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ABSTRACT 
Capturing word meaning is one of the challenges of natural language processing (NLP). Formal models of 

meaning such as ontologies are knowledge repositories used in a variety of applications. To be effectively 
used, these ontologies have to be large or, at least, adapted to specific domains. Our main goal is to 
contribute practically to the research on ontology learning models by covering different aspects of the 
task. 
We propose probabilistic models for learning ontologies that expands existing ontologies taking into 
accounts both corpus-extracted evidences and structure of the generated ontologies. The model exploits 
structural properties of target relations such as transitivity during learning. We then propose two 
extensions of our probabilistic models: a model for learning from a generic domain that can be exploited 

to extract new information in a specific domain and an incremental ontology learning system that put 
human validations in the learning loop. This latter provides a graphical user interface and a human-
computer interaction workflow supporting the incremental leaning loop. 
 
INTRODUCTION 
Gottfried Wilhelm Leibniz was convinced that human knowledge was like a “bazaar”: a place full of all 
sorts of goods without any order or inventory. As in a “bazaar”, searching a little piece of specific 

knowledge is a challenge that can last forever. Nowadays, we have powerful machines to process and 
collect data. These machines, combined with the human need of exchanging and sharing information, 
produced an incredibly large evolving collection of documents, partially shared with the World Wide 
Web. The Web is a modern worldwide scale knowledge “bazaar” full of any sort of information where 
searching specific information is a titanic task.  
Ontologies represent the Semantic Web’s reply to the need of searching knowledge in the Web. These 
ontologies provide shared metadata vocabularies (Berners-Lee, T., Hendler, J., & Lassila, O., 2001). 

Data, documents, images, and information sources in general, described through these vocabularies, will 
be thus accessible as organized with explicit semantic references for humans as well as for machines. Yet, 
to be useful, ontologies should cover large part of human knowledge. Automatically learning these 
ontologies from document collections is the major challenge.  

Models for automatically learning semantic networks of words from texts use both corpus-extracted 

evidences and existing language resources (Basili, Gliozzo, & Pennacchiotti, 2007). All these models rely 
on two hypotheses: Distributional Hypothesis (DH) (Harris, 1964) and Lexico-syntactic patterns 
exploitation hypothesis (LSP) (Robison, 1970). While these are powerful tools to extract relations among 
concepts using texts, models based on these hypotheses do not explicitly exploit structural properties of 
target relations when learning taxonomies or semantic networks of words. DH models intrinsically use 
structural properties of semantic networks of words such as transitivity, but these models cannot be 
applied for learning transitive semantic relations other than the generalization. LSP models are interesting 

because they can learn any kind of semantic relations. Yet, these models do not exploit structural 
properties of target relations when learning taxonomies or semantic networks of words. In general, 
structural properties of semantic networks of words, when relevant, are not used in machine learning 
models to better induce confidence values for extracted semantic relations. Even where transitivity is 
explicitly used (Snow, Jurafsky, & Ng, 2006), it is not directly exploited to model confidence values. It is 
only used in an iterative maximization process of the probability of the entire semantic network. In this 
chapter, we propose a probabilistic approach that exploits LSP hypothesis and formally includes the 

exploitation of transitivity during learning. 
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Probabilistic models for learning semantic networks exploiting transitivity do not completely solve the 
problem of learning semantic networks. We have a second problem to tackle. When dealing with learning 
semantic networks of words from texts such as learning ontologies, we generally have ontology-rich 
domains with large structured domain knowledge repositories or large general corpora with large general 

structured knowledge repositories such as WordNet (Miller, 1995). Systems that automatically create, 
adapt, or extend existing semantic networks of words need a sufficiently large number of documents and 
existing structured knowledge to achieve reasonable performance. Thus, it is generally possible to extract 
good probabilistic models for ontology-rich domains or the general language. When building semantic 
networks for ontology-poor domains, we then need to rely on probabilistic models learnt out-of-domain 
or for the general language. If the target domain has not relevant pre-existing semantic networks of words 
to expand, we will not have enough data for training the initial model. In general, in learning methods the 
amount of out-of-domain data is larger than in-domain data. For this reason, in this chapter we present 

methods that, with a small effort for the adaptation to different specific knowledge domains, can exploit 
out-of-domain data for building in-domain models with bigger accuracy.  

Finally, when learning semantic networks, we need to put human validations in the loop. Systems for 
creating or augmenting semantic networks of words using information extracted from texts need a manual 

validation for assessing the quality of semantic networks of words expansion. Yet, these systems do not 
use the manual validation for refining the information extraction model that proposes novel links in the 
networks. Manual validation can be efficiently exploited if used in an incremental model. In this chapter, 
we propose an incremental ontology learning system that puts final users in the learning loop providing 
an efficient way to interact with final users. 
The rest of the Chapter is organized as follows. In Section Methods for Ontology Learning we give a 
survey of the main strategies and approaches, nowadays adopted, in learning semantic networks of words. 
In particular, we propose a review of the state-of-the-art and we point out the limits that can be overcome 

with our approaches. In Section Transitivity in a Probabilistic Model we introduce our probabilistic 
models to learn semantic networks of words that exploit structural properties of target relations in 
determining the probability of the word pairs to be in a particular relation. Then we present two 
extensions of our probabilistic model: a semantic networks learning method that can exploit models 
learned from a generic domain to extract new information in a specific domain, in Section Generic 

Ontology Learners on Application domains, and an incremental ontology learning system that puts 
final users in the learning loop and uses our probabilistic models to exploit transitive relations for 

inducing better extraction models, in Section Probabilistic Ontology Learner in Semantic Turkey. 
Finally, we draw some conclusions and we outline feature research directions. 
 

METHODS FOR ONTOLOGY LEARNING 

 

Automatically creating, adapting, or extending existing ontologies or semantic networks of words using 
domain texts is a very important and active area of research. Here, we report the state-of-the-art of 
learning semantic networks of words, that is the field where this chapter wants to give a contribution.  

Ontology learning was originally started in (Maedche & Staab, Ontology Learning for the Semantic Web, 
2001) but the fully automatic acquisition of knowledge by machines is still far from being realized. 

Ontology learning is not merely a rehash of existing ideas and techniques under a new name. Lexical 
acquisition, information extraction, knowledge base learning from texts, etc. are areas that contribute to 
the definition of this new problem. But, ontology learning is more than the sum of all these contributions. 
This new problem is inherently multidisciplinary due to its strong connection with philosophy, knowledge 
representation, database theories, formal logic, and natural language processing. Moreover, as ontologies 
are the basis for the Semantic Web, learning models have to work with massive and heterogeneous data 
and document collections.  
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In natural language processing and in many applications of the semantic web, semantic resources are 
ultimately exploited in text understanding systems as networks of words. Thus, learning semantic 
networks from text collections is possible. Here we focus on the learning of relations among 
concepts/words. In the following we analyze these techniques thoroughly, with particular reference to 

aspects and components that characterize them, limitations included. We focus on the three aspects the 
chapter deals with: a general introduction on semantic network learning methods to present the limitations 
with respect to the use of structural properties of target semantic relations; a general discussion of the 
problem of domain adaptation; and, finally, an analysis of the methods to include human validations in 
the learning loop. 

Semantic network learning methods 

Models for automatically learning semantic networks of words from texts use both corpus-extracted 
evidences and existing language resources (Basili, Gliozzo, & Pennacchiotti, 2007). All these models rely 
on two hypotheses: Distributional Hypothesis (DH) (Harris, 1964) and Lexico-syntactic patterns 
exploitation hypothesis (LSP) (Robison, 1970). In this section we focus on how existing resources are 

used in the existing learning models and we note that these models do not explicitly exploit structural 
properties of target relations when learning taxonomies or semantic networks of words.  

Distributional Hypothesis (DH) (Harris, 1964) models generally start learning from scratch. In 
(Cimiano, Hotho, & Staab, Learning concept hierarchies from text corpora using formal concept analysis, 
2005), for example, lattices and related semantic networks are built from scratch. When prior knowledge 
is used in DH models (Pekar & Staab, 2002), the status of prior knowledge and of produced knowledge is 
extremely different. Inserting new words in semantic networks may be seen as a classification problem 

where target classes are nodes of existing hierarchies and the classification decision is taken over a pair of 
words, i.e. a word and its possible generalization. In this context, the classifier should decide if pairs 
belong or not to the semantic networks. Both existing and produced elements of the networks have the 
same nature, i.e., pairs of words. A distributional description of words is used to make the decision with 
respect to target classes. A new word and a word already existing in the network can be then treated 
differently, the first being represented with its distributional vector while the second being one of the final 
classes.  

DH is widely used in many approaches in relation induction from texts. Relatedness confidences derived 

using the distributional hypothesis are transitive. If a word “a” is related to a word “b” and this latter is 
related to a word “c”, we can somehow derive the confidence relations between the words “a” and “c”. 
This can be derived from the formulation of the distributional hypothesis itself. Even when the 
distributional hypothesis is used to build hierarchies of words, structural properties of the semantic 

networks of words, such as transitivity and reflexivity are implicitly used. For example, DH is used in 
(Cimiano, Hotho, & Staab, Learning concept hierarchies from text corpora using formal concept analysis, 
2005) for populating lattices (i.e. graphs of a particular class) of formal concepts. The idea of drawing 
semantic networks links using the inclusion of features derived exploiting the distributional hypothesis 
has been also used in (Geffet & Dagan, 2005) where the distributional inclusion hypothesis is defined. 

Lexico-syntactic patterns (LSP) (Robison, 1970) are instead generic ways to express a semantic relation 

in texts.-LSP models have been applied for learning  is-a relations (Hearst, 1992; Snow, Jurafsky, & Ng, 
2006), generic semantic relations between nouns (Pantel & Pennacchiotti, 2006; Szpektor, Tanev, Dagan, 
& Coppola, 2004), and specific relations between verbs (Chklovski & Pantel, 2004; Zanzotto, 
Pennacchiotti, & Pazienza, Discovering Asymmetric Entailment Relations between Verbs Using 
Selectional Preferences, 2006). But, LSP models do not directly exploit structural properties of semantic 
networks of words, i.e. these properties are not intrinsically inherited from the definition, as it differently 
happens for the distributional hypothesis. Semantic network learning models based on lexico-syntactic 

patterns present then three advantages with respect to DH models:  

• these models can be used to learn any semantic relation (Hearst, 1992; Morin, 1999; Pantel & 
Pennacchiotti, 2006; Chklovski & Pantel, 2004; Ravichandran & Hovy, 2002; Szpektor, Tanev, 
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Dagan, & Coppola, 2004; Zanzotto, Pennacchiotti, & Pazienza, Discovering Asymmetric 
Entailment Relations between Verbs Using Selectional Preferences, 2006)  

• these models coherently exploit existing taxonomies in the expansion phase (Snow, Jurafsky, & 
Ng, 2006) 

• the classification is binary, i.e., a word pair belongs or not to the taxonomy (Snow, Jurafsky, & Ng, 

2006; Pantel & Pennacchiotti, 2006). In this way, a single classifier is associated to each treated 
relation. 

Probabilistic LSP learning models (e.g., (Snow, Jurafsky, & Ng, 2006)) have further advantages. The first 
advantage is that modeling probability in the semantic network makes possible to take into accounts both 
corpus-extracted evidences and existing language resources during learning. This model is the only one 

using, even if only intrinsically, one of the properties of semantic networks (transitivity) to expand 
existing networks. Any corpus-based knowledge learning method augments existing knowledge 
repositories with new information extracted from texts. In this process, we have two big issues:  

• we are mixing reliable with unreliable information  

• as we are dealing with natural language, ambiguity affects every bit of discovered knowledge  

Mixing reliable concepts, relations among concepts, and instances with semi-reliable extracted 

information is a big problem as final knowledge repositories cannot be considered reliable. Generally, 
extracted knowledge items are included in final resources if the related estimated confidence weights are 
above a threshold. Accuracy of added information is generally evaluated over a small randomly selected 
portion (e.g., (Snow, Jurafsky, & Ng, 2006; Pantel & Pennacchiotti, 2006; Lin & Pantel, 2002)). Final 
knowledge repositories contain, then, two different kinds of information. The first kind is reliable and 
controlled. The second kind, i.e., the above threshold extracted information, is semi-reliable. Its accuracy 
is below 100% and it generally varies in different ranges of confidence weights. High confidence values 

guarantee high accuracy (e.g., (Snow, Jurafsky, & Ng, 2006)). Then, it is extremely important that corpus 
extracted knowledge items report the confidence weights that justifies the inclusion in the knowledge 
base. In this way, consumers of knowledge repositories can decide if information is “reliable enough” to 
be applied in their task. This is the first reason to include probability scores in knowledge repositories. 

The second advantage is that stored probabilities enable the treatment of the ambiguity of natural 
language. For example, the word “dog” can be generalized to the word “animal” or to the word “device” 
according to which sense is taken into account. A decision system working with words would benefit in 

accuracy from the knowledge of the probabilities of two different generalizations. The simple ordering of 
word senses in WordNet (Miller, 1995) (first sense heuristic) according to their frequencies is useful for 
open domain word sense disambiguation models. Also the computation of prior sense probabilities within 
specific domains is useful for word sense disambiguation processors (McCarthy, Koeling, Weeds, & 
Carroll, 2004). 

We will select a probabilistic approach, among LSP semantic networks learning models, because in this 

way we can have the two described advantages. 

Adapting semantic networks to new domains 

In learning methods the amount of out-of-domain data is generally larger than in-domain data. For this 
reason, we envisage methods that, with a small effort for the adaptation to different specific knowledge 

domains, can exploit out-of-domain data for building in-domain models with bigger accuracy. We would 
like a model for learning semantic networks of words that can be used, with a small effort for the 
adaptation, in different specific knowledge domains. 

One of the basic assumptions in machine learning and statistical learning is that learning data are enough 
representative of the environment where learned models will be applied. The statistical distribution of 

learning data is similar to the distribution of the data where the learned model is applied. In natural 
language processing tasks involving semantics, this assumption is extremely important. One of these 
semantic tasks is learning semantic networks of words from texts using lexico-syntactic pattern (LSP) 
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based methods. LSP methods (Hearst, 1992; Snow, Jurafsky, & Ng, 2006; Pantel & Pennacchiotti, 2006) 
generally use existing ontological resources to extract learning examples. The learning examples are 
matched over collection of documents to derive lexico-syntactic patterns describing a semantic relation. 
These patterns are then used to expand the existing ontological resource by retrieving and selecting new 

examples. LSP semantic networks learning methods are generally used to expand existing domain 
ontologies using domain corpora or to expand generic lexical resources (e.g.,WordNet (Miller, 1995)) 
using general corpora (Snow, Jurafsky, & Ng, 2006; Fallucchi & Zanzotto, SVD Feature Selection for 
Probabilistic Taxonomy Learning, 2009) (Snow, Jurafsky, & Ng, 2006; Fallucchi & Zanzotto, SVD 
Feature Selection for Probabilistic Taxonomy Learning, 2009). In this way, the basic assumption of 
machine learning approaches is satisfied. Yet, the nature of the semantic networks learning task requires 
that models learned in a general or a specific domain may be applied in other domains for building or 
expanding poor initial semantic networks using domain corpora. In this case, the distribution of learning 

and application data is different. Learned LSP models are “domain-specific” and they being potentially 
related to the prose of a specific domain. These models are then accurate for the specific domain but may 
fail in other domains. For examples, if the target domain has not relevant pre-existing ontologies to 
expand, may be not enough data for training the initial model. In (Snow, Jurafsky, & Ng, 2006), all 
WordNet has been used as source of training examples. In this case, domain adaptation techniques must 
be adopted (Bacchiani, Roark, & Saraclar, 2004; Roark & Bacchiani, 2003; Chelba & Acero, 2006; Gao, 
2009; Gildea, 2001). 

Domain adaptation is a well-known problem in machine learning and statistical learning. The problem 
of domain adaptation arises in a large variety of applications: natural language processing (Chelba & 
Acero, 2006; Blitzer, Mcdonald, & Pereira, 2006), machine     translation   (Bertoldi & Federico, 2009), 
word sense disambiguation (Chan & Ng, 2007), etc...  

Different domain adaptation techniques are introduced in the context of specific applications and 

statistical learning methods.  One of the possible ways of using the model adaptation is to adjust the 
model trained on the background domain to a different domain (the adaptation domain) modifying 
opportunely the parameters and/or the structure. The motivation of this approach is that usually the 
background domain has large amounts of training data while the adaptation domain has only small 
amounts of data. By analogy with (Blitzer, Mcdonald, & Pereira, 2006) we propose to learn common 
features, meaningful for both domains having different weights, where the weights are determined 
according to the occurrences in the respective corpus. We are confident that a model trained in the source 

domain using this common feature representation will generalize better the target domain. 

Systems for creating or augmenting semantic networks of words using information extracted from texts 
foresee a manual validation for assessing the quality of semantic networks of words expansion. Yet, these 
systems do not use the manual validation for refining the information extraction model that proposes 
novel links in the networks. Manual validation can be efficiently exploited if used in an incremental 

model. We need an efficient way to interact with final users. 

Incremental Ontology Learning 

Exploiting the above (and also other) algorithms and techniques for inducing ontological structures from 

texts, different approaches have been devised, followed and applied regarding how to properly exploit the 
learned objects and how to translate them into real ontologies using dedicated editing tools. This is an 
aspect which is not trivially confined to importing induced data inside an existing (or empty) semantic 
network, but identifies iterative processes that could benefit from properly assessed interaction steps with 
the user, giving life to novel ways of interpreting semantic networks development. 

One of the most notable examples of integration between semantic networks learning systems and 
ontology development frameworks is offered by Text-to-Onto (Maedche & Volz, ICDM Workshop on 

integrating data mining and knowledge management, 2001), an ontology learning module for the KAON 
tool suite, which discovers conceptual structures from different kind of sources (ranging from free texts to 
semi-structured information sources such as dictionaries, legacy ontologies and databases) using 
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knowledge acquisition and machine  learning  techniques; OntoLT (Buitelaar, Olejnik, & Sintek, 2004) is  
a  Protégé (Gennari, Musen, Fergerson, Grosso, Crubzy, & Eriksson, 2003) plug-in able to extract 
concepts (classes) and relations (Protégé slots or Protégé OWL properties) from linguistically annotated 
text collections. It provides mapping rules, defined by use of a precondition language, that allow for a 

mapping between extracted linguistic entities and classes/slots. 
An outdated overview of this kind of integrated tools (which is part of a complete survey on ontology 

learning methods and techniques) can be found in the public Deliverable 1.5 (Gómez-Pérez & Manzano-
Macho, 2003) of the OntoWeb project. A more recent  example  is offered  by  the  Text2Onto (Cimiano 
& Volker, Text2Onto - A Framework for Ontology Learning and Data-driven Change Discovery, 2005) 
plug-in for the Neon toolkit (Haase, Lewen, Studer, Tran, d'Aquin, & Motta, April, 2008), a renewed 
version of Text-To-Onto with improvements featuring on-model independence (a Probabilistic Ontology 
Model is adopted as a replacement for any definite target ontology language), better user interaction and 

incremental learning.  
Lastly, in (Bagni, Cappella, Pazienza, Pennacchiotti, & Stellato, 2007) the authors define a web 

browser extension based on the  Semantic   Turkey   Knowledge   Acquisition  Framework (Griesi, 
Pazienza, & Stellato, Semantic Turkey - a Semantic Bookmarking tool (System Description), 2007), 
offering two distinct learning modules: a relation extractor based on a light-weight and fast-to-perform 
version of algorithms for relation extraction defined in (Pantel & Pennacchiotti, 2006), and an ontology 
population module for harvesting data from html tables. Most of the above models defines supervised 

cyclic develop and refine processes controlled by domain experts. We propose to extend Semantic Turkey 
(ST) integrating ST with our novel probabilistic model to put final users in the learning loop with an 
efficient way to interact with final users. 

In the rest of the chapter we propose solutions to some limits seen in this section. In particular we 
propose models to exploit structural properties of target relations such as transitivity during learning 
process. Then, we introduce two applications that use our probabilistic model: a model that can be used in 
different specific knowledge domains with a small effort for its adaptation and a model that allows to put 

final users in the learning loop for adapting the model. 
 

TRANSITIVITY IN A PROBABILISTIC MODEL   

Capturing word meaning is one of the challenges of natural language processing. Taxonomies and, in 

general, semantic networks of words (Miller, 1995) are often used as formal models of word meaning. In 
these networks, words are connected with other words by means of taxonomic and, in general, semantic 
relations. This is a way to capture part of the knowledge described in traditional dictionaries. For 
example, this informal definition of “wheel”: 

a wheel is a circular frame turning about an axis ... used for supporting vehicles... 

contains a taxonomic relation, i.e., the wheel is a circular frame, and a sort of part-of relation, i.e., the 

wheel is used for supporting vehicles. 
Transitivity is a well known property of some foundational semantic relations between words. 

Semantic networks are built over transitive semantic relations such as generalization, cotopy, meronymy, 
cause-effect, entailment, and so on. Knowing that “dog” is a “mammal” and “mammal” is a “animal”, we 
can infer that “dog” is a “animal” or, knowing that “snoring” entails “sleeping” and “sleeping” entails 
“resting”, we can state that “snoring” entails “resting”. Yet, this property is generally not exploited in 
learning semantic relations from texts. 

The semantic networks learning models do not explicitly exploit properties, such as transitivity, when 
learning taxonomies or networks of words. Transitivity, when relevant, is not used to better induce 
confidence values for extracted semantic relations. Even where transitivity is intrinsically used (Snow, 
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Jurafsky, & Ng, 2006), it is not directly exploited to model confidence values but it is used in an iterative 
maximization process of the probability of the entire semantic network. We transform this limitation into 
an opportunity. In particular we propose a novel probabilistic method for learning semantic networks of 
words that explicitly models transitivity for deriving confidence weights. 

The rest of the section is organized as follows. We informally introduce our probabilistic model that 
explicitly used transitivity in semantic networks learning models. Then, we formalize the probabilistic 
definitions of concepts in an induced probabilistic model and we propose three different methods for 
modeling induced probabilities. Finally, we want to demonstrate that our induced models can effectively 
exploit transitivity when we replicate existing networks or we expand or build new semantic networks.  

Probabilistic definitions of concepts in semantic networks learning 

When we consider semantic relations with structural properties as transitivity, including confidence 
weights in knowledge repositories is not a trivial problem. In methods such as (Pantel & Pennacchiotti, 
2006), it seems to be possible to easily include some initial values in the final resource as these have been 
used for deciding whether or not the knowledge base should include a relation. Yet, when we need to 

combine these values in transitive relations, we need to be extremely careful on how these values have 
been estimated and computed. For example, if we discover from corpus analysis that “dog” is a “canine” 
and we already know that “canine” is an “animal” (see Figure 1(a)), using transitivity we can derive the 
induced relation, i.e., dog is an animal (dashed arrow in Figure 1(a)). Yet, we cannot easily combine 
confidence weights if the nature of these weights is obscure. On the contrary if we discover from corpus 
analysis that “dog” is an “animal” and we already know that “dog” is “canine” (see Figure 1(b)), using 
the transitivity we can derive the induced relation, i.e., canine is an animal (dashed arrow in Figure 1(b)). 

Another example is shown in Figure 1(c). The solution generally proposed for combining confidence 
weights is neglecting its nature. The final relation between two words has the same confidence weight of 
reliable and controlled information. 

Even in the probabilistic models (Snow, Jurafsky, & Ng, 2006), these reliable and unreliable 
information is mixed during the knowledge acquisition process. In these models, if “canine” is an 
“animal” (see Figure 1(a)) is in the original manually controlled network and “dog” is a “canine” has a 
high probability from the corpus observations, this latter is included in the knowledge base with the same 
degree of plausibility of “canine” is an “animal”. Then, the induced relation “dog” is an “animal” has 

again the same degree of plausibility of manually controlled information. This represent a loss of 
information the uncertainty of the relation “dog” is an “animal” has been neglected.  

 
Figure 1: Examples of relations derived exploiting the transitivity 

Probabilistic definitions for concepts 

Keeping and propagating uncertainty in transitive semantic networks is extremely important. We thus 
propose an inductive semantic network learning model, i.e., a probabilistic semantic network learning 

model based on lexico-syntactic patterns that exploits transitivity during learning and for determining 
combined confidence weights. Our model stems from the intuition that LSP learning models contribute to 
probabilistic definitions of target concepts and that it is possible to combine these definitions to determine 
confidence weights derived from the transitive networks. Extracting evidence from corpora suggesting 
that “dog” is an “animal” contributes both to the definition of “dog” and to the definition of “animal”. In 
the case of “dog”, the relation between “dog” and “animal” contributes to the intensional definition of 
“dog”, it stating that “dog” is an “animal” with specific features. In the case of “animal”, this relation 

contributes, in a wide sense, to the extensional definitioni of “animal”. It is like we are giving one of the 
possible instancesii of the concept “animal”. These formal intensional and extensional definitions are 
often used to derive the similarity among words or concepts. Cotopy (Maedche & Staab, Measuring 
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Similarity between Ontologies, 2002), a measure for determining similarity between concepts in two 
different semantic networks, uses exactly this information. 

A probabilistic definition of a concept is an intensional definition associated with its induced 
probabilities. These probabilities are derived from the topology of the transitive semantic networks 

mixing existing knowledge and corpus estimated probabilities. In Figure 1, the solid arrow indicates 
relations derived from existing structured knowledge repositories and from corpus analysis while the 
dashed arrow type indicates probabilities induced from the structure of the network. We want to describe 
the probability of the dashed relations using the probabilities of the solid ones. We call direct 
probabilities the first type, and induced probabilities the second one. 
In accord to (Fallucchi & Zanzotto, SVD Feature Selection for Probabilistic Taxonomy Learning, 2009), 
we define the direct probabilities as the direct events          where   is the semantic network. If       

is in   , then “ ” is in a   relation with “ ” according to the semantic network  . For example, if   is the 

is-a relation,               describes that dog is an animal according to the semantic network T . The 

learning problem in the direct settings is to determine the probabilities: 

                

Starting from the idea described above, we propose three models that derive induced probabilistic 
definitions from direct probabilities: the first exploits intensional definitions of concepts while the second 
exploits extensional definitions and the third exploits both intensional and extensional probabilistic 

definitions of concepts. We then define the three models respectively: the intensional, the extensional and 
the mixed probabilistic inductive model. To give an intuitive idea of our models, we can use the example 
in Figure 1. 

The intensional inductive model exploits direct intensional definitions to derive an induced intensional 
definition. In Figure 1(a), we have as direct information the probabilities of the relations “dog” is a 
“canine” and “canine” is a “animal”. From these two relations, we can derive the induced probability of 
the intensional definition of “dog” is a “animal”. In this case we are exploiting and modeling the 

transitivity of the isa relation. 
The extensional inductive model uses the direct probabilities (solid arrows), to form extensional 

definitions of the concepts and, to compare the different extensional definitions for determining the final 
induced probability. In Figure 1(b), the relations “dog” is a “animal” and “dog” is a “canine” are used to 
form a very small part of the extensional definitions of, respectively, “animal” and “canine”. The idea is 
that these extensional definitions can be used to determine the similarity of “animal” and “canine”. Then, 
we can derive the induced probability of the relation “dog” is a “animal”. Using the same intuition, the 
relations “dog” is a “animal” and “canine” is a “animal” contribute to the extensional definition of 

“animal” (see Figure 1(c)). Using all the other relations, we can derive also the induced probability of the 
relation “dog” is a “canine”. 

Inductive Probabilistic Model 

In this section, we formalize the probabilistic definitions of concepts in an induced probabilistic model. 

We introduce three models for exploiting the probabilistic definitions of concepts within the induced 
probabilistic model. Without loss of generality, we focus the examples and the prose on semantic 
networks learning. Yet, these models can be adopted for any transitive semantic relation. 

As in (Pantel & Pennacchiotti, 2006; Snow, Jurafsky, & Ng, 2006), we model the semantic networks 
learning problem as a binary classification task. Given a pair of words       and a vector of observed 

features           , we want to build a binary classifier that determines if   is a   and gives the related confidence 

weight. As in (Snow, Jurafsky, & Ng, 2006), we see this problem in a probabilistic point of view as it 
gives the possibility to determine the direct probabilistic model as well as the induced probabilistic 
model.  

 

Figure 2: Example of relations derived exploiting transitivity 
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We here propose a model to exploit transitivity within probabilistic semantic networks learners that use 
lexico-syntactic patterns. Using lexico-syntactic patterns on a corpus, we can extract pairs of words in a 
given relation along with their reliability. These pairs of words and their reliabilities are directly observed. 
For example (see Figure 2), given the hyperonymy relation, we directly derive the reliabilities of the pairs 

“dog” is a “canine” (0.8), “canine” is an “animal” (0.7), and “dog” is an “animal” (0.2) (solid arrows). If 
we now look at all these pairs as a whole, we can observe that these words form a semantic network 
where transitive property holds. Even if the directly observed reliability of the pair “dog” is an “animal” 
is low (0.2), transitivity of the network suggests that this reliability should be higher (0.648). We exactly 
want to exploit the transitive network to induce the reliability of the relation between “dog” and “animal” 
(dashed arrow) using all the reliabilities of the involved pairs directly observed from the corpus. We then 
use a probabilistic setting where this composition of confidence weights can be better controlled. 

The example of Figure 2 we have the following direct probabilities (where d=dog, a=animal, and 

c=canine):                  ,                    and                  .  

In the inductive probabilistic model presents the main innovation of our approach to semantic 
networks learning. We want here to define an event space that models transitivity. We then introduce the 

events       and the related probability function: 

                                                                                                                                                                            ( 1  

This probability should capture the fact that a decision on the pair       also depends on the transitive 

relations activated by      . Rarely these relations are activated by existing semantic networks links. Yet, 
this induced probability takes into account transitively related taxonomic links. We examine different 

models to exploit the transitive property of the   relation and for each of these models we show that 

           can be rewritten in term of the involved          . 

For example, we can compute the induced intensional probability for the pair (dog,animal) in Figure 

2. The induced intensional probability             can be computed as the probability of the event 

                      . This captures that the induced event       is active when      happens or the 

joint event           happens. Then, using the inclusion-exclusion property, the previous independence 

assumptions on the evidences  , and an independence assumption between     , we can compute 

                      as:  

 
                              

                                                               

                                                                                                          

                                            

 

We propose three different methods for modeling induced probabilities: intensional, extensional, and 
mixed model as described in (Fallucchi & Zanzotto, Inductive Probabilistic Taxonomy Learning using 

Singular Value Decomposition, 2010). These three models exploit different definitions of the event       

 . 

In the intensional model, the event          is represented as the event          and for any   all the 

alternative events          and         . In the extensional model, the event          is 

represented as the event          and for any   all alternative events          and          and 

all the events          and         . The mixed is a combination of the other two models. 
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Experimental Evaluation 

Here we want to demonstrate, with two sets of experiments, that our induced models can effectively 

exploit transitivity. The first experiment is a pilot experiment, the second experiment is a full experiment 
that differs from the pilot in the size of semantic networks and in target relations. For both sets of 
experiments we describe the experimental set up and we report the results. 

The pilot experiment 

In the pilot experiment we replicate a small existing semantic network of works with few pair of words in 
isa relation. To completely define the experiments we need to address some issues: how we defined the 
semantic networks to replicate, which corpus we have used to extract evidences for pairs of words, and 

which feature space and logit regressors we used. As corpus we used the English Web as Corpus 
(ukWaC) (Baroni, Berardini, Ferraresi, & and Zanchetta, 2009). 
The best way of determining how a semantic network of words learner is performing is to see if it can 
replicate an existing semantic network. As target semantic networks we selected a portion of WordNet iii 
(Miller, 1995).  Namely, we started from 44 concrete nouns divided in 3 classes: animal, artifact, and 
vegetable. For each word  , we selected the synset     that generalizes the class it belongs to. In this way 

we obtained a set   of synsets. We then expanded the set to    adding the siblings (i.e., the coordinate 

terms) for each synset in  . The sets    contains 265 coordinate terms plus the 44 original concrete nouns. 

For each element in   we collected the hypernyms, obtaining the set   of the hypernyms. We then 

removed from the set   the top classes (entity, unit, object, and whole), obtaining 77 hypernyms. For the 

purpose of the experiments we derived a taxonomy   from   and    and a taxonomy     from the set of 

negative examples. The taxonomy   is the portion of WordNet implied by        , i.e.,   contains all 

the             that are in WordNet.  

On the contrary,    contains all the             that are not in WordNet. We then have 4596 positive 

pairs in   and 48354 negative pairs in    . To obtain the training and testing sets, we randomly divided the 

set      in two parts,            and           , respectively the 70% and 30% of the original     . 

We used a bag-of-n-gram feature space for implicitly modeling lexical-syntactic patterns. In learning 

process, we used a logistic regressor based on the Monroe-Penrose pseudo-inverse matrix (Fallucchi & 
Zanzotto, SVD Feature Selection for Probabilistic Taxonomy Learning, 2009).  

Results 

With the first set of experiments, we analyze the effectiveness of our inductive model with respect to the 
state-of-the-art. We evaluate the iterative probabilistic models (Snow, Jurafsky, & Ng, 2006), the direct 
probabilistic models (Fallucchi & Zanzotto, SVD Feature Selection for Probabilistic Taxonomy Learning, 
2009), and the induced probabilistic models on their ability of sorting the pairs. We have two classes of 
methods. The iterative model adds some pairs at each step. The direct and the inductive probabilistic 

models, instead, produce a sorting of the pairs according to the probabilities.  
We compared the two methods in the following way. For the iterative methods, we plot the curve that 
relates the accuracy to the number of added pairs. The accuracy is computed as the number of correctly 
added pairs with respect to the added pairs. On the contrary, for the probabilistic models we plot the 
accuracies with respect to the ranked pairs. For this set of experiments, we used k=100 for the pseudo-
inverse matrix computation with SVD. 

 

Figure 3: Accuracy of the top-k ranked pairs for the iterative, direct , and inductive probabilistic learners 

The results are reported in Figure 3. Firstly, we can observe that, after some initial steps, models that keep 
the probabilities are better than the model that makes a decision at each step. The direct model already 

outperforms the iterative model. The second observation is that the inductive (extensional, intensional, 
and mixed) models outperform the direct model. This shows that our way of encoding the transitivity is 
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effective. Finally, among the inductive models, the mixed model exploits both the intensional and 
extensional probabilistic definitions of concepts, proves to be the best one. 

  Top k-pairs 

Probabilistic Model 100 1000 

 iterative 0.350 0.225 

direct 0.290 0.269 

intentional 0.510 0.282 

extensional 0.420 0.292 

mixed 0.510 0.322 

Table 1: Accuracy of the different models at top 100 and 1000 ranked pairs 
  

The accuracies are reported in Table 1. The table reports the accuracies for the different probabilistic 
models for two different cuts of the sorted pair list. The second and the third columns report, respectively, 
the accuracies for 100 and for 1000 considered pairs. We used these two cuts to compute the statistical 
significance of the difference between the direct and the mixed model. To determine the statistical 
significance, we used the model described in (Yeh, 2000) as implemented in (Padó, 2006). We extended 
this latter for considering accuracies computed on sorted lists. According to these tests, the statistical 
significance is below 0.05.  

The full experiment 

Here, we want to demonstrate that our induced models can effectively exploit transitivity when increasing 

the size of the semantic network of both training and testing. Differently from the pilot experiment two 
target relations are considered: isa and part-of relations. To carry out the experiments we then need: (1) a 
corpus for extracting evidences to derive probabilities; (2) a semantic network of words and a set of 
negative examples for the target relation; (3) the definition of the feature space; and, finally, (4) the 
definition of the logistic regressors. 

As corpus we used the English Web as Corpus (ukWaC) (Baroni, Berardini, Ferraresi, & and Zanchetta, 

2009). 

The semantic network of words will be used as source of training and testing examples. For each 
experiment we need: a training example set with positive pairs and negative pairs and a testing example 

set with positive pairs and negative pairs. The testing set    should be a totally connected set for building 
the potential network of words. We want to test our model for two different transitive semantic relations: 

hyperonymy (H) and meronymy (M).  
We extract the semantic networks and the set of negative examples from an existing knowledge 

repository, i.e., WordNetiii (Miller, 1995). In WordNet, semantic relations   are expressed as pairs of 

synonymy sets (synset), i.e.,                                            where the    synset      and       

are the sets  of  words       
   

     
   

  and       
   

     
   

 . The synset    is in relation   with 

the synset    if    is directly related with the synset    or if it is reachable with the transitive property. 

We derive the semantic networks of words from the synset network.  
Given one of the two target relations, we can  derive  the  network of  words   from the set   as 

follows:                                   . We then derived the semantic networks of 
words for hyperonymy   and for meronymy    These networks consist of, respectively, 7879350 and 

672571 as reported in Table 2. 
The negative examples have been obtained as follows. Given the set of the words in WordNet  , the 

negative examples are respectively          and          . 

  

Test Set Description Initial  Size Retrieved Pairs 

isa           1983197 212076 
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             5594387 315428 

         506 150 

          80436 258 

part-of           14333 8077 

            623616 318679 

         408 101 

          34214 1713 

Table 2: Semantic networks used in the experiments 

  

For generating the testing set, we selected a relevant and strictly connected sub portion of network of 
words. This portion has been obtained using a synset as head and deriving the part of the network that can 

be transitively reached. For the   relation, we selected the sense 1 of “vegetable”. For the M relation, 

we selected the sense 1 of “face”. Given the sets        and         of the words respectively in  

    and     , the negative examples are                        , and              
           . In this way, we have the overall potential network of words for the testing. 

The final sets are reported in Table 2. We here describe the two tests we made: the isa with vegetable 
and the part-of with face. The table reports how we obtained the positive examples and the negative 
examples for the training and the testing of the two examples. We also report the size of these sets and the 
number of the pairs retrieved in the corpus under the conditions later on described.  

We used a bag-of-n-gram feature space for implicitly modeling lexical-syntactic patterns. 

We used two different logistic regressors: a logistic regressor based on the Monroe-Penrose pseudo-
inverse matrix (Fallucchi & Zanzotto, SVD Feature Selection for Probabilistic Taxonomy Learning, 
2009) and the support vector machines (Vapnik, 1995) as implemented in (Joachims, 1999). 

Results 
In the first set of experiments, we want to investigate how induced model behaves with respect to the 
direct model in the most common settings for semantic relation learning: enriching an existing semantic 

network without any additional information. We then have the existing network out of which we can 
derive positive examples but also some negative example. We obtained this setting, that we call semi-
supervised, using the two proposed sets for the two transitive relations. We gave an initial probability of 
0.99 to the positive examples and of 0.5 for the negative examples. These latter are then used as if no 
information is available. This is the natural setting in learning semantic networks that is used in many 
experiments (e.g., (Pantel & Pennacchiotti, 2006)). The results of these experiments for the isa relation 
and the part-of relation are reported respectively in Table 3 and in Table 4. These tables report the relative 

recall  of the different methods obtained using the first k ranked pairs. In line with (Pantel & 
Pennacchiotti, 2006), the relative recall  RR is the ratio between the retrieved pairs with respect to the 
pairs that can be retrieved from the method, i.e., in our case the pairs that are retrieved in the corpus. In 
these tables, we report both the experiments with the pseudo-inverse matrix method (PI) and with SVM.  

  

 direct intensional extensional mixed 

 PI SVM PI SVM PI SVM PI SVM  

100 30.67 30.00 4.00 4.00 37.33 35.33 24.00 24.00 

200 56.67 49.33 27.33 27.33 60.67 61.33 45.33 43.33 

300 74.67 74.67 64.00 64.00 81.33 78.67 64.67 66.00 

Table 3: Relative Recall of is-a relation: case semi-supervised 
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 For each method, direct, intentional, and extensional we have the two columns representing the two 
methods for inducing the direct probabilities. For the isa relation (Table 3), we report the relative recall 
for the first 100, 200, and 300 first ranked pairs. For the part of relation(Table 4), we report the relative 
recall for 500 and 1000 first ranked pairs.  

 

 direct Intensional extensional mixed 

 PI SVM PI SVM PI SVM PI SVM  

500 28.71 28.71 32.67 32.67 33.66 33.66 34.66 33.64 

1000 44.55 70.30 54.46 70.3 49.5 72.28 51.50 70.71 

Table 4: Relative Recall of part-of relation: case semi-supervised 

For the isa relation (Table 3Table 3), experiments show that the best way to exploit the transitivity of the 

isa relation is the extensional model. Only the extensional model outperforms the direct model. This is 
confirmed for both regression methods. We can also observe that the difference between the SVM and PI 
does not seem to be significant. For the part-of relation (Table 4)), experiments confirm that the 
extensional model outperforms the direct model. Yet, the intensional model behaves better than in the 
case of the isa relation. 

To better explore our models, we then analyzed their behavior under ideal conditions. In this setting, 
we have explicit negative cases. Yet, these conditions hardly represent the operational scenario where the 
models act. Generally, we have an existing semantic network that we want to expand and we have no 
knowledge about negative examples. We obtained this setting, that we call supervised, assigning an initial 
probability of 0.99 to positive examples and an initial probability of 0.01 to negative examples. The 
results of these experiments for the isa and the part-of relations are reported respectively in Table 5 and in 
Table 6. 

  

 direct intensional extensional mixed 
 PI PI PI PI 

100 28.00 2.67 37.33 21.333 

200 56.67 27.33 60.67 45.333 

300 80.67 66.00 82.67 64.667 

Table 5: Relative Recall of is-a relation Vegetable: case supervised 
 

 direct intensional extensional mixed 

 PI PI PI PI 

500 26.73 28.71 28.71 28.70 

1000 39.60 49.50 44.55 46.51 

Table 6: Relative Recall of part-of relation Face: case supervised 

We report here the experiments for the pseudo-inverse method (PI). In the case of the isa relation, we can 
observe that this setting increases the performance only when we consider 300 pairs with respect to the 
semi-supervised approach. The extensional model is still better than the intensional model. For the part-
of, the increase in performance with respect to the semi-supervised approach is lower than the previous 
case. Some part-of pairs that have been considered negative examples are positive. Inheritance of the part-

of is not considered in generating positive examples. Yet, even in this case, the extensional model 
outperforms the intensional model. For the part-of relation, both the intensional and the extensional 
models are suitable for exploiting transitivity. 
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GENERIC ONTOLOGY LEARNERS ON APPLICATION DOMAINS  

Domain knowledge bases are extremely important in a variety of natural language processing applications 

but manually creating structured knowledge repositories is a very time consuming and expensive task. 
Semi-supervised learning of domain knowledge bases from texts is generally seen as the solution. This is 
a very attractive and rich research area that is full of challenges. Generally, the process for automatically 
creating, adapting, or extending existing knowledge bases relies on existing structured knowledge and 
domain corpora. In ontology learning models using lexico-syntactic patterns (LSP) (Robison, 1970; 
Hearst, 1992; Pantel & Pennacchiotti, 2006), existing domain ontologies or structured knowledge bases 
give positive learning examples. These latter are exploited to learn lexico-syntactic patterns from domain 

corpora. Learnt LSPs are then used to extract and structure new knowledge from the domain corpora. For 
a successful application, these LSP methods for learning domain ontologies need large domain corpora 
and existing domain knowledge bases. LSP methods for learning ontologies from texts are good models 
only when we consider ontology-rich domains or we do generic knowledge extraction. In this latter case, 
these methods can exploit large general corpora and large general structured knowledge repositories such 
as WordNet (Miller, 1995). There are only few domains with well-assessed existing structured knowledge 
bases where the problem is to expand these ontologies. On the contrary, the large number of applications 

domains has little or no existing structured knowledge. The big challenge is to successfully apply these 
methods in ontology-poor domains. One of the possible ways to address the above challenge is to build 
LSP models that learn lexico-syntactic patterns on generic and ontology rich domains and then apply 
these patterns on specific ontology poor domains. In line with (Gao, 2009), we respectively refer as the 
background domains and application domains to these two kinds of domains. Yet, in machine learning 
and in statistical learning data should be enough representative of the environment where learned models 
will be applied. The statistical distribution of learning data should be similar to the distribution of the data 
where the learn model is applied. In this application scenario, this assumption is inaccurate. Background 

domain data, also called out-of-domain data, used for learning lexico-syntactic patterns have generally a 
different distribution with respect to application domain data, also called in-domain data. Generally, out-
of-domain data are more than in-domain data. We need to envisage methods that exploit these data for 
building accurate in-domain models. 

The rest of the section we present our model and then, we evaluate and assess the performance of our 
method on the target domain, i.e., Earth Observation Domain. 

Learner Model: from Background to Application domain  

Can training data from one corpus be applied to learn another corpus?  The basic idea is partly to answer 
this question because we want to define an ontology learning model that can be adapted to previously 

unseen distributions of data. This model is thought to exploit the information learned in a background 
domain for extracting information in an adaptation domain. 

Our ontology learning method is based on the probabilistic formulation given in the previous section. 
We use this probabilistic setting to learn a model that takes into consideration corpus-extracted evidences 
over a list of training pairs. The initial feature space is built starting from the analysis of a generic corpus 
where we observe a list of training pairs of words that are in a target semantic relation. We can generate 
these pairs using general resources such as WordNet. These pairs are used to enable the probabilistic 
method to induce lexico-syntactic patterns for the model of the specific semantic relation (Hearst, 1992). 

The learned model can be used to estimate the probabilities of the new instances computing a new feature 
space using the corpus of the adaptation domain. 

In the rest of this section, we will firstly describe the background ontology learning model and we will 
then illustrate the method that we will be adapted to the new domain. 

Background Ontology Learner 

In the probabilistic formulation, the task of learning ontologies from a corpus is seen as a maximum 
likelihood problem. The ontology is seen as a set   of assertions   over pairs     . In particular we will 
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consider the      relation. In this case, if       is in  ,   is a concept and   is one of its generalizations. 

For example,                states that dog is an animal according to the ontology  . 

The main probabilities are then: (1) the prior probability            of an assertion     to belong to the 

ontology   and (2) the posterior probability                 of an assertion       to belong to the ontology 

  given a set of evidences       derived from the corpus. These evidences are derived from the contexts 

where the pair       is found in the corpus. The vector        is a feature vector associated to a pair      . 

For example, a feature may describe how many times   and   are seen in patterns like          or 
“          . But many other indicators exist of an Is-a relation between   and   (see (Hearst, 1992)). Given 

a set of evidences   over all the relevant word pairs, the probabilistic ontology learning task is defined as 

the problem of finding an ontology    that maximizes the probability of having the evidences of  , i.e.:  

 

      
   
 

       

In the original model (Snow, Jurafsky, & Ng, 2006; Fallucchi & Zanzotto, SVD Feature Selection for 
Probabilistic Taxonomy Learning, 2009), this maximization problem was solved by a local search. 

In the present model at each step we maximize the ratio between the likelihood         and the 

likelihood        where         and   are the relations added at each step. As in (Snow, Jurafsky, 

& Ng, 2006; Fallucchi & Zanzotto, SVD Feature Selection for Probabilistic Taxonomy Learning, 2009) 
this ratio is called     . It is calculated using the logistic regression and then solving a    linear   problem    

using   the   pseudo-inverse   matrix model. The regression coefficients will be estimated as follows  
 

       

   

where   is the logit vector and     

  is the Moore-Penrose pseudoinverse (Penrose, 1955) matrix of the 

inverse evidence matrix     
 obtained from a generic corpus    that includes a constant column of 1’s, 

necessary to obtain the    coefficients. The regressors represent the model that we learned from the 

training pairs using a generic corpus      that we will use to compute the probabilities of the testing pairs. 

Estimator for Application Domain 

In our task, instead of finding the ontology that maximizes the likelihood of having the evidences  , we 
calculate, given the regressors, the probabilities of the testing pairs step by step. The idea is that, given the 
domain based corpus   , for each testing pair we compute the vector space according to the features 

selected in the previous generic corpus feature space analysis. After the domain based corpus feature 
space analysis where we look for the testing pairs in   , we obtain a new feature space    

. It is a matrix 

      where    is the number of the new instances found in the corpus    and   is the number of the 

features. We compute the logit of the new instances: 

                                                                                         
                                                                     ( 2) 

Where    
  is the inverse evidence matrix obtained from an adaptation domain corpus     that includes a 

constant column of 1’s, necessary to obtain the    coefficients. The parameter   is used to adapt the 

model by the   vector to the new domain. From the definition of logit we can compute the probabilities of 

the new instances, i.e.:  
 

   
        

          
 

This latter can be used to build the know ledge base in the new domain. 

Experimental Evaluation 

We experimented with our model adaptation strategy using a generic domain as background domain and 
the Earth Observation Domain as specific domain. We took the isa relation as the target relation. The 
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target of the experiments is to understand whether or not our model adapt to specific domains. We then 
compare our system (Our-System) with respect to a system that uses only WordNet (WN-System). In this 
section, we firstly describe the general experimental set up. We then describe the quality of the target 
domain ontologies. Finally, we analyze the accuracy of our models with respect to the three different 

ontologies. 

Experimental Setup 

To define completely the experiments we have to define: both training and testing pairs, which corpus has 

been used to extract evidences for training pairs, which corpus to extract evidences for testing pairs, and 
which feature space we use for both corpora. To build the training pairs we generated all the pairs that 
were in hyperonym relation in WordNetiii (Miller, 1995) and we obtained about 2 millions of words. 

Here, we firstly define the semantic networks used in the experiments. The network of words will be 
used as a source of training and testing examples. For each experiment we need: a training example set 

             with positive pairs  and negative pairs   , and a testing example set   . To build    

we start from a given list of 63 terms that are relevant in Earth Observation Domain. Then we combine 
each term with the other terms and we generate       pairs. Furthermore, for each term  , we select all 

the synsets    in WordNet. In the case of a term with a synset in WordNet we generate the pairs 

combining   with all the hyperonyms for each synset. Otherwise, if   has compound words we look for 

our semantic head in WordNet. If we find the synsets, we generate the pairs combining   with the 

hyperonyms of the semantic head of  .  
We extract the training example pairs from an existing knowledge repository: WordNet iii (Miller, 1995). 
Given hyperonymy as target relation, we can derive the network of words   from the set   as 

follows:                                  . We then build the set   that contains all pairs 

of words in WordNet that are in hyperonymy relation. Then         . Given the set of the words in 

WordNet  , the training negative example is                . We build     ,       and    

without overlap. We searched for the pairs in    in a corpus    (in particular the English Web as Corpus 

(ukWaC) (Baroni, Berardini, Ferraresi, & and Zanchetta, 2009) has been used). This is a web extracted 
corpus of about 2700000 web pages containing more than 2 billion words. It contains documents of 
several different topics such as web, computers, education, public sphere, etc.. It has been largely 
demonstrated that the web documents are good models for natural language (Lapata & Keller, 2004). 

Using a web crawler, here we pick up a corpus related to Earth Observation Domain   , successively 

”cleaned”, that contains about 8300 documents (115,6 MB). We use the bag-of-word feature space. 

Out of the     , only those pairs that appeared at a distance of 3 tokens at most have been selected. 
Using these 3 tokens, we generate the bag-of-word feature space. The pairs in    found in the ukWaC are 

527348, while the pairs in    found in  are 404. The two generated feature spaces have the same features 

that are 276670. The model to build ontologies in Earth Observation Domain has been generated by using 
the training pairs and the corpus ukWac. 

Evaluating the Quality of Target Domain Specific Ontologies 

We want to evaluate our approach in learning the bulk of the ontologies, i.e., the isa relation, in Earth 

Observation Domain. between two pairs of words is a binary problem. We then asked three annotators 
(  ,    and   ) to build three different ontologies: two of them are expert in the domain (  and   ), the 

third one is not (  ).    and     have different levels of expertise:    is a young expert in the domain and  
   an older one. Each annotator made a binary classification of 641 pairs of words in Earth Observation 

Domain, i.e., the     set introduced in the previous section. 

We then wanted to judge the quality of the annotation procedure according to their inter annotation 
agreement. A simple measure of the quality of the agreement rate between two human annotators is the 
ratio between the number of items identically judged by two different annotators and the total number of 
items considered by the annotators. In (Scott, 1955), this measure is named observed agreement  and it 



 17 

is defined as the percentage of judgments on which the two analysts agree when coding the same data 
independently. In accord to (Artstein & Poesio, 2008)  we define the agreement value.  

 We can examine the issue of inter-annotator agreement by comparing the agreement rate of the human 

annotators. There are different methods for measuring the agreement among 3 annotators. When there are 
more than two annotators, some of them may agree and the rest disagrees on the same item. In this case, 
the observed agreement can no longer be defined as the percentage of items getting agreement. To solve 
this problem , we can analyze two solutions :                    and                   both 

in (Fleiss et al., 1971). In the section Pairwise agreement we will describe the inter-annotators agreement 
for each pair of annotators that has a personal distribution and we will show that this is similar to the 
distribution computed on both annotators of each pair. In the         agreement, we examine the 

distribution of all the three annotators. 

Pairwise agreement 

The pairwise agreement defines the agreement on a particular item as the proportion of agreed judgment 
pairs out of the total number of judgment pairs for that item (Fleiss, et al., 1971). We measure the inter-

annotators agreement of the 3 pairs of annotators:       for the two annotators expert in the domain     
and    ;       for one annotator expert in the domain    and the other one not expert   ; and,       for 

the second annotator expert in the domain    and the other one not expert   . 

 

 

 

   A1   

  yes  no  

 yes 47  61 108 

A2      

 no 43  490 533 

  90  551 641 
 

 ( a) pair1=(A1,A2) 

   A1   

  yes  no  

 yes 76  83 159 

A3      

 no 14  468 482 

  90  551 641 

 

( b) pair2=(A1,A3) 

 

   A2   

  yes  no  

 yes 72  87 159 

A2      

 no 36  446 482 

  180  553 641 

 
( c) pair3=(A2,A3) 

Table 7:Contingency tables for pairwise annotator agreement for 641-annotations 

 

             

              0.8377535 0.7384206 0.3797428 

              0.8486739 0.6811997 0.5253266 

              0.8081123 0.6670496 0.4236749 

Table 8: pairwise agreement for 641-annotationsions 
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Given the same data (641 or 404-annotations) with the same guidelines, we build the contingency 

tables for the 3 pairwise annotators (respectively Table 7 and Table 9). For each table we report the 
statistic of the two annotators. Then in Table 7 (a) we summarize the inter-annotator agreement of the 3 

pairwise agreements considering 641-annotators. For example, the observed agreement for this data is 
obtained summing up the cells of the table where the annotators assign the same judgment and dividing 
by the total number of annotations. For example, considering        (first row of the Table 8(a)), the two 

annotators label 47 occurrences as YES, and 490 as NO. The resulting observed agreement of       is 
                          . As above mentioned, there are two different methods to compute 

the expected agreement. In the first method the expected agreement is governed by prior distributions that 
are unique for each annotator and it is computed looking the actual distribution. Then for        we 

have                                                      . 

In the second method we get the same distribution for each annotator of the pair, then we have  

    
      

     
 
 

  
       

     
 
 

           

Since the two    values are similar and the same occurs for the other pairs, we report only the expected 

agreement computed using the first method. 
Finally, using both the observed and expected agreement, the possible agreement beyond change 
observed for the  is                                                     . Analogously 

we compute kappa value for the other pair of annotators. 
In the same way we compute Observed Agreement, Expected Agreement and coefficient kappa for the 

pairwise agreement considering 404-annotations (Table 10). Summarizing only for  on 641-annotations 
the coefficient kappa is in the “fair” interval in accord to the scale proposed in (Landis & Koch, 1977). 
Most likely there is a fair agreement between annotators     and     because the first one is an older 

expert in the domain while the second one is not expert at all, so they have a different knowledge with 
respect to the specific Earth Observation Domain. 

In all the other cases the pairwise agreement is better because the coefficient kappa belongs to the 
“moderate” interval. We are confident on the reliability of such annotations as the annotators agree on 

labeling the same pairs of words. This allows us to prove the validity of the annotation. 

 

   A1   

  yes  no  

 yes 40  61 108 

A2      

 no 43  490 533 

  90  551 641 

 
( a) pair1=(A1,A2) 

   A1   

  yes  no  

 yes 76  83 159 

A3      

 no 14  468 482 

  90  551 641 

 
( b) pair2=(A1,A3) 

 

   A2   

  yes  no  

 yes 72  87 159 

A2      

 no 36  446 482 

  180  553 641 

 
 ( c) pair3=(A2,A3) 
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Table 9: Contingency tables: pairwise annotator agreement for 404-annotations 
 

 

 

Multi- agreement 

In          agreement the agreement of the annotators is considered as a whole. There is only one 
distribution for all the annotators, derived from the total proportions of categories assigned by each 
annotator. 

When there are more than two annotators, the visualization of the data is a difficult task: a possible 
solution is in using the agreement table where each annotator is represented in a separate column.  

The columns   ,    and    of Table 11(a) Table 11(b) the label 1 or 0 assigned for each pair (first 
column) by the 3 annotators respectively in 641 or 404-annotations. For both tables we report in the 

columns YES and NO respectively the sum of 1s and 0s in   ,    and   . In Table 11(c) we report the 
observed and expected agreement and the relative kappa coefficient for both 641 and 404 annotations. 

The kappa value obtained from both annotations confirms the conclusions deduced with the pairwise 
agreement method that proved the validity of the annotations of the 3 annotators. 
 
 
 

pairs of words          Yes NO 

(agriculture,department) 0 0 0 0 3 

(soil,earth) 1 1 1 3 0 

(agriculture,business) 0 0 0 0 3 

(wind,direction) 1 0 0 1 2 

(climate,climate change) 0 0 0 0 3 

(climate change,climate) 0 1 1 2 1 

(climate change,activity) 1 0 1 2 1 

(forest,terra firma) 1 1 1 3 0 

… … … … … … 

TOTAL 90 108 159 357(0.19) 1566(0.81) 

( a) Agreement table for 641-annotations 
 

pairs of words          Yes NO 

(forest,terra firma)  1 1 1 3 0 

(wind,process) 0 0 0 0 3 

(forest,object) 0 0 0 0 3 

(cloud,state) 0 1 0 1 2 

(soil,object) 0 1 1 2 1 

(wind,breath) 0 0 0 0 3 

(wind,act) 0 0 0 0 3 

(topography,geography) 1 1 1 3 0 

… … … … … … 

TOTAL 75 72 119 266(0.22) 946(0.78) 

             

              0.8341584 0.7023086 0.4429077 

              0.8415842 0.6291663 0.5728117 

              0.7896040 0.6322174 0.4279336 

Table 10: pairwise agreement for 404-annotations 
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( b) Agreement table for 404-annotations 
 
 
 

 

 
 

 
Table 11:Agreement tableand Multi-π agreement for 641 and 404 annotations 

Result 

In our experiments we investigated how the approach to compute a model using both a background 

domain and an existing network, can be positively used to learn the isa relation in Earth Observation 
Domain. For the evaluation, we compare our learner model (Our-System) directly with currently existing 
hyperonym links in WordNet (WN-System) and we measure in both cases the performance to find 
correctly the testing pairs that are in isa relation. In order to evaluate the performance of the two systems 
for the pairs in Earth Observation Domain we used the three different ontologies produced by the three 
annotators. We will call these three target ontologies with the name of the annotator.  

The results of the experiments are reported in Table 12(a) and in Table 12(b). In the first table we 

compute the recall, the precision and the f-measure of the WN-System against the 3 ontologies, while in 
the second table we compute the recall, the precision and the f-measure of the Our-System.  

 
 

annotators recall precision f-measure 

A1 0,36 0.184932 0,244344 
A2 0,305556 0,150685 0,201836 

A3 0,470588 0,383562 0,422642 

(a) WN-System against the 3 annotators 

  
 

annotators recall precision f-measure 

A1 0,493333 0,253425 0,334842 

A2 
0,430555

6 0,212329 0,284404 

A3 
0,436974

8 0,356164 0,392453 

(b) Our-System against the 3 annotators 

Table 12:Performance of both system with respect to 3 annotators 
 
We can then draw some observations: First, Our-System behaves better than the WN-System on the 

ontologies produced by the expert annotators. The f-measure of both the expert annotators (   and   ) is 

better for Our-System with respect to WN-System. On the contrary, for the last ontology (  ) the WN-

System has better performance than our system. Then, our system is capturing knowledge of the specific 
domain as it is behaving better than the generic system with respect to domain experts. Second, in the 
case of the expert annotators, the recall of our system is higher than the recall of the WordNet based 
system. This confirms that the coverage of WordNet in the specific domain is low and only learning 
methods can be used to adapt the ontological information to the specific domain. On the contrary, for the 

non-domain expert, WordNet is good enough to cover domain knowledge. Results show that Our-System 
is a good learner method that can be positively used to learn the isa relation in Earth Observation Domain. 

 

PROBABILISTIC ONTOLOGY LEARNER IN SEMANTIC TURKEY 

Ontologies and knowledge repositories are important components in Knowledge Representation (KR) and 
Natural Language Processing (NLP) applications. Yet, to be effectively used, ontologies and knowledge 
repositories have to be large or, at least, adapted to specific domains. Even huge knowledge repositories 

             

641-annotations 0.83151 0.69764 0.44277 

404-annotations 0.82382 0.65739 0.48577 

( c) Multi-π agreement respect to 641 and 404 annotations 
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such as WordNet (Miller, 1995) are extremely poor when used in specific domains such as the medical 
domain (see (Toumouth, Lehireche, Widdows, & Malki, 2006)).  

In automatically creating, adapting, or extending existing knowledge repositories using domain texts is a  

very important and active area a large variety of methods have been proposed: ontology learning methods 
in KR (Medche, 2002; Cimiano, Hotho, & Staab, Learning concept hierarchies from text corpora using 
formal concept analysis, 2005; Navigli & Velardi, 2004) as  well  as  knowledge    harvesting    methods 
in NLP either (Hearst, 1992; Pantel & Pennacchiotti, 2006).These learning methods use variants of the 
distributional hypothesis or exploit some induced lexical-syntactic patterns (Robison, 1970). The  task  is  
generally  seen  as  a   classification (e.g., (Pekar & Staab, 2002; Snow, Jurafsky, & Ng, 2006)) or a 

clustering (e.g., (Cimiano, Hotho, & Staab, Learning concept hierarchies from text corpora using formal 
concept analysis, 2005)) problem. This allows the use of both machine learning and probabilistic models. 
But generally, automatic models for extracting ontological knowledge from texts do not have the 
performance needed to extend existing ontologies with a high degree of accuracy. As a consequence, the 
resulting automatically expanded ontologies can be completely useless. Generally, systems for 
augmenting ontologies extracting information from texts foresee a manual validation for assessing the 
quality of ontology expansion. Yet, these systems do not use the manual validation for refining the 

information extraction model that proposes novel ontological information. Here, the idea is to prefer 
methods that can use decisions of final users to incrementally refine the model for extracting ontological 
information from texts, i.e., each decision of final users is exploited in refining the parameters of the 
extraction model. Including these new examples as training for machines helps in augmenting the 
performances of the automatic extractor, as shown in (Cimiano & Volker, Text2Onto - A Framework for 
Ontology Learning and Data-driven Change Discovery, 2005). In the following, we present  the  Semantic  
Turkey  Ontology  Learner  (ST-OL) (Fallucchi, Scarpato, Stellato, & Zanzotto, 2009), an incremental 
ontology learning system that follows the above idea putting final users in the learning loop. Furthermore, 

this system uses the proposed probabilistic ontology learning model that exploits transitive relations for 
inducing better extraction models. 
The chapter is organized as follows. We firstly present the ideas behind our new ontology learning system 
introducing the concept of incremental ontology learning. We then introduce ST-OL, the system that we 
have adopted following the above principles. Finally, we draw some conclusions. 

Incremental Ontology Learning 

To efficiently set-up an incremental model for ontology learning, we have to address two issues:  

• we need an efficient way to interact with final users  

• we need an incremental learning model  

The rest of the section shows how we can address these issues using existing models and existing 

systems. We start from presenting the concept of incremental ontology learning. Then, we describe the 
used ontology editor and finally, we introduce the adopted ontology learning methodology. 

The concept 

The incremental ontology learning process we want to model leverages on the positive interaction 
between an automatic model for ontology learning and the final users. We obtain this positive interaction 

using one additional component: an ontology editor. The overall process is organized in two phases: (1) 
the  initialization step and (2) the  learning loop. In the initialization step, the user selects the initial 
ontology and the corpus. The system, then, uses these two elements to generate the first model for 
learning ontological information from documents. In the  learning loop, the machine learning component 
extracts a ranked list of pairs                                  and the user selects, among the first 

k pairs, the correct ones to be added to the ontology. We then use these choices to generate both positive 
and negative training examples for the ontology learning component. Once the new ontology extraction 
model has been learnt (using the corpus, the updated ontology, and the growing non-ontology), the 
process restarts from the beginning of the loop. 
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Given a selected corpus  , the initial ontology    and the generic ontology     at the iteration  , we can 

see the incremental learning process as the sequence of the resulting ontologies      .The transition 

function leverages on the ontology learning model M and on the interaction with the user, i.e., the user 
validation   . This function can be represented as follows: 

 

                                                                      
  
 

                                                                  ( 3) 

 

where     is the model learnt from the corpus,     is the ontology at the      step and       are the 
negative choices of the users at the same step. This model gives as output a ranked list of possible updates 

of the ontology        . The    on the first   possibilities produces the updated ontology  and the updated 

non-ontology        . At the initial step, the process has      and        . The ontology learner produces 

the model              building feature vectors representing the contexts of the corpus   where we can 

find pairs of pairs (candidate_concept, superconcept). These pairs are extracted from the ontology    and 

the non-ontology     . 

Semantic Turkey 

Semantic Turkey is a Knowledge Management and Acquisition system developed by the Artificial 

Intelligence Group of the University of Rome, Tor Vergata. Semantic Turkey (ST, from now on) was 
initially developed as a web browser extension (it is currently implemented for the popular Web Browser 
Mozilla Firefox) for Semantic Bookmarking (Griesi, Pazienza, & Stellato, Gobbleing over the Web with 
Semantic Turkey, 2006), that is, the process of eliciting information from (web) documents, to acquire 
new knowledge and represent it through representation standards, while keeping reference to its original 
information sources. 
Semantic Bookmarks are different from their traditional cousins because they abandon the purely 

portative semantics of traditional links&folders bookmarking, and promote a new paradigm, aiming at “a 
clear separation between (acquired) knowledge data (the WHAT) and their associated information sources 
(the WHERE)”. In practice, the user is able to select portions of text from web pages loaded from the 
browser, and to annotate them in an (user defined) ontology. A neat separation is maintained between the 
ontological resources created from the annotation, and the annotations themselves. In this way, the user 
can easily organize the knowledge (by establishing relationships between ontology objects, categorizing 
them, better defining them through attributes etc...), while keeping multiple bookmarks in a separated 

space, pointing to ontology resources and carrying with them all information related to the taken 
annotations (such as the page where the annotation has been taken, its title, the text which was referring to 
the created/referenced ontology resource etc...). Easy-to-perform drag-and-drop operations were thought 
to optimize user interaction, concentrating the creation of both the ontological resources and their related 
annotations in a few mouse clicks. 
ST has lately evolved (Griesi, Pazienza, & Stellato, Semantic Turkey - a Semantic Bookmarking tool 
(System Description), 2007) in a complete Knowledge Management and Acquisition System based on 

Semantic Web technologies, introducing full support for ontology editing and improving functionalities 
for annotation&creation, ST has explored a new dimension without predecessors in the field of Ontology 
Development or Semantic Annotation, unique in the process of building new knowledge while exploring 
the web. The new objective of ST has been thus reducing the impedance mismatch between domain 
experts and knowledge investigators on one side, and knowledge engineers on the other side, providing a 
unifying platform for acquiring, building up, reorganizing and refining knowledge. The ontology learning 
module that we introduce here has been implemented and integrated upon the above exposed framework. 

Probabilistic Ontology Learner 

We use the proposed probabilistic ontology learning (POL) to expand existing ontologies with new facts. 

In POL it is possible to take into consideration both corpus-extracted evidences and the structure of the 
generated ontology. In the probabilistic formulation (Snow, Jurafsky, & Ng, 2006), the task of learning 
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ontologies from a corpus is seen as a maximum likelihood problem. The ontology is seen as a set   of 

assertions   over pairs . In particular we will consider the is-a relation. In this case, if  is in  ,   is a 

concept and    is one of its generalizations (i.e., the direct or the indirect generalization). For example,  
describes that dog is an animal according to the ontology  . 

The main probabilities are then: (1) the prior probability            of an assertion       to belong to the 

ontology   and (2) the posterior probability                         of an assertion       to belong to the 

ontology   given a set of evidences            derived from the corpus. These evidences are derived from the 

contexts where the pair       is found in the corpus. The vector             is a feature vector associated with a 

pair      . For example, a feature may describe how many times   and    are seen in patterns like 

                      . These, among many other features, are indicators of an      relation between   and 
  (see (Hearst, 1992)). 

Given a set of evidences   over all the relevant word pairs, in (Snow, Jurafsky, & Ng, 2006) the 

probabilistic ontology learning task is defined as the problem of finding an ontology   that maximizes the 

probability of having the evidences  , i.e.:  

 

                                                                            
                                                                            ( 4) 

  
In the original model (Snow, Jurafsky, & Ng, 2006), this maximization problem is solved with a local 
search. In the incremental ontology learning model that we propose, this maximization function is solved 

using also the information coming from final users. 
In the user-less model, what is maximized at each step is the ratio between the likelihood         and the 
likelihood        where       and   are the relations added at each step. This ratio is called 

multiplicative change       and is defined as follows:  

     
       

      
 

  
It is also possible to demonstrate that 
 

            
                     

                       
               

where   is a constant (see (Snow, Jurafsky, & Ng, 2006)) that will be neglected in the maximization 
process. 

We calculate the      using the logistic regression. The regression coefficients can be estimated using 
the Monroe-Penrose pseudo-inverse matrix (Fallucchi & Zanzotto, SVD Feature Selection for 
Probabilistic Taxonomy Learning, 2009) 

 

                                                                                                                                                                    
( 5) 

  
where   is an approximation of the regression coefficients vector,     is the inverse evidence matrix, and 

  the logit vector. 
In our user-oriented incremental ontology learning model we propose to include final users in the loop. In 
our task we do not find the ontology that maximizes the likelihood of having the evidences  . We 

calculate the probabilities step by step. Then we present an ordered set of choices to final users that make 
the final decision on what to use in the next iteration. The order set is obtained using the logit function as 

it is equivalent to the order given by the probabilities. For this reason, in the following we will operate 
directly on the logit rather than on the probabilities. It is possible to calculate the logit vector at the      

iteration using the logit definition  and the equation  =                                                                                       
( 5):  
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                                                                       ( 6) 

At each iteration, we calculate the logit vector using the logit vector of the previous iteration. The logit 
vector is then changed in the user validation (  ). When the user accepts a new relation its probability is 

set to 0.99. On the contrary, when the user discards a relation its probability is set to 0.01. The matrix 
    is constant for each iteration. In particular, we have found a matrix      that is the constant model 

    of the equation                                                     
  (  ,   )=  +1  UV   +1,  +1                                                      ( 3). The matrix  depends only on the 

corpus   and not on the initial ontology. The logit vector   represents both the current ontology     and 

the negative ontology      as it includes the logit of both probabilities (0.99 and 0.01). 

Semantic Turkey-Ontology Learner (ST-OL) 

The model described in previous section has been implemented and integrated in a Semantic Turkey 

extension called ST Ontology Learner (ST-OL). ST-OL provides a graphical user interface and a human-
computer interaction work-flow supporting the incremental learning loop of our learning theory. If the 
user has loaded an ontology in ST, he can to improve it by adding new classes and new instances using 
ST-OL. The interaction process is achieved through the following steps:  

• an initialization phase where the user selects the initial ontology    and the bunch of documents 

  where to extract new knowledge  

• an iterative phase where the user launch the learning and validates the proposals of ST-OL  

Thus, starting from the initial ontology   and a bunch of documents  , the user has the possibility of 
using an incremental ontology learning model. 
For the initialization phase, the User Interface (UI) of ST-OL allows users to select the initial set of 
documents   (corpus), and to send both the ontology   and the corpus   to the learning module. To start 

this stage of the process, the user selects “Initialize POL” on the ST-OL panel (see Figure 4). The 
probabilistic ontology learner analyzes the corpus, finds the contexts for each ontological pair, computes 
the first extraction model, and, finally, proposes the pairs that are in is-a relation. This first analysis is the 

most expensive, because devoted to computing the matrix    . Yet, this computation is done only once 
in the iterative process. 

Once this initialization finishes, the iterative phase starts. ST-OL enables the button labeled “Proposed 
Ontology”. The effect of this button is to show the initial ontology extended with the pairs proposed by 
POL. Figure 4 shows an example of an enriched initial ontology. 

 
Figure 4: Initial Ontology extended with the pairs proposed by the POL System 

 

The main goal of ST-OL is draw the attention to the good added information. The user has the possibility 
of selecting the pairs he wants to add among the proposed pairs. To drive the attention towards the good 
pairs, we use different brightness of red for the different probabilities. More intense tonalities of red 
represent higher probabilities. 

 
Figure 5: Manual validation of new resources added to the ontology 

In order to focus, if possible, only on good pairs, ST-OL shows only pairs above a threshold   of 
probabilities. For example, Figure 4 the relation (i.e., the pair) between “truck” and “container” is more 

probable than the relation between “spreader” and “container”. Then different red tones are used. At this 
point, the user can accept or reject the information. After acceptance, the new information is stored in the 
ST ontological repository and can be browsed as usual through the ontology panel on the Firefox sidebar. 
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Figure 5 shows what happened when the user accepted two proposed pairs: “mango” as instance of “fruit” 
and “pepper” as subclass of “vegetable”. 
In the incremental model the above activity enables to build an upgraded probability vector. When the 
user accepts a new pair, ST-OL updates its probability to 0.99. When the user discards the pair, its 

probability is set to 0.01. These new values are used for the next iteration of the leaning process. After 
some manual evaluation, the user can decide to update the proposed ontology. Given the probabilistic 
ontology learning model, this new evaluation is just a simple multiplication between the existing matrix 
    and the new vector. To force the recompilation, the user can use the “Proposed Ontology” button. 

CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

Describing word meaning is one of the most interesting challenges of natural language processing as texts 

cannot be "understood" without a clear and formal model of its basic components. Semantic networks of 
words are often used as formal models of word meaning but, to be useful for final NLP applications, these 
networks should large enough to cover words used in the final domain of the applications. It is nearly 
impossible to manually obtain a wide coverage for these semantic networks. Automatically learning these 
semantic networks from domain corpora is then the preferred solution. Models for automatically 
expanding semantic networks of words from texts use corpus-extracted evidences to determine whether or 

not new pairs of words are in a given semantic relation and, then, have to be included in existing 
knowledge repositories. These decision systems are trained observing how pairs of words in a given 
semantic relation behave in document collections. This information is used to induce a model that is then 
applied to novel word pairs. This chapter has explored this important area of research giving important 
contributions and advancing state-of-art models. 

First, we observed that structural properties of semantic networks of words, when relevant, are not 
used in machine learning models to better induce relevant features to determine confidence values for 

extracting semantic relations. Semantic relation learning models based on the distributional hypothesis, 
for example, use the structural properties of semantic networks of words such as transitivity only 
intrinsically, but they cannot be applied for learning transitive semantic relations other than the 
generalizations. Even where transitivity is explicitly used, it is not directly exploited to model confidence 
values. On the contrary, LSP models can learn any kind of semantic relations but they do not explicitly 
exploit the structural properties of target relations when learning taxonomies or semantic networks of 
words. We have demonstrated that keeping the probability within the final knowledge base is extremely 
important for the performances of the learning method as it gives the possibility to better use structural 

properties of target relations such as transitivity. Our probabilistic model is suitable for exploiting the 
structural properties of semantic relations in learning semantic networks.  

Second, we observed that systems that automatically create, adapt, or extend existing semantic 
networks of words need a sufficiently large number of documents and existing structured knowledge to 
achieve reasonable performance. If the target domain has not relevant pre-existing semantic networks of 
words, we will not have enough data for training the initial model. Obtaining manually structured 
knowledge repositories in specific domains is a very time consuming and expensive task. We have shown 

that our learning method that exploits the models learned from a generic domain is helpful to discover the 
relation between two words in a specific domain. Our learning model exploits training data for building 
in-domain models with bigger accuracy with a very small effort for the adaptation to different specific 
knowledge domains.  

Finally, we studied models to include the manual validation for assessing the quality of semantic 
networks of words expansion within systems for creating or augmenting semantic networks of words . 
ST-OL provides a graphical user interface and a human-computer interaction work-flow supporting the 
incremental learning loop of our probabilistic learning models. This system efficiently interacts with final 

users exploiting an incremental model that in learning loop includes final users. The probabilistic model is 
integrated in a Knowledge Management and Acquisition platform Semantic Turkey. Thus, ST-OL has 
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proven to be the right environment for embodying this kind of process, providing the crossroads between 
Users, Web and Knowledge. 

In the future, a natural improvement is the analysis of different and more informative feature spaces 
such as those based on syntactic models. We believe this will boost the performances of our model. We 

have here shown that the model can be applied to different transitive relations (i.e., isa and part-of). Yet, 
we need to explore different transitive semantic relation, e.g., cause-effect, entailment and we plan to 
extend the model to consider other structural properties of semantic networks.  
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ADDITIONAL READING SECTION 

KEY TERMS & DEFINITIONS 

Ontology Learning: is a type of learning model where the learner (semi-)automatically extract relevant 
concepts and relations from a given corpus to create or to extend an ontology. 
Probabilistic Model: is a type of learning model where the learner store probabilities or confidence 
weights in the model. 
Logistic Regression: is a generalized linear model used for binomial regression 

Pseudoinverse: is a generalization of the inverse matrix 
Incremental Learning: is a type of learning model where the learner updates its model with new 
information 
SVD:method for dimentionality reduction 
Transitivity: relationship between three elements. If the relationship holds between the first and second 
elements and between the second and third elements, it necessarily holds between the first and third 
elements. 

Semantic Turkey: is a platform for Semantic Bookmarking and Ontology Development 
                                                   
i
 The extensional definition of a concept is the enumeration of all its instances. 
ii Considering “dog” as instance of “animal” is not completely correct as dog can be a concept in the structured 
knowledge repository. Yet, it is useful to describe the difference between intensional and extensional definitions. 
iii We used the version 3.0 of WordNet 
 


