(x1, x2) + ζϕ(x1, x2) + s(x1, x2)ζx+ o(h), ζ ∈ (−h,+h).

Moreover they show that, setting w = v · z, the pair (w,ϕ) satisfies a system of par-
tial differential equations similar (but not identical) to the equilibrium equations for a
Reissner–Mindlin plate.

In this paper we use the notion of Γ-convergence to offer an alternative derivation of
the limit boundary–value problem obtained in [1]. We characterize the solution of this
problem as minimizer of a bi-dimensional functional1, obtained as Γ-limit of a family
of three-dimensional functionals. We provide an explicit formula for the Γ-limit and,
differently from Aganović et al., we do not restrict our attention to isotropic materials.

The organization of the paper is the following. We summarize notation in Section 2. In
Section 3 we recall some basic tools of the theory of Micropolar Elasticity and we clarify
the variational setting for the equilibrium problems of micropolar plate–like bodies. The
main result, concerning the asymptotic behavior of minimizers, is stated in Section 4.
The proof of the main result is developed in Section 6, after some quick recalls from
Γ–convergence in Section 5. In Section 7 we show that for isotropic materials our result
agrees with that obtained in [1].

2. Notation

We identify with R
3 the ambient space and we denote by e1, e2, z the standard orthonormal

basis of R3. Let Ω
⊥
be a bounded open subset of R2 and let us denote by Γ

⊥
its boundary,

which is supposed to be Lipschitz. We consider plate–like domains Ω(h) ⊂ R
3 having the

following form:

Ω(h) = Ω
⊥
× (−h,+h), h > 0. (1)

The lateral mantle of Ω(h) is:

Γ(h) = Γ
⊥
× (−h,+h).

Moreover we set:

Ω := Ω(1), Γ := Γ(1) .

If x ≡ (x1, x2) belongs to Ω
⊥
, we denote by (x, ζ̃) and (x, ζ) the elements of Ω(h) and Ω

respectively; in particular we regard ζ̃ as the result of the scaling

ζ = ζ̃/h , (2)

which maps Ω(h) one–to–one onto Ω.

We denote by | · | the Euclidean norm in R
n. For a,b ∈ R

n, a · b is the Euclidean scalar
product of a and b and a⊗b ∈ R

3×3 is the matrix whose entries are (a⊗ b)ij = aibj. For
a,b ∈ R

3, a × b denotes the vector product of a and b. The spaces of symmetric 3× 3
matrices will be denoted by “Sym�.

1With a little abuse of terminology we call “bi-dimensional” a functional defined on fields depending on
x1 and x2.
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Given a matrix T ∈ R
3×3, we denote by T

⊥
the R3×2 matrix obtained from T by removing

the third column:

T
⊥
=





T11 T12

T21 T22

T31 T32



 .

With a slight abuse of notation, we also set

T
⊥
+ a⊗ z =





T11 T12 a1
T21 T22 a2
T31 T32 a3



 . (3)

Likewise, if v is a vector field defined on Ω
⊥
or Ω(h), we define the surface gradient of v

as:

∇
⊥
v =





∂x1v1 ∂x2v1
∂x1v2 ∂x2v2
∂x1v3 ∂x2v3



 .

If v is a vector field defined on Ω(h), we define the scaled gradient of v as:

∇(h)v = ∇
⊥
v+

1

h
∂ζv⊗ z . (4)

Given ω ∈ R
3, we denote by Aω the unique skew–symmetric matrix such that Aω v =

ω × v for all v ∈ R
3. Note that

|Aω | = 2|ω|. (5)

If U is an open subset of R3, we denote by L2(U ;R3) and H1(U ;R3) the usual Hilbert
(respectively Lebesgue and Sobolev) spaces of functions defined on U and taking values
on R

3, and we set:

L(U) := L2(U ;R3)× L2(U ;R3) and H(U) := H1(U ;R3)×H1(U ;R3) .

We moreover define the spaces of kinematically admissible fields :

K(Ω(h)) := {(u,ω) ∈ H(Ω(h)) : u = ω = 0 on Γ(h)} ,

K
⊥
(Ω) = {(u,ω) ∈ K(Ω) : ∂ζu = ∂ζω = 0 in Ω} .

Given a differentiable function σ : R3×3×R
3×3 → R, we shall denote by ∂σ : R3×3×R

3×3 →
R

3×3 × R
3×3 the differential of σ, and by ∂Eσ and ∂Gσ the matrices of partial derivatives

of σ(E,G) with respect to E and G respectively.

3. A family of equilibrium problems for micropolar plate–like bodies

In linear micropolar elasticity the kinematics of a body, occupying in its reference shape a
region U ⊂ R

3, is described by a displacement field u : U → R
3 and a microrotation field

ω : U → R
3 [6]. The ordinary stress tensor, denoted by S, is accompanied by a couple

stress tensor, denoted by C. Moreover, the loads applied to the body consist not only
in a distance force and a contact force (as in standard elasticity), but also in a distance
couple and a contact couple.
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In the sequel in order to simplify notation, we set W := Aω .
The strains relevant to the theory are the tensor fields defined by:

E = E(u,ω) = ∇u−W,

G = G(ω) = ∇ω .
(6)

The stress descriptors S and C depend on the strains by means of constitutive equations
of the form:

S = S[E], C = C[G],

where S : R3×3 → R
3×3 and C : R3×3 → R

3×3 are linear functions (called constitutive
mappings) that carry the relevant information on the composition of the body. We assume
that the constitutive mappings do not depend on the position x ∈ U . In this case the
body is said to be homogeneous.
Let σ : R3×3 × R

3×3 → R be the function (called stored–energy density) defined by

σ(E,G) =
1

2
S[E] · E+

1

2
C[G] · G. (7)

The linear mappings S and C satisfy:

S[A] ·B = S[B] ·A, C[A] ·B = C[B] ·A for all A,B ∈ R
3×3, (8)

and are such that σ is positive definite, i.e.:

σ(E,G) ≥ C(|E|2 + |G|2) for all E,G ∈ R
3×3. (9)

3.1. Micropolar plate–like bodies

We restrict our attention to homogeneous plate–like bodies, i.e. homogeneous bodies whose
undeformed shape is a region Ω(h) having the form specified in (1). Let σ be a function
fulfilling (9) and, for each h > 0, let (̃f(h), c̃(h)) ∈ L(Ω(h)) be a pair of distance loads. We
define the total energy as:

Π̃(h)(ũ, ω̃) =

∫

Ω(h)

σ(E(ũ, ω̃),G(ω̃))−

∫

Ω(h)

{f̃(h) · ũ+ c̃(h) · ω̃} (10)

and, for each h > 0, we look for a solution (ũ(h), ω̃(h)) of the following equilibrium problem:

min
(u,ω )∈K(Ω(h))

Π̃(h)(u,ω). (11)

The problems we here consider are only special instances of the much wider class of
variational problems that fall within the scope of micropolar linear elasticity. This is
not only because of the peculiar shape of the bodies we consider. In fact, some other
assumptions have been made in laying down the functional (10). For example, the linear
part of the functional in (10) does not depend on the traces of (ũ, ω̃), which means that the
contact loads are null. Moreover, the restrictions ũ(h) = 0 and ω̃

(h) = 0 on Γ(h) (implicit
in the definition of K(Ω(h))) means that the body is clamped on the lateral mantle of Ω(h).



G. Riey, G. Tomassetti / A Variational Model for Linearly Elastic Micropolar ... 681

The convexity of σ implies existence and uniqueness of the solution of the equilibrium
problem (11). In fact, convexity ensures the lower semicontinuity of the functional (with
respect to the strong topology of L(Ω(h))) and inequality (9) allows us to get compactness
(with respect to the strong topology of L(Ω(h))) for sequences having bounded energy.
Existence and uniqueness follow applying the Direct Methods of Calculus of Variation
(see for instance [3]).

Our goal is to characterize the asymptotic behavior of the minimizers (ũ(h), ω̃(h)) as h
tends to 0. To compare solutions corresponding to different choices of the parameter h,
it is convenient to work with functions defined on the same space for all h. Following a
standard approach, we blow up the domain Ω(h) using the change of variable (2). Thus,
to each pair (ũ, ω̃) ∈ K(Ω(h)) we associate the pair (u,ω) ∈ K(Ω) defined by:

u(x, ζ) := ũ(x, h ζ), ω(x, ζ) := ω̃(x, h ζ), ∀(x, ζ) ∈ Ω. (12)

We also replace the energy functional (10) with the functional Π(h) : K(Ω) → R defined
by:

Π(h)(ω,u) :=
1

h
Π̃(h)(ω̃, ũ).

It is immediate to see that the pair (u(h),ω(h)), corresponding to the solution (ũ(h), ω̃(h))
of the equilibrium problem (11), is the unique minimizer of Π(h). We now provide the
explicit representation of Π(h). For every (u,ω) ∈ K(Ω) we set

E
(h)(u,ω) = ∇(h)u−W,

G
(h)(ω) = ∇(h)

ω.
(13)

Then (12) implies:
E
(h)(u,ω) = E(ũ, ω̃), G

(h)(ω) = G(ω̃).

Therefore, by defining the scaled stored–energy density as:

σ(h)(E,G) = σ(E
⊥
+

1

h
Ez⊗ z,G

⊥
+

1

h
Gz⊗ z),

we have:
σ(E(h)(u,ω),G(h)(ω)) = σ(h)(E(ũ, ω̃),G(ω̃)).

It is easy to check that

Π(h)(u,ω) = Σ(h)(u,ω)− Λ(h)(u,ω), (14)

where

Σ(h)(u,ω) :=

∫

Ω

σ(h)(E(u,ω),G(ω)),

Λ(h)(u,ω) :=

∫

Ω

{f(h) · u+ c(h) · ω},

(15)

with

f(h)(x1, x2, ζ) := f̃(h)(x1, x2, hζ), c(h)(x1, x2, ζ) := c̃(h)(x1, x2, hζ), ∀(x, ζ) ∈ Ω, (16)

the scaled loads.
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4. Asymptotic behavior of minimizers

We now study the behavior, as h tends to 0, of the solutions (u(h),ω(h)) of the variational
problems

min
(u,ω )∈K(Ω)

Π(h)(u,ω), h > 0. (17)

We assume that the family of scaled loads {(f(h), c(h))} satisfies the following condition:

(f(h), c(h)) → (f, c) in L(Ω). (18)

Let us introduce the limit stored–energy density σ
⊥
: R3×3 × R

3×3 → R defined by:

σ
⊥
(E,G) := min

a,b∈R3
σ(E

⊥
+ a⊗ z,G

⊥
+ b⊗ z), (19)

and the limit loads :

f
⊥
(x1, x2) =

∫ +1

−1

f(x1, x2, ζ)dζ, c
⊥
(x1, x2) =

∫ +1

−1

c(x1, x2, ζ)dζ. (20)

Finally we define the limit functional Π
⊥
: K

⊥
(Ω) → R by setting:

Π
⊥
(u,ω) := Σ

⊥
(u,ω)− Λ

⊥
(u,ω) ∀(u,ω) ∈ K(Ω

⊥
), (21)

where

Σ
⊥
(u,ω) :=

∫

Ω
⊥

σ
⊥
(E(u,ω),G(ω)), (22)

and

Λ
⊥
(u,ω) :=

∫

Ω
⊥

{f
⊥
· u+ c

⊥
· ω}. (23)

The functional Π
⊥
captures the limit behavior of minimizers in the sense of the following

theorem, which is our main result.

Theorem 4.1. Let assumptions (9) and (18) hold. Let Π(h) be defined as in (14)–(16)
and let Π

⊥
be defined as in (19)–(23). Then, as h tends to 0, we have:

min
(u,ω )∈K(Ω)

Π(h)(u,ω) → min
(u,ω )∈K

⊥
(Ω)

Π
⊥
(u,ω),

and the solutions (u(h),ω(h)) of (17) converge, strongly in H(Ω), to the unique solution
(u,ω) of the limit equilibrium problem:

min
(u,ω )∈K

⊥
(Ω)

Π
⊥
(u,ω). (24)

Observe that, using notation (3), we can write:

σ
⊥
(E,G) = σ

⊥
(E

⊥
+ 0⊗ z,G

⊥
+ 0⊗ z).



G. Riey, G. Tomassetti / A Variational Model for Linearly Elastic Micropolar ... 683

Observe that σ
⊥
becomes a positive-definite quadratic function when we restrict it to the

first two columns of E and G, that is to say, the elements of E
⊥
and G

⊥
(this ensures

existence and uniqueness for the solution of the limit equilibrium problem (24)).

In fact, since σ is quadratic and positive definite, its differential ∂σ is an invertible linear
map. Hence, the unique solution of the minimization problem in (19) satisfies the linear
system:

∂Eσ(E⊥
+ ā⊗ z,G

⊥
+ b̄⊗ z)z = 0, ∂Gσ(E⊥

+ ā⊗ z,G
⊥
+ b̄⊗ z)z = 0,

and (ā, b̄) depends linearly on (E
⊥
,G

⊥
). This readily implies that σ

⊥
is quadratic. More-

over, given E
⊥
,G

⊥
∈ R

3×2, by (9) and (19) we get:

σ
⊥
(E

⊥
+ 0⊗ z,G

⊥
+ 0⊗ z) = min

a,b∈R3
σ(E

⊥
+ a⊗ z,G

⊥
+ b⊗ z)

≥ min
a,b∈R3

C−1(|E
⊥
+ a⊗ z|2 + |G

⊥
+ b⊗ z|2) = C−1(|E

⊥
|2 + |G

⊥
|2).

5. Γ–convergence

In order to describe the convergence of minimum problems, we will use the notion of
Γ-convergence. We recall its definition and the main properties we will use. For more
details see for instance [5, 4, 2]).

Definition 5.1. Let X be a metric space2 and let us denote by d the metric on X. For
n ∈ N let Fn and F be functionals defined on X and taking values on R∪ {+∞}. Define
the Γ- lim inf and the Γ- lim sup of Fn (with respect to the convergence induced by d) as:

Γ- lim infFn(x) := inf
{

lim inf
n→∞

Fn(xn) : xn → x
}

,

Γ- lim supFn(x) := inf

{

lim sup
n→∞

Fn(xn) : xn → x

}

.

where we have written xn → x to say d(xn, x) → 0.
We say that Fn Γ-converges to F if for all x ∈ X we have:

Γ- lim inf
n→∞

Fn(x) = Γ- lim sup
n→∞

Fn(x) = F (x).

Proposition 5.2. Fn Γ-converges to F if and only if the two following conditions are
satisfied for each x ∈ X:

(i) for every sequence {xn} converging to x, there holds:

lim inf
n→∞

F (xn) ≥ F (x);

(ii) for every η > 0 there exists {xn} converging to x such that:

lim sup
n→∞

F (xn) ≤ F (x) + η .

2Actually this requirement can be weakened taking on X a topology fulfilling the first axiom of count-
ability.
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In literature conditions (i) and (ii) are respectively referred to as Liminf Inequality and
Approximate Limsup Inequality. The latter is indeed equivalent to the standard Limsup
Inequality [2, §1.2].

Definition 5.3. A sequence of functionals Fn : X → R∪{+∞} is said to be sequentially
equi-coercive if, for any sequence {xn} such that supn Fn(xn) < +∞, there exists a
convergent subsequence.

Theorem 5.4. Let {Fn} be a sequence of sequentially equicoercive functionals defined
on X and Γ-converging to F . Then there exists minX F and minX F = limn→∞ infX Fn.
Moreover, if xn is a minimizer of Fn, then every limit of a subsequence {xnk

} of {xn} is
a minimizer of F .

Theorem 5.5. Let {Fn} be a sequence of functionals Γ-converging to F and {Gn} be a
sequence of continuous (with respect to the same topology for which the Γ-limit is com-
puted) functionals uniformly converging to G. Then the family {Fn +Gn} Γ-converges to
F +G.

Definition 5.6. Let {Fh}h>0 be a family of functionals labeled by a continuous parameter
h. We say that {Fh}h>0 Γ-converges to F as h goes to 0, if {Fhn

}n∈N Γ-converges to F
for every subsequence {hn}n∈N converging to zero as n goes to +∞. In simple way the
statements of Proposition 5.2, Theorem 5.4, and Theorem 5.5 can be rephrased in this
framework.

6. Proof of the main result

In view of Theorem 5.5 we first study the Γ–limit of Σ(h). This is performed in Subsection
6.2, where we also prove an equi-coercivity property for the family of functionals Π(h).

6.1. Additional notation

To avoid nested subscripts, we replace hn with h in the following statement and, as a
rule, we do not relabel subsequences. Positive constants are denoted by C or by Ci. For
{ω(h)} ⊂ H1(Ω;R3) we set W

(h) := Aω
(h)
. Moreover we use the shorthand notation:

E
(h) = E

(h)(u(h),ω(h)), G(h) = G
(h)(ω(h)) (cf. (13)). Then, recalling (4), we write:

E
(h) = ∇

⊥
u(h) +

1

h
∂ζu

(h) ⊗ z−W
(h), G

(h) = ∇
⊥
ω

(h) +
1

h
∂ζω

(h) ⊗ z,

and

E
(h)
⊥

= ∇
⊥
u(h) −W

(h)
⊥

, G
(h)
⊥

= ∇
⊥
ω

(h).

6.2. Compactness and Γ–convergence

We first give a compactness result for the family of functionals Σ(h).

Lemma 6.1 (Compactness for the scaled stored energies). Let {(u(h), ω
(h))} ⊂

K(Ω) be a sequence such that

sup
h>0

Σ(h)(u(h),ω(h)) < +∞.
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Then there exist a subsequence of {(u(h),ω(h))} (not relabeled) and (u,ω) ∈ H(Ω) such
that (u(h),ω(h)) converges to (u,ω) with respect to the strong topology of L(Ω) as h tends
to 0.

Proof. By the coercivity condition (9) we have

sup
h>0

(

||E(h)||2L2(Ω;R3) + ||G(h)||2L2(Ω;R3)

)

< +∞.

Hence ∇
⊥
ω

(h) and 1
h
∂ζω

(h) are bounded in L2(Ω;R3×2) and L2(Ω;R3) respectively; thus,
by extracting a subsequence (not relabeled), we get:

∂ζω
(h) ⇀ 0,

1

h
∂ζω

(h) ⇀ b in L2(Ω;R3).

By Poincaré’s inequality, ω(h) is bounded in H1(Ω;R3) and, by extracting a further sub-
sequence, it follows:

ω
(h) ⇀ ω in H1(Ω;R3) with ∂ζω = 0. (25)

In the identity

∇
⊥
u(h) +

1

h
∂ζu

(h) ⊗ z = E
(h) +W

(h)

the right–hand side is a bounded sequence in L2(Ω;R3×3) and, arguing as in the derivation
of (25), we have:

u(h) ⇀ u in H1(Ω;R3) with ∂ζu = 0.

Finally we observe that, by well known results of functional analysis, the selected subse-
quence converges with respect to the strong topology of L(Ω).

Remark 6.2. Since 1
h
(u(h),ω(h)) is bounded in L(Ω), we have that ∂ζ(u

(h),ω(h)) → 0 in
L(Ω).

Lemma 6.3 (Compactness for the total energies). Let {(u(h),ω(h))} ⊂ K(Ω) be a
sequence such that

sup
h>0

Π(h)(u(h),ω(h)) < +∞.

Then there exist a subsequence of {(u(h),ω(h))} (not relabeled) and (u,ω) ∈ H(Ω) such
that (u(h),ω(h)) converges to (u,ω) with respect to the strong topology of L(Ω).

Proof. As a consequence of Lemma 6.1 it is enough to show that, if {(u(h),ω(h))} is such
that suph>0Π

(h)(u(h),ω(h)) < +∞, then it holds:

sup
h>0

Σ(h)(u(h),ω(h)) < +∞. (26)

For this purpose we note that:

Π(h)(u(h),ω(h)) ≤ Π(h)(0,0) = 0, (27)

and therefore recalling (14), (15) and using Hölder’s inequality, we get:

Σ(h)(u(h),ω(h)) ≤ ‖(f(h), c(h))‖L(Ω)‖(u
(h),ω(h))‖L(Ω) ≤ C‖(u(h),ω(h))‖L(Ω), (28)
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where the last inequality follows from assumption (18). Moreover, using Poincaré’s in-
equality, equation (5) and the inequality |A−B|2 + |B|2 ≥ C(|A|2 + |B|2) (holding for all
3× 3 matrices A and B), we get:

Σ(h)(u(h),ω(h)) ≥ C1

∫

Ω

|∇(h)u(h) −W
(h)|2 + |∇(h)

ω
(h)|2

≥ C2

∫

Ω

|∇(h)u(h) −W
(h)|2 + |W(h)|2

≥ C3

∫

Ω

|∇(h)u(h)|2 + |W(h)|2

≥ C4||(u
(h),ω(h))||2

L(Ω).

Hence, using the so–called Young’s inequality with ε, we obtain:

C5||(u
(h),ω(h))||L(Ω) −

1

2ε
||(f(h), c(h))||L(Ω) −

ε

2
||(u(h),ω(h))||2

L(Ω) ≤ Π(h)(u(h),ω(h)).

Choosing ε > 0 small enough and using (27), we have:

‖(u(h),ω(h))‖L(Ω) ≤ C.

The last inequality combined with (28) yields (26).

Proposition 6.4 (Γ-convergence for the scaled stored energies). Let Σ
(h)

, Σ
⊥

:
L(Ω) → R ∪ {+∞} be defined as:

Σ
(h)

(u,ω) :=

{

Σ(h)(u,ω) if (u,ω) ∈ K(Ω)

+∞ otherwise

Σ
⊥
(u,ω) :=







2

∫

Ω
⊥

σ
⊥
(E

⊥
(u,ω),G

⊥
(ω))dx1dx2 if (u,ω) ∈ K

⊥
(Ω),

+∞ otherwise.

Then the family {Σ
(h)

} Γ-converges to Σ
⊥
with respect to the strong topology of L(Ω).

Proof. In view of Proposition 5.2 we first prove the Liminf Inequality, which now takes
the following form:

Given (u,ω) ∈ K(Ω) and {(u(h),ω(h))} ⊂ K(Ω) converging to (u,ω) in L(Ω), then:

Σ
⊥
(u,ω) ≤ lim inf

h→0
Σ(h)(u(h),ω(h)).

By (19) we have:

Σ
⊥
(u(h),ω(h)) =

∫

Ω

σ
⊥
(E(h)

⊥
,G(h)

⊥
) ≤

∫

Ω

σ(E(h),G(h)) = Σ(h)(u(h),ω(h)).

Hence, to prove the Liminf Inequality, it is enough to show that

Σ
⊥
(u,ω) ≤ lim inf

h→0
Σ

⊥
(u(h),ω(h)). (29)
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Let us prove (29). For E
⊥
= E

⊥
(u,ω) and G

⊥
= ∇

⊥
ω, the convexity of σ

⊥
implies:

σ
⊥
(E(h)

⊥
,G(h)

⊥
) ≥σ

⊥
(E

⊥
,G

⊥
) + ∂σ

⊥
(E

⊥
,G

⊥
) · (E(h)

⊥
− E

⊥
,G(h)

⊥
− G

⊥
). (30)

Let us consider a subsequence of {(u(h),ω(h))} (not relabeled) such that limh→0Σ
(h)(u(h),

ω
(h)) = lim infh→0Σ

(h)(u(h),ω(h)). By Lemma 6.1 we can extract a further subsequence
such that (u(h),ω(h)) ⇀ (u,ω) in H(Ω). By Rellich’s Theorem we know that ω

(h) con-
verges to ω in L2(Ω;R3) and hence we get:

E
(h)
⊥

⇀ E
⊥

and G
(h)
⊥

⇀ G
⊥

in L2(Ω;R3×2).

Integrating (30) over Ω, and passing to the limit we obtain (29).

We now prove the Approximate Limsup Inequality, which now takes the form:

For every (u,ω) ∈ K
⊥
(Ω) and for every η > 0 there exists a sequence {(u(h),ω(h))} ⊂

K(Ω) such that
(u(h),ω(h)) → (u,ω) in L(Ω)

and
lim sup

h→0
Σ(h)(u(h),ω(h)) ≤ Σ

⊥
(u,ω) + η.

Let (u,ω) ∈ K
⊥
(Ω) and η > 0 be fixed. We set E

⊥
= ∇

⊥
u − W

⊥
, and G

⊥
= ∇

⊥
ω.

For every x ∈ Ω
⊥
, let (a(x),b(x)) be the unique pair such that the minimum in (19) is

attained. Then
Σ

⊥
(u,ω) = σ(E

⊥
+ a⊗ z,G

⊥
+ b⊗ z). (31)

For every ε > 0, let (aε,bε) ∈ H(Ω) be such that

||(aε − a,bε − b)||L(Ω) ≤ ε (32)

and define

u(h)
ε (x, ζ) := u(x) + hζ(aε(x) + ω(x)× z) +

1

2
h2ζ2bε(x)× z

and
ω

(h)
ε (x, ζ) := ω(x) + hζbε(x), ∀(x, ζ) ∈ Ω.

We claim that for ε small enough the sequence {u
(h)
ε ,ω

(h)
ε } satisfies the Approximate

Limsup Inequality. Clearly, this sequence converges to (u,ω). Moreover it holds

E
(h)(u(h)

ε ,ω(h)
ε ) = ∇

⊥
u(h)
ε +

1

h
∂ζu

(h)
ε ⊗ z−Aω

(h)
ε

= E
⊥
+ aε ⊗ z+ hE1 + h2

E2,

and

G
(h)(ω(h)

ε ) = G
⊥
+ bε ⊗ z,

for suitable E1,E2 belonging to L2(Ω;R3×3). Since σ is a quadratic function, it immedi-
ately follows:

Σ(h)(u(h)
ε ,ω(h)

ε ) =

∫

Ω

σ(E
⊥
+ aε ⊗ z,G

⊥
+ bε ⊗ z) + oh(1), (33)
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where limh→0 oh(1) = 0. Moreover, we have

∫

Ω

σ(E
⊥
+aε⊗z,G

⊥
+bε⊗z) ≤

∫

Ω

σ(E
⊥
+a⊗z,G

⊥
+b⊗z)+

η

2
+Cη||(aε−a,bε−b)||L(Ω)

for Cη > 0 large enough. Therefore, selecting ε ≤ C−1
η η/2 and passing to the limit in

(33), we obtain:

lim
h→0

Σ(h)(u(h)
ε ,ω(h)

ε ) =

∫

Ω

σ(E
⊥
+ a⊗ z,G

⊥
+ b⊗ z) + η,

and the thesis follows from (31).

6.3. Proof of Theorem 4.1

Let us introduce the extended functionals Π
(h)

, Π
⊥
: L(Ω) → R ∪ {+∞} defined as:

Π
(h)

(u,ω) :=

{

Π(h)(u,ω) if (u,ω) ∈ K(Ω)

+∞ otherwise

Π
⊥
(u,ω) :=

{

Π
⊥
(u,ω) if (u,ω) ∈ K

⊥
(Ω),

+∞ otherwise.

By (18) we have that the sequence Λ(h) converges to Λ
⊥
uniformly with respect to the

strong topology of L(Ω). Therefore by Theorem 5.5 and Proposition 6.4 it immediately

follows that Π
(h)

Γ-converges to Π
⊥
with respect to the strong topology of L(Ω). By

Theorem 5.4 and Lemma 6.3 we conclude that , as h tends to 0,

min
(u,ω )∈K(Ω)

Π(h)(u,ω) → min
(u,ω )∈K

⊥
(Ω)

Π
⊥
(u,ω)

and the family {(u(h),ω(h))} of solutions of problem (17), up to a subsequence, converges
to the unique minimizer of Π

⊥
in K

⊥
(Ω) with respect to the strong topology of L(Ω).

Now we show that the family of minimizers converges also with respect to the strong
topology of H(Ω). Let us define

E
⊥
= ∇

⊥
u−W, G

⊥
= ∇

⊥
ω.

Moreover, since ω
(h) → ω in L2(Ω;R3), we have:

∇
⊥
u(h) −W

(h)
⊥

⇀ ∇
⊥
u−W in L2(Ω;R3×2).

Therefore it holds:

E
(h)
⊥

⇀ E
⊥
, G

(h)
⊥

⇀ G
⊥

in L2(Ω;R3×2). (34)
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We pass to the limit in the chain of inequalities

Π(h)(u(h),ω(h))− Π
⊥
(u,ω) ≥ Σ

⊥
(u(h),ω(h))− Σ

⊥
(u,ω)

+

∫

Ω

{f(h) · u(h) + c(h) · ω(h) − ·u− c · ω}

≥

∫

Ω

∂σ
⊥
(E

⊥
,G

⊥
) · (E(h)

⊥
− E

⊥
,G(h)

⊥
− G

⊥
)

+C
(

||E(h)
⊥

− E
⊥
||2 + ||G(h)

⊥
− G

⊥
||2
)

+

∫

Ω

{f(h) · u(h) + c(h) · ω(h) − f · u− c · ω},

and, using (34) and (18), we conclude:

∇
⊥
u(h) = E

(h) −W
(h)
⊥

→ E−W = ∇
⊥
u in L2(Ω;R3×2). (35)

The thesis follows using (35) and recalling that (u,ω) ∈ K
⊥
(Ω) and that by Remark 6.2

we know that:
∂ζu

(h) → 0, ∂ζω
(h) → 0 in L2(Ω;R3).

7. The isotropic case

In this section we verify that our limit problem agrees with that obtained in [1] for the case
of isotropic materials. If we denote by 1 ∈ R

3×3 the identity matrix, for these materials
the constitutive mappings take the form:

S[E] = λ(trE)1+ (µ+ ν)E+ µET ,

C[G] = ρ(trG)1+ (σ + τ)G+ σGT,
(36)

where
3λ+ 2µ+ ν > 0, 2µ+ ν > 0, ν > 0,

3α+ 2β + γ > 0, 2β + γ > 0, γ > 0.

The differential of σ is given by:

∂σ(E,G) = (∂Eσ, ∂Gσ) = (S,C).

Given E
⊥

∈ R
3×2 and G

⊥
∈ R

3×2, let ā ≡ ā(E
⊥
) ∈ R

3 and b̄ ≡ b̄(G
⊥
) ∈ R

3 be the
solutions of the minimum problem (19). It is easy to check that ā and b̄ satisfy:

∂Eσ(E⊥
+ ā⊗ z) · a⊗ z = 0 ∀a ∈ R

3,

∂Gσ(G⊥
+ b̄⊗ z) · b⊗ z = 0 ∀b ∈ R

3.

This means that:

S[E
⊥
+ ā⊗ z]z = 0, C[G

⊥
+ b̄⊗ z]z = 0. (37)

This implies that

σ
⊥
(E

⊥
,G

⊥
) =

1

2
S

⊥
[E

⊥
] · E

⊥
+

1

2
C

⊥
[G

⊥
] · G

⊥
,



690 G. Riey, G. Tomassetti / A Variational Model for Linearly Elastic Micropolar ...

where we have set:

S
⊥
[E

⊥
] := S[E

⊥
+ ā(E

⊥
)⊗ z], C

⊥
[G

⊥
] := C[G

⊥
+ b̄(G

⊥
)⊗ z].

Let us denote by 1
�
the matrix plane projector, defined as:

1
�
= 1− z⊗ z.

We set:
E

�
:= 1

�
E

⊥
, c := (E

⊥
)Tz

so that E
⊥
is decomposed as:

E
⊥
= E

�
+ z⊗ c.

Now, the constitutive equation (36)1 becomes

S = λ(trE
�
+ z · ā)1

�
+ (µ+ ν)E

�
+ µET

�
+ z⊗ ((µ+ ν)c+ 1

�
z), (38)

and the first equation of (37) can be rewritten as:

λ(trE
�
+ z · ā)z+ (µ+ ν)a+ µ((z · ā)z+ c) = 0. (39)

Taking the scalar product of both sides of (39) with z, we obtain:

z · ā = −
λ

λ+ 2µ+ ν
trE

�
. (40)

Applying 1
�
to both sides of (39), we get the plane components of ā:

1
�
ā = −

µ

µ+ ν
c. (41)

Substituting (40) and (41) in (38), we have:

S
⊥
[E

⊥
] = λ

⊥
trE

�
+ (µ+ ν)E

�
+ µET

�
+ ν

⊥
z⊗ (ET

⊥
z),

where

λ
⊥
:= λ

2µ+ ν

λ+ 2µ+ ν
, ν

⊥
:= ν

2µ+ ν

µ+ ν
.

Likewise, we easily obtain

C
⊥
[G

⊥
] = α

⊥
trG

�
+ (β + γ)G

�
+ βGT

�
+ γ

⊥
z⊗ (GT

⊥
z),

where

α
⊥
:= α

2β + γ

α+ 2β + γ
, γ

⊥
:= γ

2β + γ

β + γ
.

The stationarity condition for Π
⊥
is:

∫

Ω
⊥

S
⊥
[E

⊥
(u,ω)] · E

⊥
(δu, δω) + C

⊥
[G

⊥
(ω)] · G

⊥
(δω)− Λ(h)

⊥
(δu, δω) = 0

for all test functions (δu, δω) ∈ K
⊥
(Ω). This coincides with the weak formulation of the

limit problem obtained in [1] (equation (22)).
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