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Abstract—One of the key issues in the development of brain-
computer interfaces (BCIs) is the improvement of their current 
information transfer rate. In order to achieve that objective at 
least two aspects of BCI design should be considered: classifica-
tion accuracy and protocol specification. In this paper we show 
how combination of classifiers using fuzzy measures and the 
Choquet integral can be applied to the context of visual P300 BCI 
in order to lower the number of misclassifications. Results of an 
offline analysis are provided and possible benefits in terms of the 
information transfer rate are briefly discussed. 
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I.  INTRODUCTION 
A brain-computer interface (BCI) is a system that provides 

its user with the ability to communicate and act on the world 
using his brain activity only. At present, BCIs are valuable 
instruments for giving those with severe neuromuscular disord-
ers basic communication and control capabilities [1]. Various 
methods for monitoring the brain activity can be used in the 
design of a BCI: electroencephalography (EEG), implanted 
electrodes, functional magnetic resonance, to cite a few. In this 
paper we focus on visual P300 BCI, which is an EEG-based 
BCI that utilizes P300 evoked potentials for detection of the 
user's intent. P300 evoked potentials are positive peaks in the 
EEG activity that are produced at about 300 ms after the pres-
entation of particularly significant stimuli interspersed with 
routine ones. 

Since the aim of a BCI is the translation of brain activity in-
to commands to communicate or to control a device, pattern 
recognition plays a fundamental role in the BCI field. As 
pointed out by Wolpaw et al. [1], one of the crucial issues in 
the development of BCIs is the improvement of their informa-
tion transfer rate (ITR). The achievement of this goal requires 
both the design of an appropriate communication protocol and 
an increase in the accuracy of classification. The proposed ap-
proach takes into consideration those needs and aims at im-
proving the ITR using combination of classifiers. Firstly, input 
vectors obtained from the EEG signals are processed by an 
ensemble of classifiers, each assigning an input vector to a 
class that represents the user intent. Afterwards, a decision-
making strategy is used to aggregate the outputs of the afore-
mentioned classifiers into a final response. 

Although there is a general agreement on combination of 
classifiers improving robustness and accuracy of classification, 
it has drawn marginal interest in BCI research, which, howev-
er, has extensively used many of the most known pattern rec-
ognition techniques, e.g. Fisher's linear discriminant analysis, 
support vector machines, neural networks (see [2] for a recent 
review). In this paper we focus on fuzzy integrals, which con-
stitute a vast family of aggregation operators suitable for com-
bination of classifiers [3], [4] and, to our knowledge, have been 
applied to the context of BCI just by Shoaie et al. [5]. We con-
centrate on the Choquet integral [6], the most natural fuzzy 
integral [7]. 

This paper is organized as follows: in section II we give 
some background information on combination of classifiers 
using fuzzy measures and fuzzy integrals; in section III we 
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describe the proposed approach; in section IV, we present the 
results obtained in the offline analysis; then, in section V we 
discuss the effectiveness of our proposal and make some re-
marks about future development. 

II. COMBINATION OF CLASSIFIERS BY FUZZY INTEGRALS 

A. Definitions 
Here we give definitions for some key concepts, i.e. fuzzy 

measure and Choquet integral, of the proposed approach. Since 
our perspective is combination of classifiers, we concentrate on 
finite spaces only. In what follows, ∅ denotes the empty set 
and ( )X℘  the power set of X , i.e. the set of all subsets of X . 

The concept of fuzzy measure has been introduced by Su-
geno [8] as a solution to the rigidness problem of the ordinary, 
i.e. additive, measure. In fuzzy measures, additivity is substi-
tuted by monotonicity, a weaker condition, thus reaching a 
higher level of flexibility.  

Definition 1. Let X  be a finite set. A fuzzy measure μ  on 
X  is a set function defined on ( )X℘  satisfying the axioms: 

1. ( ) 0=∅μ  

2. ( ) ( )BABAXBA μμ ≤⇒⊆∈∀ :, . 

If, in addition, ( ) 1=Xμ  then the fuzzy measure is said to be 
normalized. 

The Choquet integral [6] can be regarded as a fuzzy 
integral, i.e. an integral defined with respect to a fuzzy measure 
[9]. It can be shown that the Choquet integral is a generaliza-
tion of the Lebesgue integral and that it includes many widely 
used aggregation operators [10], [7], e.g. weighted arithmetic 
mean, ordered weighted average. 

Definition 2. Let X  be a finite set and let μ  be a fuzzy 
measure on X . Let f  be a function defined on X . Arrange 
the elements of X  so that ( ) ( ) ( )nxfxfxf ≤≤≤ L21 , where 

1x  denotes the first element of X , 2x  the second, and so on. 
The Choquet integral of f  with respect to μ  is defined as: 

( ) ( ) ( ) ( ) ( )( ) ( )∑∫
=

− ⋅−=
n

i
iii AxfxfxdxfC

1
1 μμ  

where: 

• ( ) 00 =xf  

• ( ) ( ){ }ii xfxfXxA ≥∈= | . 

B. Combination of classifiers by fuzzy integrals 
A fuzzy integral approach to combination of classifiers can 

be described as a pattern recognition technique involving two 
levels of classification. Let { }kDDDD ,,, 21 K=  be an ensem-
ble of classifiers and let { }nCCCC ,,, 21 K=  be the set of 
classes of the classification task at hand. In the first level, the 

ensemble is presented with an input vector x  and each classifi-
er jD  assigns it to a class CCi ∈  or abstains from making a 
decision (if valuable in the given scenario). In the second level, 
for each classifier jD  and for each class iC  a value 
representing the degree of membership of the input vector to 
class iC  is computed. We indicate that value with ( )x

ij CD ,ϕ . 

Suppose that for each class iC  a fuzzy measure 
iCμ  on the 

ensemble of classifiers has been defined, with ( )A
iCμ  

representing the weight of the coalition ( )XA ℘∈  for recogni-
tion of class iC . Then, for each class iC  all the ( )x

ij CD ,ϕ  

( kj ,,2,1 K= ) are combined using a fuzzy integral with re-
spect to 

iCμ . Finally, the class with the highest integral value 
is returned as the one to which the input vector is expected to 
belong or (if valuable) an abstention occurs. 

The terminology introduced in this paragraph will be used 
hereafter. 

C. How to choose the ensemble of classifiers 
In a combination of classifiers strategy such as the one de-

scribed before, it is important to have some criteria for choos-
ing the classifiers of the ensemble; from the pattern recognition 
point of view, this is the well-known problem of feature selec-
tion. Here we present two indexes that can be used to develop a 
classifier selection strategy based on the 

iCμ  ( ni ,,2,1 K= ). 

The Shapley value [11] can be used to evaluate the impor-
tance of each classifier for recognition of a certain class iC  [3]. 

Definition 3. Let μ  be a fuzzy measure on a finite set 
{ }nxxxX ,,, 21 K= . The Shapley value, or importance index, 

ixv  of element ix  with respect to μ  is defined as: 

( ) ( )
{ }

∑
⊆

Δ
−−

=
i

ii
xXA

xx A
n

AAn
v

/ ! 
! ! 1

 

where: 

• ( ) { }( ) ( )AxAA ixi
μμ −∪=Δ  

• A  indicates the number of elements of A  

• 1! 0 = , as usual. 

It can be shown that the Shapley value defines a true sharing of 
the total importance of X , i.e. 

( )Xv
n

i
xi

μ=∑
=1

 

The interaction index [12] can be used to evaluate the de-
gree of interaction between two classifiers in recognition of a 
certain class iC  [3]. 
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Definition 4. Let μ  be a fuzzy measure on a finite set 
{ }nxxxX ,,, 21 K= . The interaction index, 

ji xxI  between two 

distinct elements ix  and jx  with respect to μ  is defined as: 

( ) ( )
{ }

∑
⊆

Δ
−−

=
ji

jiji
xxXA

xxxx A
n

AAn
I

,/ ! 
! ! 2

 

where: 

• 
( ) { }( ) { }( )
{ }( ) ( )AxA

xAxxAA

j

ijixx ji

μμ

μμ

+∪

−∪−∪=Δ ,
 

• A  indicates the number of elements of A  

• 1! 0 = , as usual. 

If 0<
ji xxI  then elements ix  and jx  are redundant, i.e. it is 

sufficient to use one of them. If 0=
ji xxI  then elements ix  

and jx  are independent, i.e. both elements bring their contri-
bution and they do not interact. If 0>

ji xxI  then elements ix  

and jx  are complementary, i.e. the combination of the two 
elements must be used. 

III. MATERIALS AND METHODS 

A. Protocol and EEG signals processing 
In what follows we present the basics of the protocol that 

has been used. 

The subject faces a 66 ×  matrix containing 36  symbols, as 
shown in Fig. 1, and he/she has to focus on the one he/she 
wants to communicate. Rows and columns flash randomly for a 
period of 100  ms and with an inter-stimulus interval of 180  
ms. In a trial each row and column flash 15  times and the sub-
ject is asked to count how many times his/her choice flashes. 
Rows and columns not containing the user's symbol are non-
targets, i.e. their flashes are routine stimuli, while the row and 
column containing it are targets, i.e. their flashes are particular-
ly significant stimuli. The responses to each row and column 
are measured and averaged and then, using a classifier, the 
target row and column are determined, and thus the desired 
symbol. 

For the purpose of this study, EEG activity has been rec-
orded using 61  sensors at a sampling rate of 256  Hz; refer-
ence electrode was positioned between AFz and Fz and ground 
between Pz and POz. Afterwards, the data has been band-pass 
filtered between 5.0  and 30  Hz and artifacts, e.g. eye blinks, 
have been removed [13]. 

 
Figure 1. Alphanumeric matrix for the visual P300 BCI 

 

B. Proposed method  
The proposed method is made up of three consecutive 

steps: initialization, classification and combination. 

 In the initialization step, after EEG signals acquisition, 
preprocessing and artifact removal, the following classifiers are 
trained and then given input vectors to classify: Bayesian Li-
near Discriminant Analysis (BLDA), Artificial Neural Network 
(ANN), Fisher Linear Discriminant Analysis (FLDA), Support 
Vector Machine with Linear kernel (SVM-LIN), Support Vec-
tor Machine with Radial-Basis kernel (SVM-RBF), Shrunken 
Regularized Linear Discriminant Analysis (SRLDA) and 
Stepwise Linear Discriminant Analysis (SWLDA), which are 
seven of the most popular classifiers in the BCI community 
suitable for the P300 paradigm [2], [14]. From the output of the 
classifiers, given the correct result for each trial, n  fuzzy 
measures, i.e. one for each class, are learned by means of the 
heuristic algorithm proposed by Grabisch [15]. We have cho-
sen a suboptimal but quick approach since, at this stage, only 
an estimate about the contribution of each classifier is needed. 
After that, the ensemble of classifiers to be used in the next 
step is identified by means of a strategy based on the algorithm 
for feature selection using the Shapley value and the interaction 
index proposed by Mikenina and Zimmermann [16]. In order to 
avoid excessive complexity we have considered an ensemble of 
four classifiers. 

In the classification step the n  new fuzzy measures 
iCμ  

( ni ,,2,1 K= ) on the ensemble of classifiers are learned from 
data by means of an approach grounded on least squares opti-
mization [17], [18]. This algorithm, more memory and time 
consuming than the former, provides an optimal result. Then, 
each classifier jD  of the ensemble is presented with new trials. 
For each input vector x , the output of each classifier jD  is 
either the class to which x  is expected to belong and, for each 
class iC , a measurement value ( )x

ij CDm ,  expressing the de-

gree to which x  belongs to iC . This value is classifier-specific 
and does not necessarily represent an appropriate confidence 
value. 

In the combination step for each input vector x , each clas-
sifier jD  and each class iC , the membership of x  to class iC  
is calculated from the ( )x

ij CDm , , ni ,,2,1 K= . This value, 

( )x
ij CD ,ϕ , represents an appropriate confidence value and 

satisfies the following requirements: 



MeMeA 2011, The 6th IEEE International Symp. on Medical Measurements and Applications, May 30th-31th 2011, Bari (Italy) 

1. ( ) [ ]1,0:,, , ∈ℵ∈∈∈∀ xx
ij CDij CCDD ϕ  

2. ( ) 1:,,
1

, =ℵ∈∈∈∀ ∑
=

n

i
CDij ij

CCDD xx ϕ  

where C  is the set of classes and ℵ  is the input space. 

Then, for each class iC  all the ( )x
ij CD ,ϕ  ( kj ,,2,1 K= ) 

are combined using the Choquet integral with respect to 
iCμ . 

Let ( ) ( ) ( )[ ]nCsCsCsS K21=  be the vector containing 
the outcome of the integration, with ( )iCs  denoting the value 
relative to class iC . Let ( )fCs  and ( )gCs  be, respectively, the 
first and the second maximum of S . The output of the combi-
nation step, i.e. the response of the proposed classification 
strategy, is: 

• fC  if ( ) ( ) TCsCs gf >−  

• an abstention if ( ) ( ) TCsCs gf ≤−  

where T  denotes the abstention threshold. 

C. Practical Implementation 
For EEG recording an EBNeuro Mizar System (Florence, 

Italy) has been used. EEG signals processing and the first level 
of classification have been performed using the NPXLab Suite 
2010 [19]. The proposed method for selection and combination 
of classifiers has been implemented using the GNU R envi-
ronment for statistical computing [20] and, in particular, the 
kappalab package [21]. 

D. Computational complexity 
In what follows we make some considerations about com-

putational complexity of the proposed approach. Our aim is not 
to provide a formal analysis of time and space requirements of 
our strategy but to show that even if algorithms dealing with 
fuzzy measures have, in general, a high complexity, in the 
framework of combination of classifiers this has little impact, 
thus allowing online use of the proposed strategy.  

Firstly, we focus on the learning phase, which requires 
most of the time. As shown in previous sections, fuzzy meas-
ures have a high descriptive power. Obviously, such a capabili-
ty has its drawbacks in terms of complexity. Defining a fuzzy 
measure on a set X  of n  elements requires the identification 
of 12 −n  coefficients, which are the values of the measure for 
every possible subset of X , except ∅ . If the fuzzy measure is 
normalized it is known that ( ) 1=Xμ , but still 22 −n  coeffi-
cients have to be identified. Hence, theoretically, learning a 
fuzzy measure from data is a very time-consuming task. Al-
though, in the framework of combination of classifiers, the 
aforementioned exponential complexity does not meaningfully 
influence the performance since n , i.e. the number of classifi-
ers of the ensemble, is typically limited to a small value, e.g. 

4=n  in our approach. Roughly speaking, in the experimental 
tests we performed (see next section), identification of the 

fuzzy measures required about 1  minute on a computer run-
ning Windows 7 with an Intel Core i5 CPU. 

Once the fuzzy measures have been learned, classification 
of a new trial requires a negligible computational time, thus 
making the proposed method suitable for an online BCI ses-
sion. 

IV. RESULTS 
Three people (two man and one woman) were the BCI us-

ers in this study. BCI sessions have been performed in a silent 
room and each user has been asked to select 36  different sym-
bols. To train the first level classifiers, 6  symbols have been 
used. The dataset for selection and combination of classifiers 
was a randomized subset of the classifiers' output relative to the 
remaining 30  symbols and was made up of 1800  elements. 
To learn the fuzzy measures, the first sixth of the dataset has 
been used, and thus final classification involved the last 1500  
elements. 

Table I shows the performance, in terms of error rate and 
abstention rate, of the proposed approach and of the classifiers 
of the ensemble. We denoted our method by ChoquetCC when 
abstention was allowed and by ChoquetCC-noAbst when it was 
not. 

Table II summarizes the improvement in the error rate. The 
proposed strategy is compared to the best classifier of the en-
semble (column bestI ) and to the entire ensemble by means of 
its average error rate (column avgI ). 

V. DISCUSSION AND FUTURE WORK 
We have shown how combination of classifiers based on 

fuzzy measures and the Choquet integral can be applied to vis-
ual P300 BCI. Results of the offline analysis of experimental 
data relative to three subjects have been quite encouraging and 
proved the proposed method to be appropriate for this field. 

TABLE I.  CLASSIFIERS' PERFORMANCE 

Subject Classifier Err. (%) Abst. (%) 
A ANN 53.33  0  
 SVM-RBF 47.48  0  
 SWLDA 67.49  0  
 SVM-LIN 0.47  0  
 ChoquetCC 13.27  20.9  
 ChoquetCC-noAbst 40.32  0  
B ANN 42.24  0  
 SRLDA 88.24  0  
 SVM-RBF 29.32  0  
 SWLDA 88.18  0  
 ChoquetCC 14.12  60.7  
 ChoquetCC-noAbst 54.16  0  
C BLDA 93.7  0  
 ANN 60.12  0  
 SRLDA 47.31  07.0  
 SWLDA 40.13  0  
 ChoquetCC 93.5  53.2  
 ChoquetCC-noAbst 07.7  0  
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TABLE II.  IMPROVEMENT IN THE ERROR RATE 

Subject Classifier avgI  (%) bestI  (%) 

A ChoquetCC 54.17  40.6  
 ChoquetCC-noAbst 27.12  13.1  
B ChoquetCC 98.12  74.6  
 ChoquetCC-noAbst 58.8  34.2  
C ChoquetCC 42.10  0.2  
 ChoquetCC-noAbst 28.9  86.0  

 

One the major improvements made is related to the identi-
fication of vague situations, which are often turned into absten-
tions instead of resulting into misclassifications. Such a beha-
vior is valuable since, in BCIs, correcting an error requires 
recognition of another command, i.e. the delete or back com-
mand, and thus considerably lowers the information transfer 
rate (ITR). The proposed method is promising in order to im-
prove the ITR and further investigation into this relationship is 
needed. 

Although our approach is mainly intended for BCI proto-
cols that allow abstention, also those one that do not permit that 
might take advantage of its application. In fact, results have 
shown that, even when abstention is not considered, the pro-
posed strategy performs slightly better than the best classifier 
of the ensemble. 

Finally, as only online experiments can provide a BCI tech-
nique with final validation, future work should also aim at eva-
luating the effectiveness of the proposed method within that 
context. 
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