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Abstract 

A comparison among algorithms for passive localization in Multilateration (MLAT) systems for 

airport surface surveillance, based on Mode S signals (replies and 1090 MHz ES) is presented. 

A general framework for the comparison of these algorithms is proposed and described. Finally, 

an analysis with real data is performed and some guidelines and conclusions are provided. 

 

1. Introduction 

In Mode S Multilateration systems, ground receiving stations are placed in some strategic 

locations around the area to be covered. The system uses the Mode A/C and Mode S signals, i.e. 

the spontaneous Mode S squitter, the asynchronous transponder replies as well as the responses 

to interrogations elicited by the system itself. Then, the received signals are sent to the Central 

Processing Subsystem (CPS) where the transponder position is calculated [1-2]. This calculation 

is based on the Time Difference of Arrival (TDOA) principle, see Fig. 1. 

 

Fig. 1. MLAT system TDOA principle. 

The TDOA principle consists in relating the unknown target position � � ��, �, �� with a set of 

known parameters. These known parameters are the TDOA measurements, which can be seen 

as the TOA difference between the ith receiving station and a reference one (the station number 



1), and the stations position. The resulting function geometrically represents a hyperbola (or 

hyperboloid) and it can be expressed as follows: 
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where the superscript   denotes that is a measured (estimated) quantity, ��,� is a TDOA random 

noise term, which generally is assumed to be zero mean Gaussian distributed, � is the speed of 

light, and �� is the total number of receiving stations. The TDOA measurements in (1) are 

proportional to range difference measurements: 
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��
 �,� � �#� � #�� � ��,� (2)   

where #� � �� � ���. Finally, in order to obtain a numerical data for �, a localization algorithm 

manipulates the set of measurements in the form of (2) to construct and to solve a system of 

equations, which is basically an inverse problem. 

The position accuracy of MLAT systems depends on three elements, namely, the measurements 

accuracy, the spatial distribution of the stations (also called system geometry) that is quantified 

by the Dilution of Precision (DOP) parameter, and the localization algorithm used to convert the 

TOA/TDOA measurements space (i.e. the set of measurements in (1)) into the position one, 

commonly referenced to the Cartesian space (x,y,z). It is assumed that the MLAT position errors 

can be modelled as some statistical distribution. Generally, an unbiased Gaussian distribution 

with a given variance is assumed, where the measurements accuracy and the DOP set the 

minimum variance values of such a distribution [3]. Whether the operational system (regardless 

of the practical implementation) reaches or not this best case depends on the efficiency 

(statistically and numerically) of the localization algorithm.  

The paper is organized as follows: the general framework, the data model and numerical 

algorithms descriptions are provided in Section 2, whilst the corresponding simulations and 

results, and the numerical analysis are given in Section 3. Finally, we provide some conclusions 

about the analysis performed in this paper. 

 

2. The General Framework for Localization Algorithms 

The localization problem in MLAT systems consists of estimating the target position in a given 

geographical reference system, based upon a set of physical measurements of signals emitted by 

aircraft or vehicles, and received by a set of ground receiving stations. In general terms, the 

target position is that numeric parameter that satisfies the set of equations (2), relating it with 

each measurement.  

The structure of a localization algorithm is shown in Fig. 2. Such as algorithm starts by 

establishing a characteristic equation that can relate the unknown target position � with the 

measurements $"  and the position �� of a finite number of stations, and optionally another 

measurement of the target position, which is denoted in Fig. 2 as %���. This inverse problem 

can be generally composed by a coefficient matrix &, an unknown vector �, and a known 

measurement vector $" . Likewise, different pairs of coefficient matrix and measurement vector 

will result in different localization problems. Finally, the inverse problem can be solved by a 

suited numerical algorithm, and thus the solution for the target position �  is obtained.  



 

Fig. 2. General framework for localization algorithms. 

2.1. The Data Model 

The characteristic equation is used (Fig. 2) in different localization algorithms (i.e., the data 

models used by the different localization algorithms) that can be classified as based on 

statistical models, numerical models, and algebraic models. In the following the main 

characteristics of each of these are described. 

 

2.1.1. The statistical models  

This class of models assume certain statistical hypothesis about the measurements and the target 

position and set a probabilistic model that relates to each other. Most of statistical models are 

based on the Maximum Likelihood (ML) principle [4] due to the proven asymptotic consistency 

and efficiency of the ML estimators (MLE). These models require additional information about 

the measurement error distributions; normally Gaussian distributions are assumed. Furthermore, 

the resulting models are highly nonlinear. Then, to solve this kind of models, linear 

approximations and iterative numerical methods are required.  

The statistical approach based models generally require two stations for setting a characteristic 

equation; hence, they require only a minimum of � � 1 stations for an �-dimensional 

localization. Moreover, they allow of providing only one solution, and introduce only linear 

noise terms.  

The typical problem that is solved by the localization algorithms using this kind of data models 

is the maximization of the likelihood function defined as follows: 
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where $��� is the (highly nonlinear) function describing the exact range difference quantity in 

(2), without the random noise term, 2��� is the covariance matrix of the measurement errors, 

and det� � denotes the determinant. Thus, the likelihood function is maximized by minimizing 

the following function: 

<��� � 1$" �$���3=2���4�1$" �$���3 (4)   



Then this kind of models commonly use a Taylor series approximation of the function $��� to 

obtain a linear relation that allows the construction of a linear inverse problem. This linear 

approximation is generally expressed as follows: 

$��� � $��>� � &�� � �>� (5)   

where & is the Jacobian differential matrix of $��� (see [5-6] for details), and �> is a previous 

estimation of the solution, which is also called starting point. The convergence of the 

localization algorithms initially depends on the starting point accuracy, although the numerical 

algorithm that it uses can allow the use of relative poor accurate starting points [6].  

The most relevant localization algorithms that uses this kind of data models are those described 

in [7], which was statistically described and analyzed in [5], and the ones proposed in [6] and 

[8].  

 

2.1.2. The numerical models  

These models set a mathematical function that jointly relates the unknown target position, the 

measurements and a parameter derived from the target position (e.g., the target range) that of 

course is also unknown. The resulting models are linear in one unknown given the other one. 

Then, they assume certain numerical approximations between the target position and its derived 

parameter in order to simplify the solution. The most common assumed approximation is that of 

mutual independence between them. These numerical approximations are independent of the 

statistical distributions of the measurement errors. Most of them are based on the LS (Least 

Squares) principle, i.e., they set an error function whose squared norm is minimized. These 

models can be solved by direct optimization and do not require any previous estimation of the 

solution; for this reason the algorithms based on them are commonly classified as closed form 

algorithms. Furthermore, normally the computational cost required to solve this kind of models 

is less than that required for ones based on the statistical approach. On the other hand, all the 

algorithms based on these models introduce quadratic noise terms in the resulting inverse 

problem, and the solutions provided by them are biased and are not optimum in the statistical 

sense. Moreover, most of the localization algorithms that can be found in literature use this kind 

of data model. 

This kind of data model requires two stations to form a characteristic equation. However, 

depending on the numerical assumptions, they can require � � 1 or � � 2 receiving stations for 

a �-dimensional localization. Moreover, some of them can provide two possible solutions for 

the target position as they set a quadratic data model. Thus, these ones require an additional 

procedure to choose one of the two possible solutions. Likewise, this data model always 

introduces quadratic noise terms in the resulting localization problem. 

The most representative algorithms using this kind of models are the one by Smith and Abel [9], 

the one by Friedlander [10], the one by Schau and Robinson [11], and the one by Chan and Ho 

[12]. Obviously, there exist much more algorithms in the literature. However, from our point of 

view, the above cited ones are a suitable representation of the most of them. 

 

2.1.3. The algebraic models  

These models do not use any statistical assumptions or numerical approximations. They 

algebraically manipulate the hyperbolic equations until directly set an inverse problem that 

linearly relates the unknown target position with the known parameters (i.e., the measurements 

and the station positions). These models are very simple as only geometric relations are used. 

By contrary, they normally require more measurements and introduce quadratic and cubic noise 

terms in the inverse problem. As the numerical approach based models, these ones do not 

require any previous estimation of the solution and can be solved by direct optimization; hence, 

the algorithms that use these models are also classified as closed form algorithms. Moreover, 

the solutions provided by the algorithms based on these models are also biased and are not 



optimum in the statistical sense. On the other hand, most of them require the lowest 

computational resources.  

This kind of data model can require � � 1 or � � 2 stations for n-dimensional localization, and, 

as the numerical approach based models, they can provide one or two possible solutions for the 

target location.  

The most relevant algorithms using this data model are the one by Schmidt [13], the one by 

Geyer and Daskalakis [14] and the one published in the open license website Wikipedia
®
 [15]. 

Particularly, the Geyer and Daskalakis [14] algorithms is a practical implementation of the 

Bancroft algorithm [16], which was originally proposed for the Global Positioning System 

(GPS) and that is based on TOA measurements rather than TDOA or range differences. For this 

reason, we refer this algorithm as the Bancroft algorithm.  

 

2.2. The Numerical Algorithm 

The linear inverse problem &� � $"  as depicted in Fig. 1, and obtained by any data model, must 

be numerically solved to obtain a numerical data for the target position. Besides the particular 

form that can takes the matrix & and the measurement vector $"  the numerical efficiency of 

every particular solution strongly depends on the chosen solution for that inverse problem. As 

we have also commented before, the most used numerical algorithm to solve the resulting linear 

inverse problem is the LS, i.e., by the pseudoinverse matrix. Moreover, for the statistical 

approach based models that require iterative procedures because the nonlinearity of the resulting 

model, the Gauss-Newton method [7] is the most commonly used. However, the latter can be 

also seen as an iterative, recursive solution in the sense of LS. 

The LS solution solves the following residual error norm minimization problem: 

� � argmin
�
�&� �$"�5 (6)   

The solution �  provided by (6) is known to be the minimum residual norm when solved by the 

pseudoinverse matrix [17]. However, this solution is not always numerically stable and, hence, 

it does not always provide acceptable accuracies because, in many operational conditions, the 

coefficient matrix & has some linearly-dependent rows [3], [8]. 

On the other hand, also there exist other robust numerical algorithms, which have been recently 

implemented for the MLAT localization problem. These algorithms include the Tikhonov, 

SVD, and Total Least Squares (TLS) based regularization, and are intended to provide 

numerical stable solutions. These numerical methods solve a modified version of the residual 

error norm in (6). 

The Tikhonov regularization solves a linear combination of the residual error norm in (6) and an 

auxiliary norm called smoothed norm, as follows: 

� =�EFGHGI � argmin
�
��&� �$"�5 � J5�K��5� (7)   

where J and K are called regularization parameter and matrix of Tikhonov, respectively, and the 

term �K�� is the smoothed norm. The regularization parameter and matrix must be previously 

estimated. The authors in [6] provide and simple, but efficient procedure for that estimation in 

MLAT localization. 

The SVD based regularization, specifically the Truncated SVD (T-SVD), solves an equivalent 

minimization problem to (6) but by using a modified (truncated) version of matrix &, as 

follows: 

� =4LMN � argmin
�
�&O� �$"�5 (8)   



where &E is the modified version of & and P is known as the truncation parameter. This 

parameter must also be previously estimated. A procedure to obtain the truncation parameter 

and the corresponding modified matrix &E are described in [8] for MLAT localization. 

The TLS based regularization, specifically the Truncated TLS (T-TLS), assumes that also the 

coefficient matrix & is perturbed by some errors and, under this assumption, solves the 

following LS problem: 

� =4=QL � argmin
�

RS&,$" TE7+7UV � W&X,$" YZR[     subject to    $"
Y � &X� (9)   

where &X is the perturbed coefficient matrix, $" Y is the equivalent perturbed version of the 

measurement vector, � �[ denotes de Frobenius norm of a matrix [17], P=4=QL is the 

corresponding T-TLS truncation parameter, and the matrix  S&,$" TE7+7UV is a modified version 

of matrix S&,$" T. Some particular application of T-TLS method, for some numerical approach 

based model algorithms, can be found in [18-19]. 

 

3. Simulation and Results 

To perform the comparison of localization algorithms, the company ERA A.S. has provided us a 

data base of TOA measurements of one of its operational system, the MLAT system installed at 

Tallinn airport (Tallinn, Estonia). This system is intended for surface surveillance and is 

composed of fourteen receiving stations. The record of TOA measurements was taken through 

the entire airport surface following the requested procedures by the European regulatory bodies 

[1]. The data base contains more than 4000 records (with an average period of 1 s), where each 

record contains set of TOA measurements. Moreover, also the company above mentioned has 

provided as of highly accurate position reference data, which was simultaneously recorded with 

a GPS receiver with differential correction capabilities (DGPS). This data is used to calculate 

the 2D error of every analyzed localization algorithm. The system layout and the reference 

position data are depicted in Fig. 3. 

 

Fig. 3. Tallinn MLAT system. 

We have simulated the localization algorithms by Schmidt [13], Foy [7], Smith and Abel [9], 

Friedlander [10], Schau and Robinson [11], Chan and Ho [12], the application of Bancroft by 

Geyer and Daskalakis [14], and the Wikipedia
®
 [15]. All of these algorithms are solved in the 

sense of LS. Moreover, we also have simulated the particular applications of Tikhonov [6] and 

T-SVD [8] regularization methods. Particularly, for the localization algorithms using a 

statistical approach based model, which require for a starting point, we use the one as provided 

by the Schau and Robinson algorithm[11]. Moreover, for those algorithms that require choosing 

one of the two possible solutions (i.e., the Schau and Robinson algorithm, the Chan and Ho[12], 

and the Bancroft) we have used the same selection procedure. 

To evaluate accuracy of the above mentioned algorithms, we have calculated the target position 

through the entire path depicted in Fig. 3 and obtained, for each of these, the corresponding 2D 
�b, c� error versus the DGPS reference position data. Then, the standard deviation and mean of 

each error distribution are obtained. These values are shown in Table 1. 



Table 1. Standard deviation and mean for the error distribution of every localization algorithm. Values in 

meters (N: numerical, S: statistical, A:algebric model). 

Model Algorithm def (m) Mean2D (m) 

A Schmidt 385.93 39.74 

S Foy 1.20E+18 4.82E+16 

N Smith and Abel 614.66 67.16 

N Friedlander 385.15 36.67 

N Schau and Robinson 616.26 108.62 

N Chan and Ho 737.49 876.57 

A Bancroft 456.06 97.61 

A Wikipedia 384.66 35.38 

S Tikhonov 61.79 12.57 

S T-SVD 65.03 12.75 

As we can see from Table 1, all the localization algorithms solved in the sense of LS provide 

very large values of standard deviation and mean, significantly much greater than the requested 

one for surface surveillance [1]. In this sense, the Schmidt, Friedlander, and Wikipedia 

algorithms provide the smallest values of standard deviation and mean (385 m and 37 m 

respectively). Then, the Smith and Abel, Schau and Robinson, Bancroft, algorithms provide 

greater values. The Foy algorithm is the one with the greatest errors. It is mainly due to the 

impossibility of this algorithm to converge through the entire surface path. Regarding to the 

Chan and Ho algorithm, which provides the largest value of mean (after the Foy algorithm), the 

reason is different from that of Foy algorithm. It is due to its low capability of jointly obtaining 

the target range and the target position. In this case, when this algorithm applies the quadratic 

correction [12], as the target range is highly inaccurate (in some cases negative), this correction 

also leads to a highly inaccurate positions. We have also found that if only the first solution of 

this algorithm (i.e., before the quadratic correction), for target position, is taken as the final one, 

it presents an equivalent performance as Smith and Abel algorithm.  

Finally, the localization algorithms solved in the sense of Tikhonov and T-SVD provide the best 

values of standard deviation and mean.  

 

4. Conclusions 

We have proposed a general framework to understand, and compare the localization algorithms. 

We have tested all the described localization algorithms for a real data scenario and we have 

found the most statistically optimal solutions are provided by the algorithms using a statistical 

approach based model, as long as the statistical hypotheses are met and the algorithm 

convergence is reached. 

However, the convergence of these algorithms when solved in the sense of LS is unstable and, 

hence, not always guaranteed. In this sense, we have shown that the corresponding convergence 

of these algorithms can be guaranteed when using regularization techniques like Tikhonov or T-

SVD.  

In order to obtain the most statistical and numerically efficient localization strategy, it is always 

advisable to use the combination of a statistical approach based model algorithm (that is an open 

form algorithm) along with either a numerical or an algebraic approach based model algorithm 

(that are closed form algorithms). 
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