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Abstract . A class of probability measures on the space of the trajectories
of a dynamical system with discrete time is introduced. The concepts of “ho-
mogeneity of a measures” and of “stationarity of a measure” are discussed for
the elements of this class. And some elementary examples of such measures
are studied in connection with the problem of describing those evolutions of
probability which depend on the whole past distributions of the system.

1 Statement of the problem

In the study of those systems whose evolutions is ruled by probabilistic laws,
the probability measures on the “space of trajectories” present particular im-
portance. For instance, Bernouilli’s measure, can be considered as a proba-
bility measure connected with a completely casual1 evolution. Markov’s mea-
sures, as W. Feller repeatedly stressed (cfr. [7]; pg. 420), may be considered
as associated to the most direct probabilistic generalization of a deterministic
evolution described by ordinary differential equations (i.e., a dynamical sys-
tem in the usual sense of the world), in the sense that, in such an evolution,
the state of the system at any moment is completely determined by initial
state: while, in a Markov process, the probability distribution at any moment
is completely determined by initial distribution.

In the natural sciences, there are many examples of “hereditary” deter-
ministic phenomena, whose evolution is not determined by an initial “state”,
but from a whole segment (possibly infinite) of the past history of the system.

The present work is an attempt at describing the “probabilistic analog”
of such systems. That is, the study of probability measures on the space
of the trajectories of those systems whose probability distributions along an
arbitrary segment of the past, possibly infinite.

If Wk denotes the probability distribution of the system at the k–th mo-
ment, the law of evolution of this will be of the type:

wk+1 = F(k)(Wk) (1)

where Wk is a functional dependeing on all the distributions of the system
relative to moments h ≤ k. We will require that the probability measure

1We use this expression in its “naive” meaning, and refer to the deep articles of A.N.
Kolmogorov [1] – [2] for a rigorous analysis of this concept.
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connected with an evolution of the type (1) be uniquely determined by the
“initial functional” and by the evolution law; and that it depends explicitly2

on the latter. A problem of this kind naturally arises in various fields. For
example, in the theory of stochastic neural networks the use of a purely
“Markovian” formalism does not allow to take into account of the single
neuron (cfr. [8]; part I; 2).

The first paragraph of this work is dedicated to a quantitative discussion
of the problem outlined above. In this we will sum up a classification of
the probability measures on product spaces proposed in [3] (Part II) and on
which the determination of the possible solutions to the above stated problem
is based.

In 2) we study some simple example of “past–dependent” probability–
evolutions, for which, using Kakutani–Yoshida’s extension of Krylov–Bogoliubov’s
condition (k).

It is clear that the validity of the interpretation of such measures as proba-
bility mesures connected to past–dependent evolution laws, can be confirmed
only from the applications of these techniques to the study of phenomena
which effectively appear in practise. We propose ourselves to return to this
point in a future work.

The author is very grateful to Professor L.I. Rozonoer for many deep
discussions and for his interest in this work.

2 Some structural properties of product mea-

sures

Let us consider a system ξ whose states belong to a certain (phase) space
Ω, which we will always suppose endowed with a measurable structure B. A
probability measure on the product

∏
N

(Ω;B), of N–copies of the space (Ω;B)

can be interpreted as a measure on the space of the “trajectories” of the
system ξ, with respect to a time variable t ∈ N. If Ψ is such a measure, the

quantities (Ei ∈ B; 1 ≤ i ≤ k) Ψk(E1; . . . ;Ek) = Ψ

(
k∏
i=1

Eix
∞∏
k+1

Ω

)
can be

2For instance, to every evolution of type (1) Bernoulli’s measure can be associated. This
one depends only on the sequence (wk) of the probability distribution, and not (explicitly)
on the evolution law.
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interpreted as “joint” probabilities that the system ξ finds itself in the i–th
moment in a state belonging to the set E; 1 ≤ i ≤ k. For every k ∈ N; Ψk is

a probability measure on
k∏
1

(Ω;B) enjoying the fundamental property:

Ψk+1(E1; . . . ;Ek; Ω) = Ψk(E1 . . . Ek) (2)

When a family (Ψk)k∈N of probability measures on
k∏
1

(Ω;B); (k ∈ N) is

given, such that it can be uniquely extended3 to a measure Ψ on the product∏
N(Ω;B), we shall say that (Ψk) is a cylindrical measure. Equality (1.1),

which is the “agreement condition” for the measures Ψk’s, can be written:

Ψl(E1; . . . ;El−k; Ω; . . . ; Ω) = Ψl−k(E1; . . . ;El−k)

In [3] (Part I) we have proposed the symmetric of this property as definition
of the concept of “stationarity” for a measure.

Definition 1 A cylindrical measure (Ψk)k∈N, on the product ΠN(Ω;B), is
said to be “stationary” if

Ψl(Ω; . . . ; Ω;Ek+1; . . . ;El) = Ψl−k(Ek+1; . . . ;El)

We refer to [3] (Part I; § 2) for the discussion of some properties of stationary
measures. For the moment, we limit if and only if it is of the type ΠNϕ; (ϕ
– a probability measure on (Ω;B)). A measure induced by a strictly posi-
tive Markov chain is stationary distribution (in particular: an homogeneous
ergodic chain); (cfr. [3]; § 2).

The distinction between “homogeneity” and “existence of a stationary
distribution” cannot be carried out in a natural way in the case of arbitrary
cylindrical measures.

With the aim of carrying out this distinction in the most general class of
probability measures, in [3] (Part II) there has been introduced an essentially

3This always happens if the (Ψk) are product measures, or (because of Ionescu–Tulcea’s
theorem; cfr. [5]; pg. 162) if they are Markov measures; or, at last, if the space (Ω;B)
satisfies the conditions of Kolmogorov’s extension theorem (it must be metrizable, sepa-
rable; cfr. [5]; pg. 83). This justifies the fact that, in the following, we shall indifferently
consider the measure Ψ, or the family (Ψk)k∈N of measures connected with it.
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algebraic classification of the probability measures on products of measurable
spaces.

In the remainder of the paragraph we will sum up brifly this classifica-
tion. However, in order to avoid the technical complications arising with
topological tensor products we shall limit ourselves, here, to discussing the
case when the space contains only a finite number of points which allows to
conduct the discussion on a purely algebraic ground. We refer to [3] (Part
II) for the general (infinite–dimensional and non–commutative) case.

It is known4 that to every measurable space (Ω;B) is connected the
abelian (von Neumann) algebra L∞(Ω;B) of the bounded measurable func-
tions on Ω. There exists, furthermore, a bijective correspondence between
measures on (Ω;B) and (continuous) linear forms on L∞(Ω;B). Conversely,
if A is an abelian (von Neumann) algebra, and ϕ a positive (continuous)
linear form on A, then there exist a measurable space (Ω;B) and a measure
µ on (Ω;B) such that A is isomorphic to L∞(Ω;B) and, in the isomorphism,
ϕ corresponds to the linear form induced by µ on L∞(Ω;B).

Therefore, to assign a cylindrical measure (Ψk)k∈N on the product ΠN(Ω;B)
is equivalent to assigning a family of multilinear forms5 Ψ̂k on the products
Πk

1A (of K copies of A); satisfying the agreement condition:

Ψk(a1; . . . ; ak−1; I) = Ψk−1(a1; . . . ; ak−1) (3)

where ai ∈ A; (1 ≤ i ≤ k); and I is the identity in A.
Now it is well known (cfr. [6]) that every multilinear map Ψ̂k : Πk

1A→ R
factorizes itself according to the commutative diagram

k∏
1

A
τk−→ ⊗k1A

Ψ̂k ↓
R ↙ ψk

where τk is a multilinear mapping (the tensor product) and ψk is a linear
form.

The extension of this property lies at the base of the following definition
(cfr. [3]; Part (II)):

4At this point we use the hypothesis that Ω contains a finite number of points. In this
case A is isomorphic to the algebra of (real), diagonal, matrices on a finite–dimensional
linear space.

5Cfr. 10 to which we refer also for bibliography.
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Definition 2 A cylindrical measure (Ψ̂k) on A is said to be of type (M)–A
if the following condition is satisfied:
[i1] there exist an algebra A (not necessarily commutative!) a linear form ω
on A; a sequence of linear mappings αi : A→ A; such that each Ψ̂k factorizes
through the commutative digram

∏k
1 A

k∏
i=1

αi

−→ A

Ψ̂k ↓
R ↙ ω

where
k∏
i=1

αi : (a1; . . . ; ak) ∈
k∏
1

A→
k∏
i=1

αi(ai) ∈ A

Therefore, having assigned the algebra A, a cylindrical measure of type (M)–
A is completely determined by: 1.) the sequence of linear maps αl : A 2.)
the linear form ω, on A.

This justifies the fact that, in the following, we will indifferently speak of
the cylindrical measure (Ψ̂k) or of the cylindrical measure {(αk);ω}.

For a detailed analysis of the implications of the definition ?? we refer to
[3] (Part II), the aim of the present work being to show how the class of mea-
sures of type (M)–A, (for an arbitrary algebra A) can represent the natural
context for the discussion of concepts like “homogeneity” and “existence of
a stationary distribution”, for a cylindrical measure.

Above all, let us examine the following problem: “how is condition (3)
expressed in the case of cylindrical measures of type (M)–A?”. If A is an
algebra, it is known that the regular right (resp. left) representation of A is
defined by

R : A ∈ A→ RA ; (Resp. LA)

where
RAx = x · A ; (Resp. LAx = A · x) ; ∀x ∈ A

Let us denote A∗ the dual of A–considered as a vector space – then each of
the linear mappings αi : A→ A induces a linear map R∗αi

: A→ L(A∗) of A
into the space of linear maps of A∗ into itself by means of the formula

(R∗αi(a)
ϕ)(A) = ϕ(Rαi(a)A) = ϕ(A · αi(a))
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where a ∈ A; A ∈ A; and ϕ ∈ A∗.
Analogously is defined L∗αiϕ = ϕ ◦ Lαi.
Thus, taking into account the equality

Ψ̂k(a1; . . . ; ak) = ω

(
k∏
i=1

αi(ai)

)
= (R∗αk(ak)

ω)

(
k−1∏
i=1

αi(ai)

)

one sees that condition (3) for cylindrical measures of type (M)–A, can be
expressed:

(R∗αk(I)
ω)(x) = ω(x) ; ∀x ∈ [tx−1i=1 αi(A)]

where [tk−1i=1 αi(A)] is the subalgebra of A spanned by the αi(A) (1 ≤ i ≤
k − 1). In general the above written equality does not imply R∗αk(I)

ω = ω.
In order to consider a class of measures where this last equality is valid,

let us introduce the following definition:

Definition 3 We shall say that the cylindrical measure {(αk)k∈N;ω}, of
(M)–A type is “regular” if there exist:
1.) an imersion T : A→ A

2.) a convex cone Q in A∗

satisfying the collowing conditions:
[i1] T (A) separates the points of Q: (i.e, if ω′, ω′′ ∈ Q and ω′(Ta) = ω′′(Ta);
for every a ∈ A, then ω′ = ω′).
[i2] S being the subsets of A defined by the equality:

S = {s ∈ A : R∗s(Q) ⊂ Q} ∩ {t ∈ A : L∗t (Q) ⊂ Q}

there then exists a sequence (sk)k∈N in S, such that α1 = T ; αk = Lsk ◦ T ;
for k ≥ 2.

Proposition 1 If {(sk);T ;ω} is a cylindrical measure of type (M)–A, reg-
ular, then condition (3) is equivalent to the following:

R∗skω = ω for every K ∈ N (4)

(The proof is given in appendix I).

In the following we will restrict ourselves to the study of regular , type
(M)–A measure. In effect, Proposition ?? holds under a considerably broader
hypothesis (cfr. [3] (Part II)) but cylindrical measures are regular (cfr. the
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examples at the end of the paragraph) and from the particularly simple form
of equation (4) which is the generalization of the well known property of
stochastic operators: P ∗u = u (where u is the unit function).

We will assume the symmetrical of property (4) as analogous of the exis-
tence of an invariant distribution. More precisely:

Definition 4 Let {(sk);T ;ω} be a cylindrical measure of type (M)–A, reg-
ular. We will say that ω is a “stationary state” for {(sk);T ;ω} if:

L∗skω = ω

As we will prove at the end of the paragraph this property is the generaliza-
tion of the property P(K)w = w, where w is a probability distribution and
P(K) a stochastic operator.

Definition 5 Let {(sk);T ;ω} be a cylindrical measure of type (M)–A, regu-
lar. We will say that {(sk);T ;ω} is “homogeneous” if there exists s ∈ A, such
that sk = s; for every k ∈ N. The connection between the notions of “homo-
geneity” and “having a stationary state” with the property of stationareity
introduced in Definition 2, is given by the following theorem.

Theorem 1 Every cylindrical measure, regular, homogeneous and with a
stationary state, is stationary in the sense of definition 2. Conversely, let
{(sk);T ;ω} be a cylindrical measure of (M)–A type, stationary in the sense
of Definition 2. Conversely, let {(sk);T ;ω} satisfies the following condition:
[t1] for every couple of natural integers i, J , the equality

ω(T (a) · [s1 − sJ ] · T (b)) = 0 ; ∀ a, b ∈ A

is possible if and only if si = sJ .

Then the measure {(sk);T ;ω} is homogeneous and ω is a stationary state
for it.

The proof is in appendix II.
A class of cylindrical measures staisfying condition [t1] of Theorem ??

is given, for example, by the discrete Markov chains {(P(k));w} such that

γ
(k)
iJ > 0; wJ > 0 for 1 ≤ i, J ≤ n and for every k ∈ N.

We want to illustrate the definitions given with some usual example.
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If A= R; ω = id (identity on R) then the diagram of Definition ?? is
reduced to ()

(e1; . . . ; ak) ∈
k∏
1

A→ α1(a1) : . . . · αk(ak)

where the αi are linear forms. In this case the measure Ψ̂k is the product
measure. Let A= L(Rn) the algebra of linear operators on Rn; T ; A → A,
the map which transforms the vector ta = (a1; . . . ; an) into the digonal n×n
matrix, with ai as its i–th diagonal entry.

(T is even an algebra omomorphism). Let Q then be the convex cone
of the linear forms on A defined by s 7→ (s · λ;u) where λ is a vector with
positive components; u the unit function and (·, ·) denote the scalar product
in Rn.

Condition [i1] of Definition ?? is clearly satisfied. Let us now consider
the set:

S = {s ∈ A : R∗s(Q) ⊂ Q} ∩ {s ∈ A : L∗s(Q) ⊂ Q}

If λ is a positive vector, and s ∈ S, then R∗s(t · λ;u) = (t · sλ;u) for every
t ∈ A and so the condition R∗s(Q) ⊂ Q implies that s maps positive vectors
into positive vectors.

Analogously: L∗s(t · λ;u) = (t · λ; s∗u), so condition L∗s(Q) ⊂ Q implies
s∗u = u. It is immediate to verify that these two properties define a stochastic
operator.

Therefore n–dimensional Markov measures can be characterized as those
regular, (M)− S(Rn) type measures, with respect to the cone Q of positive
vectors in Rn.

The factorization introduced in Definition ?? in this case is realized
through the linear form ω(s) = (s · w;u) where w is a stochasti vector;

and
k∏
i=1

αi =
k∏
i=1

Lsi ◦T where T is the diagonal immersion defined before and

si a stochastic matrix (1 ≤ i ≤ n).
Let us consider, finally, that both the Markov and the product measures

can be distinguished, within the class of all the (M)–A measure, as those
decomposable into couples {(⊗ki=1αi)k∈N;ω}; where ⊗ki=1αi denotes a pure
tensor product. The property of commutativity (cfr. [4]; pg. 29)

Ψ̂k(a1; . . . ; ak) = Ψ̂k(ai1 ; . . . ; aik)
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is verified for these measures every time that the algebra A is commutative;
therefore it holds for product measure (A= R) and not for Markov measures
(A = L(Rn)). There exist many other types of (M)−A type measures. For a
general analysis of these we refer to [3] (Part II). In the following paragraph,
some examples will be studied.

3 Some example of “past–dependent evolu-

tions”

From the preceding paragraph one can derive the following three features as
essentiaal for the construction of Markov measures.

1.) One considers the convex set Q+ of all the probability distributions
on a phase space (Ω;B). The algebra A of linear mappings of the Banach
space M(Ω;B)6 in itself. And the convex monoid S of A of all the linear
operators which map Q+ in itself.

2.) To every W ∈ Q+ one associates in a natural way (i.e., depending
only on W ) a (continuous) linear form ωw on A which enjoys the properties

ωw(RsF ) = ωw(F ) ; ωw(LsF ) = ωsw(F )

for every s ∈ S; F ∈ A.

3.) One defines a representation T of the commutative algebra A =
L∞(Ω;B) in A by means of the formula

(T (a)F )m = a(Fm) ; F ∈ A; a ∈ A; m ∈M(Ω;B)

After operations 1.) – 2.) 3.) have been performed the cylindrical measure
on
∏

N(Ω;B) is defined by means of the family of multilinear mappings:

Ψ̂k : (a1 . . . ak) ∈
k∏
1

A→ ωw(T (ak) ·Rsk · . . . · T (a1)Rs1I
′)

6M(Ω;B) is the space of all signed measures on (Ω;B). It is a Banach space for the
norm: ‖x‖ = total variation of X on (Ω;B).
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ai ∈ A; (1 ≤ i ≤ k); I ′ is the identity in A.

From point 3.) one immediately sees that the family (Ψ̂k) enjoys the
agreement property (4), and that ωw is a stationary state for (Ψ̂k) if and
only if: Skw = w; for every k. Furthermore, the Ψ̂k are positive, in the sense
that if all the ai are positive the value of Ψ̂k is positive and ≤ 1.

The forms Ψ̂k thus define an evolution law for the probability distribution
by means of the equation:

wk(χ) = ωw(T (χ) · sk . . . s1) = Ψ̂k(I; . . . ; I;χ) (5)

where χ is a projection operator in A and I is the identity. In this paragraph
we shall apply the procedure described in points 1.) 2.) 3.) to the case when,
instead of a single probability distribution w ∈ Q+, one considers a sequence
W = (wn)0n=−∞ of these.

The sequence W is interpreted as the sequence of the probability distri-
butions relative to the past history of the system. Formula (2.1), with w
substituted by W , will express the evolution of the probability distribution
of the system as a function of the distribution relative to the past history.

Let us introduce some notations: the symbol
∏

N− Q+ denotes the set of
sequence W = (wk) of elements in Q+, indexed by the set N− of negative
integers.

This is a convex subset of the space L∞(N;M(Ω;B)) of the bounded se-
quence of signed measures on (Ω;B). E denotes the space of linear mappings
from L∞(N−;M(Ω;B)) into M(Ω;B) Q̂+ is the subset of the elements in E
which map

∏
N− Q+ into Q+. Thus an element in E correspond to a law of

transition from the sequence of probability distribution relative to the past
of the system to a probability distribution. The algebra of linear mappings
of E into itself will be denoted A, and S is the convex subset of A defined
by:

S = {s ∈ A : sQ̂+ ⊂ Q̂+}

At last, let us denote Q+
0 the set of positive measures m on (Ω;B) such that

m(Ω) ≤ 1.
The hypothesis that the space (Ω;B) contains exactly n points will be

kept from now on. The following theorem is useful to clarify the structure of
the set Q̂+, and justifies the choice of the operators in S which will be made
in the following.
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Theorem 2 A linear operator B which maps the set
∏

N− Q+ into itself,
satisfies the condition:

(i) B maps
∏

N− Q
+
0 into itself if and only if it has the form:

(BW )(σ) =
0∑

σ=−∞

P (σ; τ)w(τ)ϕ(τ) (6)

W = (w(σ))σ∈N− ; ϕ(τ) ≥ 0 ;
0∑

τ=−∞

ϕ(τ) = 1

and P (σ; τ) is a stochastic matric for every τ such that ϕ(τ) > 0.

The proof of this theorem is worked out in Appendix IV where, further-
more a counterexample is given which proves that the thesis does not subsist
without condition (i).

In particular, the element of Q̂+ which lie in the class identified by con-
ditions of Theorem ?? are expressed as

BW =
0∑

σ=−∞

p(σ)w(σ)ϕ(σ) (7)

The action of A defined in point 3.) is easily extended on E through the
formula (T ′(a)B)W = T (a)(BW ), which, in the case where B has the form
(7), is expressed:

(T ′(a)B)W =
0∑

σ=−∞

T (a)P (σ)W (σ)ϕ(σ)

Inside the set S ⊂ A let us choose those operators s ∈ S defined by the
relation:

(SB)W =
0∑

σ=−∞

Qs(σ)P (σ)w(σ)ϕ(σ) (8)

(“Diagonal” operators). Thus if W0 ∈
∏

N− Q+; B ∈ Q̂+ has the form (7);
(Sk)k ∈ N is a sequence of operators in A of the form (8) the equation

Wk = (Sk · Sk−1 · . . . · S1 ·B)W0 ; k = 1, 2, (9)
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defines a sequence of probability distributions (Wk)
∞
k=1 which is completely

determined by the sequence of distributions W0 = (Wk)
0
k=−∞; relative to the

past history of the system.
Every evolution of type (9) can be interpreted as resulting from the con-

vex mean of an infinite number of Markov chains, each of which admits an
initial distribution wk, (k = 0,−1,−2, . . .). The multilinear function (i.e.,
the cylindrical measure) connected with evolution of type (9) will be given
by

Ψ̂k(a1; . . . ; ak) = ωW0;B(T (ak)Rsk · . . . · T (a1)Rs1I) (10)

where
ωW0;B(s) = ((sB)W0;u)

If skB = B for every K, then wW0;B is a stationary state for the measure (Ψ̂k).

If Sk = S for every K then the cylindrical measure (Ψ̂k) is homogeneous in
the sense of definition ??. At last, if both relations hold, from the first part
of Theorem ?? it follows that the measure Ψ̂k is stationary.

4 Evolutions of Volterra’s type

In this paragraph we shall examine the possibility of associating a cylindrical
measure to a probability evolution of Volterra’s type.

That is, maintaining the notations of the preceding paragraphs we con-
sider the evolution equation

W (n+ 1) =
n∑
−∞

σP (n− σ)w(σ) (11)

where (W (σ)) is a sequence of stochastic vectors; P (σ) = Q(σ)ϕ(σ); Q(σ) is
a stochasti matrix;

ϕ(σ) ≥ 0 ;
0∑
−∞

σϕ(−σ) = 1

The evolution (11) can also be written

w(n+ 1) =
0∑
−∞

σP (−σ)w(n+ σ) (12)
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Therefore, making the hypothesis that equation (12) holds also for those
w(m), with m ≤ 0, one sees:

w(n+ 1) =
0∑

−∞τn+1

. . .

0∑
−∞τ1

P (−τn+1) · . . . P (−τ1)w(τ1 + . . .+ τn+1) (13)

Now, if W = (σ(σ)) ∈
∏

N− Q+, then we can define the linear operator P̃ by
the equality

(P̃W )(τ) =
τ∑
−∞

σP (τ − σ)w(σ) (14)

And, putting W1 = (w(τ)) a sequence (Wn) in
∏

NQ
+ is defined inductively

by:
Wn+1 = P̃Wn (15)

Let then p :
∏

N− Q+ → Q+ be the linear map

pW =
0∑
−∞

τP (−τ)w(τ) (16)

It is easy to verify that the sequences (wn) defined by (11), and (Wn) defined
by (15) are connected by the equation:

wn = pWn (17)

Thus we can conclude: to assign an evolution of probability distributions
(wn) ruled by the law

wn+1 =
n∑
−∞

σP (n− σ)w(σ)

is equivalent to giving an evolution of sequences of probabiity distributions
(i.e., an evolution in

∏
N− Q+) ruled by the equation:

Wn+1 = P̃ nW1

the connection between the two sequences being given by the equation

wn+1 = pWn+1
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Let us now denote, as usual, with T : L∞(Ω;B)→ L(M(Ω;B)) the diagonal
action, on M(Ω;B) = Rn of the algebra of bounded functions on (Ω;B).
This action induces naturally an action T ′, on the set

∏
N−
Q+ by means of the

formula
(T ′(a)W )(σ) = T (a)W (σ) ; W = (w(σ))

Let us introduce the family of multilinear forms:

Ψ̂(a1; . . . ; an) = 〈T (an)p · T ′(an−1)P̃ · . . . · T (a1)P̃W ;u〉 (18)

Then, in order for the family (Ψ̂n) to define a cylindrical measure, it is
necessary (and sufficient too, because the space Ω has a finite number of
points) that the agreement condition:

Ψ̂n(a1; . . . ; an−1; I) = Ψ̂n−1(a1; . . . ; an−1) (19)

holds.
Writing down this one explicitly, one finds:

0∑
−∞

τn−1 . . .
0∑
−∞

τ1 < P (−τn+1)·T (an)P (−τn)·. . .·T (a1)P (−τ1)w(τ1+. . .+τn+1);u〉 =

=
0∑

−∞τn+1

. . .
0∑
−∞

τ1ϕ(−τn+1)〈T (an)P (−τn)·. . .·T (a1)P (−τ1)w(τ1+. . .+τn+τn+1);u〉 =

=
0∑

−∞τn

. . .
0∑

−∞τ1

〈T (an)P (−τn) · . . . · T (a1)P (−τ1)w(τ1 + . . .+ τn);u〉

Having set (ϕ̃W )(σ) =
0∑
−∞τ

ϕ(−τ)w(σ + τ), the above equality is equivalent

to

0∑
−∞

τn . . .

0∑
−∞

τ1〈T (an)P (−τn) · . . . · T (a1)P (−τ1)[(ϕ̃W )(τ1 + . . .+ τ)n)];u〉 =

=
0∑
−∞

τn . . .

0∑
−∞

τ1〈T (an)P (−τn) · . . . · T (a1)P (−τ1)w(τ1 + . . .+ τn);u〉 (20)
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If we require that the agreement condition (19) takes place independently
of the particular choice of the sequence (Q(σ)) the above written equality is
equivalent to:

〈T (a)[ϕ̃W (σ)];u〉 = 〈T (a)W (σ);u〉 ; ∀ a ∈ A

that is
ϕ̃W = W (21)

or, equivalently, for every σ ≤ 0

+∞∑
0τ

ϕ(τ)w(σ − τ) = w(σ) (22)

Now, the functions ϕ and w = (w1; . . . ;wn) are bounded, therefore they
admit a (discrete) Laplace transform for every ρ > 0. Applying the Laplace
transform to each side of equation (22) one finds

[L(ϕ)(ρ)− 1]L(wi)(ρ) ≡ 0 ρ ≥ 0 1 ≤ i ≤ n (23)

(L(f)(t) denote the Laplace transform of f in the point t). Then L(wi)(ρ) = 0
if L(ϕ)(ρ) 6= 1, for 1 ≤ i ≤ n. Since wi(ρ) ≥ 0, this implies ϕ(0) = 1
ϕ(ρ) = 0 for ρ > 0. Hence, one deduces that the only non zero solutions
of equation (22) with wi(ρ) ≥ 0, are those for which w(0) is an arbitrary
positive vector and w(ρ) = 0 for ρ > 0. These solutions correspond to the
usual Markov processes. In particular, there are no solutions of equation
(21) in the set

∏
N− Q+, and so the agreement condition (19) in general is

not satisfied. Therefore concerning the probability evolution described by
the equation (11), we conclude that it is not possible to associate to it a
cylindical measure which depends uniquely on the evolution law and not on
the particular form of the sequence of stochastic operators (Q(σ)) and on the
function ϕ7.

7This does not mean that for a particular choice of ϕ and the sequences (Q(σ)) it could
not be possible to find a cylindrical measure with the required properties. It is sufficient
to this aim, for a given ϕ, to consider a subset ϑ of

∏
N− Q+ transformed into itself

by the operator ϕ̃ and then to limit oneself to considering those sequences of stochastic
operators (Q(σ)) for which the equality (3.9′) are identically satisfied in ϑ. Nevertheless
the determination of the explicit form of the operators (Q(σ)) as functions of ϕ and ϑ is
very complicated.
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5 Conclusion

Analyzing from the standpoint of the considerations in § 1) the probability
evolution

Wn+1 =
n∑
−∞

σP (n− σ)w(σ) (24)

one sees that such an evolution law is completely determined by the assign-
ment of:
1.) a continuous linear map P̃ of the space L∞(N−;Rn) into itself.
2.) A continuous form ωn;w defined on the algebra A of the linear transfor-
mations of L∞(N−;Rn) into itself, which is positive on the convex cone of
the positive elements of A.

Once given P̃ and ωp;w the probability evolution is determined by the
equation

Wn+1(T (a)) = ωp;w(T ∗(a)P̃ n) = 〈T (a)pP̃ nW ;u〉 (25)

Furthermore, we have also seen (§ 3) that the agreement condition

P ∗ωp;w = ωp;w (26)

does not take place for the linear forms of type (25), with the exception of
the trivial case: $(0) = 1; ϕ(σ) = 0, σ > 0. Nevertheless the fact that, once
known the operator P̃ , the evolution (24) is equivalent (cfr. (16); (17)) to
the evolution

Wn+1 = P̃Wn (27)

suggests not to limit oneself to the consideration of the linear forms on A,
of the type ωp;w; but to state the problem in the larger class of all the linear
forms on A which take positive values on the convex cone of the positive
operators in A. This statement of the problem leaves unaltered the “Volterra
type” character of the probability evolution (cfr. (27) and (14)). More pre-
cisely, one consider all the probability evolution determined by the assign-
ment of:
1.) A continuous linear operator P̃ (cfr. (14)) in the space L∞(N−;R−).
2.) A continuous linear form ω ∈ A∗, positive on the convex cone of positive
operators in A; through the equation:

Wn+1(T (a)) = ω(T0(a)P̃ n) (28)

(To denote an action of A on A).Appendix I: Proof of Proposition ??.
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By hypothesis s1 = e therefore equality R+
s1
ω = ω is trivial. Let us

suppose that R∗Sω
J

= ω for 1 ≤ J ≤ k, then one has:

Ψ̂k+1(a1; I; . . . ; I) = ω

(
Ta1 ·

k+1∏
i=2

LSi
· T (I)

)
=

= ω

(
Ta1 ·

k+1∏
i=2

si

)
= R∗Sk+1

(
k−2∏
J=0

R∗Sk−J
ω

)
(Ta1) =

= (R∗Sk+1
ω)(Ta1)

because of the inductive hypothesis. On the other hand,

Ψ̂k+1(a1; I; . . . ; I) = Ψ̂1(a1) = ω(Ta1)

for every a1 ∈ A. Therefore from Definition ?? it follows R∗Sk+1
ω = ω.

Consequently R∗SJ
ω = ω; for every J ; and this ends the proof.

Then a cylindrical measure “naturally” (in the sense specified in § 0.)
associated with the evolution (28) exists if and only if the agreement condition

L∗p̃ω = ω (29)

is satisfied.
If such an ω exists, the associated cylindrical measure will be automati-

cally homogeneous, (in the sense of Definition ??; and it will be stationary,
in the sense of Definition 2 if and only if

R∗p̃ω = ω (30)

The existence of linear forms ω ∈ A∗ satisfying equation (29) and the posi-
tivity condition of point 2.), will be discussed in a subsequent paper.

Appendix II: Proof of Theorem ??.
Let {(pk);T ;ω} be a cylindrical measure, regular, stationary, satisfying

[pl]. Then, having set p = p2 then one has

Ψ̂(I; a2) = ω(Lp2 · T (a2)) = (L∗p2ω)(T (a2)) = Ψ̂1(a2) = ω(T (a2))

Therefore L∗p2ω = ω because of regularity. Suppose now pi = p for i ≤ k.
Then:

Ψ̂k+2(I; . . . ; I; ak+1; ak+2) = ω(Lpk+1
· T (ak+1) · Lpk+2

· T (ak+2) =
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= (L∗pk+1
ω)(T (ak+1) · Lpk+2

· T (ak+2)) =

= Ψ̂2(ak+1; ak+2) = ω(T (ak+1);Lp ◦ T (ak+2))

Setting ak+2 = I from the equality

ω(T (ak+1)) = (L∗pk+1
R∗pk+2

ω)(T (ak+1)) = (L∗pk+1
ω)(T (ak+1))

from regularity it follows L∗pk+1
ω = ω.

¿From the preceding equality one then deduces

ω(T (ak+1)) · [pk+2 − p] · T (ak+2)) = 0

for every ak+1, ak+2 in A. Therefore, from condition [p1] it follows pk+2 = p,
which is the thesis.

Appendix III

Proof of Theorem ??. It is clear that the condition is sufficient. Con-
versely, suppose that

v(τ) =
0∑
−∞

σA(τ ;σ)w(σ) ∈ Q+ (31)

for every W = (w(σ)) ∈
∏

N− Q+. Then

0∑
−∞

σ〈A(τ ;σ)w(σ);u〉 =
0∑
−∞

σ〈w(σ); qτ (σ)〉 = 1 (32)

(having set qτ (σ) = . . . tA(τ ;σ)u) 8. Let now be tqτ (σ) = (q1,τ (σ); . . . ; qn,τ (σ)):
and suppose that there exists σ∗ ∈ N− such that qi,τ (σ

∗) 6= qJ,τ (σ
∗) for some

i and j; (1 ≤ i; j ≤ n). From the positiveness of wk(σ), it follows:

〈w(σ∗); qτ (σ
∗)〉 =

n∑
1

iwi(σ
∗)qi,τ (σ

∗) < (33)

< max
1≤i≤n

qi,τ (σ
∗) = 〈eJ∗ ; qτ (σ

∗)〉

8We denote tA the transpose of the matrix A.
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where by definition; qJ∗;τ (σ
∗) = max1≤i≤n qi;τ (σ

∗) and eJ∗ denotes the vector
eJ∗,i = δJ∗,i (the Kroneker δ). Since eJ∗ ∈ Q+, the sequence (W (σ)) such
that

W (σ) = w(σ) for σ 6= σ∗ ; W (σ∗) = eJ∗

lies in
∏

N− Q+. So from (32) it follows

1 =
0∑
−∞

σ〈W (σ); qτ (σ)〉 >
0∑
−∞

σ〈w(σ); qτ (σ) >= 1 (34)

which is aburd. Hence qi,τ (σ) = qJ,τ (σ) for every σ, τ ∈ N− and 1 ≤ i, J ≤ n;
we can write

qτ (σ) = λτ (σ) · u;
0∑
−∞

σλτ (σ) = 1 (35)

Till now we did not use hypothesis (i). Suppose now thata W = (w(σ)) ∈∏
N− Q

+
0 . Then, because of hypothesis (i), one has

0 ≤
0∑
−∞

σ〈w(σ); qτ (σ)〉 ≤ 1 (36)

thus, if there exists a σ∗ such that λτ (σ
∗) < 0 choosing w(σ) = 0 for σ 6= σ∗,

and w(σ∗) 6= 0 one has:

〈w(σ∗); qτ (σ
∗)〉 = λT (σ∗) < 0 (37)

which contradicts (36).

Thus, λτ (σ) ≥ 0;
0∑
−∞

σλτ (σ) = 1. Setting tA(τ ;σ) = λT (σ) tQ(T ;σ) it will

be suficient, for our thesis to prove that tQ(τ ;σ) is a positive matrix. Sup-
pose, again, the contrary. Then there exists a σ∗ ∈ N−, such that qi,τ (σ

∗) < 0
for some i; (1 ≤ i ≤ n). Therefore for a vector w0 ∈ Q+

0 , one has 〈w(σ∗);
qτ (σ

∗)〉 < 0 contradicting (36). Hence, tQ(σ, τ) is a positive matrix and
tQ(σ; τ)u = u, for every σ, τ ∈ B− i.e., Q(σ; τ) is a stochasti matrix, and this
conclude the proof.

Let us now give a counterexample which proves that, without assumption

(i), Theorem ?? is false. Let ϕ(σ) > 0;
N∑
i=0

ϕ(σ) = 1 (N a fixed integer). Let
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(A(σ))0≤σ≤N be stochastic matrices such that aiJ(σ) ≥ ε > 0; 1 ≤ i, j ≤ n;
0 ≤ σ ≤ N for some ε > 0.

Choose a sequence of numbers (ϕ(τ))τ>N such that
∞∑

τ=N+1

ϕ(τ) = 0;∑
τ∈G+

ϕ(τ) = ε
2M

where G+ is the set of integers (> N) such that ϕ(τ) > 0.

Let (A(τ))τ>N now be a sequence of matrices satisfying the following
conditions:

tA(τ)u = u ; ‖ai(τ)‖ < M

where ai(τ) denotes the i–th row of the matrix A(τ). Then if W = (w(σ)) ∈∏
N−
Q+ one sees

∞∑
0

σ〈ϕ(σ)A(σ)w(σ);u〉 =

=
N∑
0

σϕ(σ) < A(σ)w(σ);u〉+
∞∑
N+1

σϕ(σ)〈A(σ)w(σ);u〉 = 1

And futhermore:
∞∑
0

σϕ(σ)[A(σ)w(σ)]i =

=
N∑
0

σϕ(σ)

[
n∑
J=1

aiJ(σ)wJ

]
+
∞∑
N+1

σϕ(σ)

[
n∑
J=1

aiJ(σ)wJ

]
≥

≥ ε−
∞∑

τ=N+1

|ϕ(τ)| · |〈ai(τ);w(τ)〉| ≥

≥ ε−
a∑

τ=N+1

|ϕ(τ)|M ≥ 0

because of our hypothesis. Therefore we conclude that the operator:

w = (w(σ))→

(
0∑
−∞

σϕ(−σ)A(−σ)w(σ)

)

maps
∏

N− Q+ into itself, and it is not of the form required by Theorem ??.
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